
Controller Area Network (CAN) Schedulability Analysis:
Refuted, Revisited and Revised

Robert I. Davis and Alan Burns
Real-Time Systems Research Group,

Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk,
alan.burns@cs.york.ac.uk

Reinder J. Bril and Johan J. Lukkien
Technische Universiteit Eindhoven (TU/e),

Den Dolech 2, 5600 AZ Eindhoven,
The Netherlands
r.j.bril@tue.nl

j.j.lukkien@tue.nl

Abstract
Controller Area Network (CAN) is used extensively

in automotive applications, with in excess of 400
million CAN enabled microcontrollers manufactured
each year. In 1994 schedulability analysis was
developed for CAN, showing how worst-case response
times of CAN messages could be calculated and hence
guarantees provided that message response times
would not exceed their deadlines. This seminal
research has been cited in over 200 subsequent papers
and transferred to industry in the form of commercial
CAN schedulability analysis tools. These tools have
been used by a large number of major automotive
manufacturers in the design of in-vehicle networks for
a wide range of cars, millions of which have been
manufactured over the last 8 years.

This paper shows that the original schedulability
analysis given for CAN messages is flawed. It may
provide guarantees for messages that will in fact miss
their deadlines in the worst-case. This paper provides
revised analysis resolving the problems with the
original approach. Further, it highlights that the
priority assignment policy, previously claimed to be
optimal for CAN, is not in fact optimal and cites a
method of obtaining an optimal priority ordering that
is applicable to CAN. The paper discusses the possible
impact on commercial CAN systems designed and
developed using flawed schedulability analysis and
makes recommendations for the revision of CAN
schedulability analysis tools.

1. Introduction
1.1. Background

Controller Area Network (CAN) is a serial
communications bus designed to provide simple,
efficient and robust communications for in-vehicle
networks. CAN was developed by Robert Bosch
GmbH beginning in 1983 and presented to a wider

audience at the Society of Automotive Engineers
(SAE) Congress in 1986 – effectively the “birth of
CAN”. In 1987 the first CAN controller chips were
released by Intel (82526) and Philips (82C200). In the
early 1990s Bosch submitted the CAN specification
[20] for standardisation, leading to publication of the
first ISO standard for CAN (11898) in 1993 [32].

Mercedes was the first automotive manufacturer to
deploy CAN in a production car, the 1991 S-class. By
the mid 1990s, the complexity of automotive
electronics was increasing rapidly. The number of
networked Electronic Control Units (ECUs) in
Mercedes, BMW, Audi and VW cars went from 5 or
less at the beginning of the 1990s to around 40 at the
turn of the millennium. With this explosion in
complexity traditional point-to-point wiring became
increasingly expensive to manufacture, install, and
maintain due to the hundreds of separate connections
and tens of kilograms of copper wire required. As a
result CAN was rapidly adopted by the cost-conscious
automotive industry, providing an effective solution to
the problems posed by increasing vehicle electronics
content. Following on from Mercedes other
manufacturers including Volvo, Saab, BMW,
Volkswagen, Ford, Renault, PSA, Fiat and others all
adopted CAN technology.

As a result of the wholesale adoption of CAN by
the automotive industry, sales of CAN nodes (8, 16 and
32-bit microcontrollers with on-chip CAN peripherals)
grew from just under 50 million in 1999 to over 340
million in 20031 – see Figure 1.

By 2004 there were at least 15 silicon vendors
manufacturing, in total, over 50 different
microprocessor families with on-chip CAN capability.

Today almost every new car manufactured in

1 Figures from the CAN in Automation (CiA) website www.can-
cia.org

1

mailto:rob.davis@cs.york.ac.uk
mailto:alan.burns@cs.york.ac.uk
mailto:r.j.bril@tue.nl
mailto:j.j.lukkien@tue.nl

Europe is equipped with at least one CAN bus. In the
United States, the Environmental Protection Agency
has mandated the use of CAN, for On Board
Diagnostics, in all cars and light trucks sold in the US
from model year 2008 onwards.

0

50

100

150

200

250

300

350

400

M
ill

io
n

un
its

1999 2000 2001 2002 2003

Year

CAN node sales

32-bit

16-bit

8-bit

stand alone

Figure 1: Sales of Microcontrollers with on-

chip CAN Peripherals

1.2. Automotive Applications
In automotive applications, CAN is typically used

to provide high speed networks (500Kbits/s)
connecting chassis and power-train ECUs, for example
engine management and transmission control. It is also
used for low speed networks (100 or 125Kbits/s)
connecting body and comfort electronics, for example
door modules, seat modules and climate control. Data
required by ECUs on different networks is typically
gatewayed between the different CAN buses by a
powerful ECU connected to both.

Figure 2: VW Passat Network Architecture

The network architecture of the VW Passat [33]
shown in Figure 2, reproduced from [15], illustrates
how a number of CAN buses are used to connect
around 45 ECUs in that vehicle. Also shown in Figure

2 are three Local Interconnect Networks (LIN). LIN is
a complementary technology to CAN, and is used to
provide inexpensive, low speed (20Kbits/s)
connectivity.

Table 1 summarises the requirements placed on in-
vehicle networks for the BMW 7 Series. This is typical
of automotive applications, where individual CAN
buses are used to connect between 2 and 32 ECUs at
bandwidths ranging from 100 to 500Kbits/s.

 Body Chassis Powertrain
No. of ECUs 14-30 6-10 3-6
Bandwidth 100 Kbits/s 500 Kbits/s 500Kbits/s
No. of
Messages

300 180 36

Cycle Times 50ms-2s 10ms-1s 10ms-10s

Table 1: BMW 7 Series Network Requirements

In automotive applications the messages sent on
CAN are used to communicate state information,
referred to as signals, between different ECUs.
Examples of signals include: wheel speeds, oil and
water temperature, engine rpm, gear selection,
accelerator position, dashboard switch positions,
climate control settings, window switch positions, fault
codes, diagnostic information and so on. In a high-end
vehicle there can be more than 2500 distinct signals,
each effectively replacing what would, in a traditional
point-to-point wiring loom, have been a separate wire.

Many of these signals have real-time constraints
associated with them. For example, an ECU reads the
position of a switch attached to the brake pedal. This
ECU must send a signal, carrying information that the
brakes have been applied, over the CAN network so
that the ECU responsible for the rear light clusters can
recognise the change in the value of the signal and
switch the brake lights on. All within a few tens of
milliseconds of the brake pedal being pressed. Engine,
transmission, and stability control systems typically
place even tighter time constraints on signals, which
may need to be sent as frequently as once every 5
milliseconds to meet their time constraints.

1.3. Research and Real-Time Analysis
CAN is a serial data bus that supports priority

based message arbitration and non-pre-emptive
message transmission. In the early 1990s, a common
misconception about CAN was that although the
protocol was very good at transmitting the highest
priority message with low latency, it was not possible
to guarantee that less urgent signals, carried in lower
priority messages, would meet their deadlines.

In 1994 Tindell et al. [6, 8, 9] showed how research
into fixed priority pre-emptive scheduling for single
processor systems could be adapted and applied to the

2

scheduling of messages on CAN. This analysis
provided a method of calculating the worst-case
response times of all CAN messages. Using this
analysis it became possible to engineer CAN based
systems for timing correctness, providing guarantees
that all messages, and the signals that they carry would
meet their deadlines.

Tindell’s seminal research heavily influenced the
design of on-chip CAN peripherals such as Motorola
msCAN [34] and has lead to a large body of work into
schedulability theory and error models for CAN [22-
27, 29], including at least two PhD theses [13, 15].
Overall, this research into CAN scheduling has been
cited in over 2002 subsequent papers.

In 1995 Tindell’s research was recognised by
Volvo Car Corporation and successfully used in the
configuration and analysis of the CAN buses for the
forthcoming Volvo S80 (P23) [11]. Following the
success of this project, Volcano Communications
Technologies AB3 used Tindell’s analysis as the basis
of a commercial CAN schedulability analysis tool.
Since 1998 these tools have been used, by a number of
automotive manufacturers, in the design and
development of the CAN networks and electronics
systems for their vehicles.

Prior to Tindell’s work, low levels of bus
utilization, up to 30 or 40%, were typical in automotive
applications, with extensive testing required to obtain
confidence that CAN messages would meet their
deadlines. With the advent of a systematic approach
based on schedulability analysis, CAN bus utilization
could be increased to around 80% [14] whilst still
guaranteeing that deadlines would be met.

1.4. Motivation
The design and development of many in vehicle

Controller Area Networks relies on the schedulability
analysis of CAN given in [6, 8, 9]. In this section, we
show that this analysis is flawed. It may result in
computed worst-case response times for messages that
are optimistic, i.e. less than the response times that
may actually occur. The set of CAN messages listed in
Table 2 serve to highlight the problem with the existing
schedulability analysis of CAN. As a simple example,
we have assumed a 125Kbit/s network with 3
messages, each of which carries 7 bytes of signal data.
Assuming 11-bit identifiers and worst-case bit-stuffing,
the maximum length of each message is 125 bits and
hence the maximum transmission time of each message
is 1ms.

2 As of August 2006, reference [6] has 78 citations, reference [8] 199
citations and reference [9] 110 citations (Google Scholar).
3 Volcano Communications Technologies AB was acquired by
Mentor Graphics in May 2005.

The analysis method given in [6, 8, 9] calculates
the worst-case response times of messages A, B and C
as 2ms, 3ms and 3ms respectively. Hence the system is
deemed to be schedulable – the analysis supposedly
guarantees that all of the messages will meet their
deadlines in the worst case, despite the high bus
utilisation of 97%.

Message Priority Period Deadline TX time
A 1 2.5ms 2.5ms 1ms
B 2 3.5ms 3.25ms 1ms
C 3 3.5ms 3.25ms 1ms

Table 2: CAN Messages Highlighting Flawed
Analysis

Figure 3 illustrates the worst-case scenario for
transmission of message C. We note that the first
invocation of this message is delayed by higher priority
messages A and B, leading to a response time of 3ms –
this is the “worst-case response time” calculated using
existing CAN schedulability analysis methods.
However, as message transmission is non-pre-
emptable, the first transmission of message C has a
knock on effect, delaying subsequent transmissions of
higher priority messages A and B. Some of this higher
priority interference is pushed through into the next
period of message C leading to a longer response time
for the second instance of message C.

Figure 3: Worst-case Scenario for Message C

At time t = 7ms, the second instance of message C
completes transmission with a response time of 3.5ms.
(Note at time t = 7ms, there are no higher priority
messages awaiting transmission and so there is no
further push through interference that could delay
subsequent instances of message C).

The actual worst-case response time for message C
is 3.5ms, which is greater than its deadline of 3.25ms,
and so the system is in fact unschedulable; contrary to
the guarantees given by [6, 8, 9].

In fact, if the periods of messages B and C are
shortened from 3.5ms to 3.25ms then the existing
analysis results in unchanged worst-case response
times, implying that the system is still schedulable.
However, with these shorter periods the overall bus
utilisation exceeds 100% and so the system cannot
possibly be schedulable!

3

4

1.5. Related work
The schedulability analysis for CAN builds on

previous research into fixed priority scheduling of
tasks on single processor systems.

In 1990, Lehoczky [5] introduced the concept of a
busy period and showed that if tasks have deadlines
greater than their periods, referred to as arbitrary
deadlines, then it is necessary to examine the response
times of all invocations of a task falling within a busy
period in order to determine the worst-case response
time. In 1991, Harbour [4] showed that if deadlines are
less than or equal to periods, but priorities vary during
execution, then again multiple invocations must be
inspected to determine the worst-case response time.
We note that non-pre-emptive scheduling is effectively
a special case of pre-emptive scheduling with varying
execution priority – as soon as a task starts to execute
its priority is raised to the highest level. In 1994,
Tindell et al. [7] improved upon the work of Lehoczky
[5] providing a formulation for arbitrary deadline
analysis based on a recurrence relation.

Building upon these earlier results, comprehensive
schedulability analysis of non-pre-emptive fixed
priority scheduling for single processor systems was
given by George et al in 1996 [3].

In 2006, Bril [2] refuted the analysis of fixed
priority systems with deferred pre-emption given by
Burns in [12], showing that this analysis may result in
computed worst-case response times that are
optimistic. The schedulability analysis for CAN given
by Tindell in [6, 8, 9] builds upon [12] and suffers
from essentially the same flaw. A similar issue with
work on pre-emption thresholds [19] was first
identified and corrected by Regehr [18] in 2002.

The revised schedulability analysis presented in this
paper aims to provide an evolutionary improvement
upon the analysis of CAN given by Tindell in [6, 8, 9].
To do so, it draws upon the analysis of Tindell [7] for
fixed priority pre-emptive scheduling of systems with
arbitrary deadlines and the analysis of George et al. [3]
for fixed priority non-pre-emptive systems.

A technical report [16] and a workshop paper [17]
highlight the problem for CAN but do not provide a
specific in-depth solution. That is the purpose of this
paper.

1.6. Organisation
The remainder of this paper is organised as follows:

section 2 describes the CAN protocol and terminology
before outlining a suitable scheduling model and

notation on which to base revised schedulability
analysis. Section 3 provides new schedulability
analysis for CAN, correcting the flaws in the existing
approach. Section 4 discusses the system and message
parameters needed for the flaws in the existing analysis
to result in incorrect worst-case response times and
hence misleading guarantees. Section 5 discusses the
issue of optimal priority assignment for CAN. Section
6 summarises the implications of flaws in the existing
analysis for commercial CAN applications. Finally,
section 7 concludes with a summary of the main
contributions of this paper and recommendations for
further research.

2. Controller Area Network (CAN)
This section describes elements of the CAN

protocol and characteristics of a system model that are
needed to formulate a schedulability test. For a
complete description of the CAN protocol see the CAN
specification version 2.0 [20].

2.1. CAN Protocol and Terminology
Controller Area Network (CAN) is a multi-master

serial data bus which uses Carrier Sense Multiple
Access/ Collision Resolution (CSMA/CR) to determine
access.

CAN was designed as a simple and robust
broadcast bus capable of operating at speeds of up to 1
Mbit/s. Message transfer over CAN is controlled by 4
different types of frame: Data frames, Remote
Transmit Request (RTR) frames, Overload frames and
Error frames.

The layout of a standard format data frame is
shown in Figure 4. Each CAN data frame is required to
have a unique identifier. Identifiers may be 11-bit
(standard format) or 29-bit (extended format). The
identifier serves two purposes beyond simply
identifying the message. First, the identifier is used as a
priority to determine which message among those
contending for the bus will be transmitted next.
Second, the identifier may be used by receivers to filter
out messages that they are not interested in, and so
reduce the load on the receiver’s host microprocessor.

In this paper we are interested in the schedulability
of data frames, with error frames also considered in
section 3.5. The schedulability analysis can however
easily be extended to include RTR frames using the
approach given in [8].

Figure 4: Standard Format Data Frame

2.1.1 Priority Based Arbitration
The CAN physical layer supports two states termed

dominant (‘0’) and recessive (‘1’). If two or more CAN
controllers are transmitting at the same time and at
least one of them transmits a ‘0’ then the value on the
bus will be a ‘0’. This mechanism is used to control
access to the bus and also to signal errors.

The CAN protocol calls for nodes to wait until a
bus idle period4 is detected before attempting to
transmit. If two or more nodes start to transmit at the
same time, then by monitoring each bit on the bus,
each node can determine if it is transmitting the highest
priority message (with a numerically lower identifier)
and should continue or if it should stop transmitting
and wait for the next bus idle period before trying
again. As the message identifiers are unique, a node
transmitting the last bit of the identifier field, without
detecting a ‘0’ bit that it did not transmit, must be
transmitting the message with the lowest numerical
value and hence the highest priority that was ready at
the start of arbitration. This node then continues to
transmit the remainder of its message, all other nodes
having backed off.

The requirement for a node to be able to overwrite
a recessive bit, and the transmitting node detect this
change, limits the combination of physical length and
speed of CAN bus. The duration of each bit must be
sufficient for the signal to propagate the length of the
network. This limits the maximum data rate to 1Mbit/s
for a network up to 40m in length or to 125Kbit/s for a
500m long network.

The arbitration mechanism employed by CAN
means that messages are sent as if all the nodes on the
network shared a single global priority based queue. In
effect messages are sent on the bus according to fixed
priority non-pre-emptive scheduling.

The above high level description is a somewhat
simplified view of the timing behaviour of CAN. CAN
does not have a global concept of time, rather each
CAN controller typically has its own clock which,

5

4 A bus idle period is an interval of arbitrary length comprising only
recessive bits and beginning with the last bit of the inter-frame space
– the final 3-bit field shown in Figure 4.

within a tolerance specified by the protocol, may drift
with respect to the clocks of other nodes. The CAN
protocol therefore requires that nodes re-synchronise
on each message transmission. Specifically, every node
must synchronise to the leading edge of the start of
frame bit caused by whichever node starts to transmit
first.

Normally, CAN nodes are only allowed to start
transmitting when the bus is idle. Thus, when the bus is
idle beyond the 3-bit inter-frame space and a node
starts to transmit a message beginning with the
dominant start of frame bit (“0”), then all the other
nodes synchronise on the leading edge of this bit and
become receivers – i.e. they are not permitted to
transmit until the bus next becomes idle. In this case
any message that becomes ready for transmission after
the leading edge of the start of frame bit has to wait for
the next bus idle period before it can enter into
arbitration.

However, to avoid problems due to clock drift, the
CAN protocol also specifies that, if a CAN node has a
message ready for transmission and detects a dominant
bit at the 3rd bit of the inter-frame space, it will
interpret this as a start of frame bit, and, with the next
bit, start transmitting its own message with the first bit
of the identifier without first transmitting a start of
frame bit and without becoming a receiver5. Again the
leading edge of the start of frame bit causes a
synchronisation. This behaviour ensures that any
messages that become ready for transmission, whilst
another message is being sent on the bus, are entered
into the next round of arbitration, irrespective of any,
within tolerance, clock drift.

2.1.2 Error Detection
CAN was designed as a robust and reliable form of

communication for short messages. Each data frame
carries between 0 and 8 bytes of payload data and has a
15-bit Cyclic Redundancy Check (CRC). The CRC is
used by receiving nodes to check for errors in the
transmitted message. If a node detects an error in the
transmitted message, which may be a bit-stuffing error
(see section 2.1.3), a CRC error, a form error in the

5 See page 54 of the CAN Specification version 2.0 [20].

fixed part of the message or an acknowledgement
error, then it transmits an error flag. The error flag
consists of 6 bits of the same polarity: ‘000000’ if the
node is in the error active state and ‘111111’ if it is
error passive. Transmission of an error flag typically
causes other nodes to also detect an error, leading to
transmission of further error flags.

Figure 5: CAN Error Frames

Figure 5 illustrates CAN error frames, for further
details see [20] and [22]. The length of an error frame
is between 17 and 31 bits. Hence each message
transmission that is signalled as an error can lead to a
maximum of 31 additional bits6 of error recovery
overhead plus re-transmission of the message itself.

2.1.3 Bit Stuffing
As the bit patterns ‘000000’ and ‘111111’ are used

to signal errors, it is essential that these bit patterns are
avoided in the variable part of a transmitted message –
see Figure 4. The CAN protocol therefore requires that
a bit of the opposite polarity is inserted by the
transmitter whenever 5 bits of the same polarity are
transmitted. This process is referred to as bit-stuffing,
and is reversed by the receiver.

The worst-case scenario for bit-stuffing is shown in
Figure 6. Note that each stuff bit begins a sequence of
5 bits that is itself subject to bit stuffing.

Figure 6: Worst-case Bit Stuffing

Stuff bits increase the maximum transmission time
of CAN messages. Including stuff bits and the inter-

6

6 The analysis given in [6, 8, 9] uses 29 bits as the error recovery
overhead as specified on page 8 of part A of the CAN specification
2.0 [20] for standard identifiers only. We use 31 bits as specified on
page 40 of the CAN specification 2.0 Part B [20] for both standard
and extended identifiers.

frame space, the maximum transmission time m , of a
CAN message m containing data bytes is given by

C
ms 7:

bit
m

mm
sg

sgC τ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −+
+++=

4
18

138 (1)

where g is 34 for standard format (11-bit identifiers) or
54 for extended format (29-bit identifiers), ⎣ ⎦ba / is
notation for the floor function, which returns the
largest integer less than or equal to a/b, and bitτ is the
transmission time for a single bit.
The formula given in Equation (1) simplifies to:

bitmm sC τ)1055(+= (2)
for 11-bit identifiers and

bitmm sC τ)1080(+= (3)
for 29-bit identifiers.

2.2. Scheduling Model
In this section we describe an appropriate system

model and notation that can be used to analyse worst-
case response times of messages on CAN and hence
determine system schedulability.

The system is assumed to comprise a number of
nodes (microprocessors) connected via CAN. Each
node is assumed to be capable of ensuring that at any
given time when arbitration starts, the highest priority
message queued at that node is entered into arbitration.

The system is assumed to contain a static set of
hard real-time messages each statically assigned to a
node on the network. Each message m has a fixed
identifier and hence a unique priority. As priority
uniquely identifies each message, in the remainder of
this paper we will overload m to mean either message
m or priority m as appropriate. Each message has a
maximum number of data bytes m and a maximum
transmission time , given by Equation (1).

s
m

Each message is assumed to be queued by a
software task, process or interrupt handler executing on
the host microprocessor. This task is either invoked by,
or polls for, the event and takes a bounded amount of
time between 0 and m to queue the message ready
for transmission. m is referred to as the queuing jitter
of the message and is inherited from the overall
response time of the task, including any polling delay.

C

J
J

The event that triggers queuing of the message is
assumed to occur with a minimum inter-arrival time of

m , referred to as the message period. This model
supports events that occur strictly periodically with a
period of mT , events that occur sporadically with a
minimum separation of mT and events that occur only
once before the system is reset, in which case is

T

mT

7 This formula corrects a similar one in [6, 8, 9] which does not
account for the fact that stuff bits are themselves also subject to bit
stuffing.

infinite.
Each message has a hard deadline m ,

corresponding to the maximum permitted time from
occurrence of the initiating event to the end of
successful transmission of the message, at which time
the message data is assumed to be available on the
receiving nodes that require it. Tasks on the receiving
nodes may place different timing requirements on the
data, however in such cases we assume that is the
tightest such time constraint.

D

mD

The worst-case response time m , of a message is
defined as the longest time from the initiating event
occurring to the message being received by the nodes
that require it.

R

A message is said to be schedulable if and only if
its worst-case response time is less than or equal to its
deadline . The system is schedulable if and
only if all of the messages in the system are
schedulable.

)(mm DR ≤

2.3. Practical Implications of the Model
Engineers wanting to use the analysis given in

section 3 to analyse CAN based systems must be
careful to ensure that all of the assumptions of the
above model hold for their system.

In particular, it is important that each CAN
controller and device driver is capable of ensuring that,
at any given time when arbitration starts, the highest
priority message queued at that node is entered into
arbitration. This behaviour is essential if message
transmission is to take place as if there were a single
global priority queue and for the analysis given in
section 3 to be applicable. As noted in [6], the Philips
82C500 CAN controller cannot in general support this
behaviour. Also the Intel 82527 CAN controller has a
feature where messages are entered into arbitration in
slot order rather than identifier order. In this case it is
important that messages are allocated to slots in
identifier order to preserve the correct priority based
behaviour.

Many on-chip CAN controllers have multiple slots
that can be allocated to either transmit or receive a
specific message. For example some Motorola,
National Semiconductor, Fujitsu and Hitachi on-chip
CAN peripherals have 14, 15 or 16 such slots. These
slots typically have only a single buffer and therefore it
is necessary to ensure that the previous instance of a
message has been transmitted before any new data is
written into the buffer, otherwise the previous message
will be overwritten and lost. This behaviour provides
an additional constraint on message transmission: the
deadline of each message must be less than or equal to
its period (). mm

Recall that the worst-case response time of a

message is from the occurrence of the initiating event
to the end of successful message reception at the
receiving nodes. As noted by Broster in [13], receiving
nodes can access the message following the end of
frame marker and before the 3-bit inter-frame space –
see Figure 4. The analysis given in the remainder of
this paper is slightly pessimistic in that it includes the
3-bit inter-frame space in the computed worst-case
response times. To remove this small degree of
pessimism it is valid to simply subtract 3

TD ≤

bitτ from the
computed response time values.

Typically the response time of a message represents
only part of an overall end-to-end response time that is
of interest to engineers. Once the message is received it
may cause an interrupt or be polled for at the receiving
node. Typically the data in the message will be
processed by a task or interrupt handler and some
output made. The worst-case response time of the
receiving task or interrupt handler, including any
polling delay, needs to be added to the worst-case
response time of the message to determine the overall
end-to-end response time.

The scheduling model assumed in this paper uses
only one time domain, whilst CAN typically has a
separate clock source for each node on the network. To
ensure that the schedulability analysis for a real
network does not produce optimistic results, it is
necessary to take clock tolerances into account. This
can be achieved by converting to real-time as follows:
for message jitters and bit times on the bus the
conversion to real-time should assume that the node
clocks run as slowly as their tolerance allows.
Similarly, message periods and deadlines derived from
node clocks should be converted to real-time assuming
that the node clocks run as quickly as their tolerance
allows.

3. Response Time Analysis
Response time analysis for CAN aims to provide a

method of calculating the worst-case response time of
each message. These values can then be compared to
the message deadlines to determine if the system is
schedulable. Initially we provide analysis assuming no
errors on the CAN bus. This analysis is then extended,
in section 3.5, to account for errors on the bus.

For systems complying with the scheduling model
given in section 2.2, CAN effectively implements fixed
priority non-pre-emptive scheduling of messages.
Following the analysis in [6, 8, 9] the worst-case
response time of a message can be viewed as being
made up of three elements:
(i) The queuing jitter m , corresponding to the

longest time between the initiating event and
the message being queued, ready to be

J

7

transmitted on the bus.
(ii) The queuing delay m , corresponding to the

longest time that the message can remain in
the CAN controller slot or device driver queue
before commencing successful transmission
on the bus.

w

(iii) The transmission time m , corresponding to
the longest time that the message can take to
be transmitted.

C

The worst-case response time of message m is given
by:

mmmm CwJR ++= (4)
The queuing delay comprises blocking m , due to

lower priority messages which may be in the process of
being transmitted when message m is queued and
interference due to higher priority messages which
may win arbitration and be transmitted in preference to
message m.

B

Given the behaviour of CAN described in the final
two paragraphs of section 2.1.1, the maximum amount
of blocking occurs when a lower priority message
starts transmission immediately before message m is
queued, ready to be transmitted on the bus. Message m
must wait until the bus is idle before it can be entered
into arbitration. The maximum blocking time , is
given by:

mB

)(max
)(

k
mlpk

m CB
∈

= (5)

where lp(m) is the set of messages with lower priority
than m.

The concept of a busy period, introduced by
Lehoczky [5], is fundamental in analysing worst-case
response times. Modifying the definition of a busy
period given in [4] to apply to CAN messages, a
priority level-m busy period is defined as follows:
(i) It starts at some time when a message of

priority m or higher is queued ready for
transmission and there are no messages of
priority m or higher waiting to be transmitted
that were queued strictly before time .

st

st
(ii) It is a contiguous interval of time during

which any message of priority lower than m is
unable to start transmission and win
arbitration.

(iii) It ends at the earliest time when the bus
becomes idle, ready for the next round of
transmission and arbitration, yet there are no
messages of priority m or higher waiting to be
transmitted that were queued strictly before
time .

et

et

8

The key characteristic of a busy period is that all
messages of priority m or higher queued strictly before
the end of the busy period are transmitted during the
busy period. These messages cannot therefore cause

any interference on a subsequent instance of message
m queued at or after the end of the busy period.

In mathematical terminology, busy periods can be
viewed as right half-open intervals: [,) where
is the start of the busy period and the end. Thus the
end of one busy period may correspond to the start of
another separate busy period. This is in contrast to the
simpler definition given in [5], which unifies two
adjacent busy periods as we have defined them, and
therefore sometimes results in analysis of more
message instances than is strictly necessary. For
example, in the extreme case of 100% utilisation, the
busy period defined in [5] never ends and an infinite
number of message instances would need to be
considered.

st et st
et

The worst-case queuing delay for message m
occurs for some instance of message m queued within a
priority level-m busy period that starts immediately
after the longest lower priority message begins
transmission. This maximal busy period begins with a
so-called critical instant [21] where message m is
queued simultaneously with all higher priority
messages and then each of these messages is
subsequently queued again after the shortest possible
time intervals. In the remainder of this paper whenever
we refer to a busy period we mean this maximum
length busy period.

If more than one instance of message m is
transmitted during a priority level-m busy period then
it is necessary to determine the response time of each
instance in order to find the overall worst-case
response time of the message.

3.1. Basic Analysis and Stopping Condition
In [6, 8, 9], Tindell gives the following equation for

the worst-case queuing delay:

k
mhpk k

bitkm
mm C

T
Jw

Bw ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

τ
 (6)

where hp(m) is the set of messages with priorities
higher than m and ⎡ ⎤ba / is notation for the ceiling
function which returns the smallest integer greater than
or equal to a/b.

Although m appears on both sides of Equation
(6), as the right hand side is a monotonic non-
decreasing function of m , the equation may be solved
using the recurrence relation below.

w

w

k
mhpk k

bitk
n
m

m
n
m C

T
Jw

Bw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1 τ
 (7)

A suitable starting value is . The relation
iterates until either in which
case the message is not schedulable or , in
which case the worst-case response time of the first

mm Bw =0

mm
n
mm DCwJ >++ +1

n
m

n
m ww =+1

instance of the message in the busy period is given by:
. m

 The flaw in the above analysis is that, given the
constraint mm , it implicitly assumes that if
message m is schedulable then the priority level-m
busy period will end at or before mT . We observe that
with fixed priority pre-emptive scheduling this would
always be the case, as on completion of transmission of
message m; no higher priority message could be
awaiting transmission. However, with fixed priority
non-pre-emptive scheduling, a higher priority message
can be awaiting transmission when message m
completes transmission, and thus the busy period can
extend beyond as shown by the example in section
1.4.

n
mm CwJ ++ +1

TD ≤

mT

The length m , of the priority level-m busy period
is given by the following recurrence relation, starting
with an initial value of and finishing when

:

t

mm Ct =0

n
m

n
m tt =+1

k
mmhpk k

k
n
m

m
n
m C

T
Jt

Bt ∑
∪∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+=

)(

1 (8)

where is the set of messages with priority
m or higher. As the right hand side is a monotonic non-
decreasing function of m then the recurrence relation
is guaranteed to converge provided that the bus
utilisation m , for messages of priority m and higher,
is less than 1:

mmhp ∪)(

t

U

∑
∪∈∀

=
mmhpk k

k
m T

C
U

)(

 (9)

If mmm then the busy period ends at or
before the second instance of message m is queued.
This means that only the first instance of the message
is transmitted during the busy period. The existing
analysis calculates the worst-case queuing time for this
instance via Equation (7) and hence provides the
correct worst-case response time in this case.

JTt −≤

If mmm then the existing analysis may
give an optimistic worst-case response time dependent
upon whether the first or subsequent instances of
message m in the busy period have the longest
response time.

JTt −>

We observe that the analysis presented in appendix
A.2 of [3] suggests that mt is the smallest value that is
a solution to Equation (8), however this is not strictly
correct. For the lowest priority message and so

 is trivially the smallest solution. We avoid this
problem by using an initial value of .

0=mB
0=mt

mm Ct =0

3.2. Checking Multiple Instances
The number of instances m , of message m that

become ready for transmission before the end of the
busy period is given by:

Q

⎥
⎥

⎤
⎢
⎢

⎡ +
=

m

mm
m T

Jt
Q (10)

To determine the worst-case response time of message
m, it is necessary to calculate the response time of each
of the mQ instances. The maximum of these values
then gives the worst-case response time.
 In the following analysis, we use the index
variable q to represent an instance of message m. The
first instance in the busy period corresponds to

0=q and the final instance to . The longest
time from the start of the busy period to instance q
beginning successful transmission is given by:

1−= mQq

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

qCBqw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
++=

)(

1)(
τ

 (11)
The recurrence relation starts with a value of

 and ends when
or when mmm in which
case the message is unschedulable. For values of q > 0
an efficient starting value is given by

.

mmm qCBqw +=)(0)()(1 qwqw n
m

n
m =+

n
mm DCqTqwJ >+−+ +)(1

mm
The event initiating instance q of the message

occurs at time mm

m Cqwqw +−=)1()(0

JqT − relative to the start of the
busy period so the response time of instance q is given
by:

mmmmm CqTqwJqR +−+=)()((12)
The worst-case response time of message m is
therefore:

))((max
1..0

qRR m
Qq

m
m−=

= (13)

We note that the analysis presented above is also
applicable when messages have deadlines that are
greater than their periods, so called arbitrary deadlines.
However, if such timing characteristics are specified
then the software device drivers or CAN controller
hardware may need to be capable of buffering more
than one instance of a message. The number of
instances of each message that need to be buffered is
bounded by:

⎥
⎥

⎤
⎢
⎢

⎡
=

m

m
m T

R
N (14)

We observe that the analysis presented in [3]
effectively uses ⎣ ⎦ 1/ += mmm TtQ rather than

⎡ ⎤mmm TtQ /= . This yields a value which is one too
large when the length of the busy period plus jitter is
an integer multiple of the message period. Although
this does not give rise to problems, we prefer the more
efficient formulation given by Equation (10).

9

3.3. Example
In section 1.4 we showed, with the aid of a simple

example, how the existing analysis can provide
optimistic worst-case response times and hence flawed
guarantees that messages will meet their deadlines. We
return to this example to illustrate how the analysis
presented in this paper computes the correct worst-case
response times. For ease of reference, the table of
message parameters is repeated below.

Message Priority Period Deadline TX time
A 1 2.5ms 2.5ms 1ms
B 2 3.5ms 3.25ms 1ms
C 3 3.5ms 3.25ms 1ms

Table 3: CAN Messages

Using the new analysis, the worst-case response
time of message C (m = 3) is calculated as follows. As
there are no lower priority messages, Starting
with a value of , the recurrence relation
given by Equation (8) iterates as follows: ,

, , , converging as .
The length of the busy period is therefore 7.0ms and
the number of instances of message C that need to be
examined is given by Equation (10):

.03 =B
13

0
3 == Ct

31
3 =t

42
3 =t 63

3 =t 74
3 =t 74

3
5
3 == tt

2
5.3
0.7

3 =⎥⎥
⎤

⎢⎢
⎡=Q

This tells us that there is the possibility that the
existing analysis will calculate an optimistic worst-case
response time. The value could still be correct if the
first instance of the message has the longest response
time.

Calculation of the response time of the first
instance proceeds using Equation (11): ,

, converging when .
Using Equation (12) we have , the same
response time calculated by the existing analysis.

0)0(0
3 =w

2)0(1
3 =w 2)0()0(1

3
2
3 == ww

3)0(3 =R

Moving on to the second instance,
, , ,

. At this point computation would normally
stop as the response time, given by

3333 has reached 3.5 ms which is
greater than the message deadline. However, if we
continue iterating, assuming a longer deadline, then the
recurrence relation converges on
and hence ms. The worst-case response
time of message C is in fact 3.5ms as previously
illustrated by Figure 3 in section 1.4.

3)0()1(3
0
3 =+= mCww 4)1(1

3 =w 5)1(2
3 =w

6)1(3
3 =w

)(CqTqwJ +−+

6)1()1(3
3

4
3 == ww

5.3)1(3 =R

10

3.4. Sufficient Schedulability Tests
The analysis given in sections 3.1 and 3.2 corrects a

significant flaw in the existing schedulability analysis
for CAN. However, the schedulability test presented is
more complex, potentially requiring the computation of
multiple response times.

In this section, we present two simpler but more
pessimistic schedulability tests, which are applicable
given the constraint that message deadlines do not
exceed their periods. These tests are referred to as
“sufficient but not necessary”. By “sufficient”, we
mean that all systems deemed to be schedulable by the
tests are in fact schedulable, and by “not necessary” we
mean that not all systems deemed to be unschedulable
by the tests are in fact unschedulable.

The response time of the first instance of a message
in the busy period is given by Equation (7). Assuming
that this first instance completes transmission before its
deadline and hence before the end of its period, then
we have two possibilities to consider.
(i) If the busy period ends before the next

instance of message m is queued, then
Equation (7) gives the correct worst-case
response time.

(ii) Alternatively if the busy period continues
beyond the time at which the next instance of
message m is queued, then we must also
consider the response time of the second and
any subsequent instances of message m,
queued before the end of the busy period.

In the latter case, the maximum amount of higher
priority interference that can be pushed through into
the next period of message m due to the non-pre-
emptive transmission of the previous instance is m .
Further, as the first instance of message m completed
transmission at or before the end of its period, and the
priority level-m busy period extends at least as far as
the end of that period, then there can be no outstanding
messages of lower priority blocking the next instance.

C

We now take an alternative and pessimistic view of
the response time of the next instance of message m.
The queuing time of this instance can be considered in
isolation. We assume that,
(i) it is queued simultaneously with all other

messages of higher priority – a critical instant,
(ii) it is subject to push through interference of

 from the previous instance of message m. m
An upper bound on the queuing delay of the second
and subsequent instances of message m within the busy
period is therefore given by:

C

k
mhpk k

bitk
n
m

m
n
m C

T
Jw

Cw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1 τ
 (15)

This result suggests a simple but pessimistic
schedulability test. An instance of message m can
either be subject to blocking due to lower priority
messages or to push through interference of at most

m due to the previous instance of the same message,
but not both. Hence we can modify Equation (7) to
provide a correct sufficient but not necessary

C

schedulability test:

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1),max(
τ

 (16)
A further simplification is to assume that the blocking
factor always takes its maximum possible value:

k
mhpk k

bitk
n
mMAXn

m C
T
Jw

Bw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1 τ
 (17)

Where corresponds to the transmission time of
the longest possible CAN message (8 data bytes)
irrespective of the characteristics and priorities of the
messages in the system

MAXB

8.

3.5. Error model
So far we have assumed that no errors occur on the

CAN bus, however as originally shown in [6, 8, 9]
schedulability analysis of CAN may be extended to
include an appropriate error model.

In this paper we consider only a very simple and
general error model. We assume that the maximum
number of errors present on the bus in some time
interval t is given by the function F(t). We assume no
specific details about this function; save that it is a
monotonic non-decreasing function of t. For a more
detailed discussion of appropriate error models for
CAN see [22, 24, 25].

We now modify the schedulability equations to
account for the error recovery overhead. The worst-
case impact of a single bit error is to cause
transmission of an additional 31 bits of error recovery
overhead plus re-transmission of the affected message.
Only errors affecting message m or higher priority
messages can delay message m from being successfully
transmitted. The maximum additional delay caused by
the error recovery mechanism is therefore given by:

)()(max31)(
)(

tFCtE k
mmhpk

bitm ⎟
⎠
⎞

⎜
⎝
⎛ +=

∪∈
τ (18)

Revising Equation (8) to compute the length of the
busy period we have:

k
mmhpk k

k
n
m

m
n
mm

n
m C

T
Jt

BtEt ∑
∪∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡ +
++=

)(

1)((19)

Again an appropriate initial value is mm .
Equation (19) is guaranteed to converge on a solution
provided that the utilisation including error

Ct =0

mU

11

8 In [8], Tindell et al. state that the “blocking time on CAN is
defined as the longest time that a message can take to be physically
transmitted on the bus”. This simplified view provides a sufficient
but not necessary schedulability test that corresponds to Equation
(17). However, later in [8], the blocking term is described as “the
longest time that any lower priority message can occupy the bus”.
This description, also in [6, 9], results in a flawed schedulability test.

recovery overhead is less than 1.
As before, Equation (10) can be used to compute

the number of message instances that need to be
examined to find the worst-case response time.

k
mhpk k

bitk
n
m

mmm
n
mm

n
m

C
T
Jw

qCBCwEqw

∑
∈∀

+

⎥
⎥

⎤
⎢
⎢

⎡ ++

++++=

)(

1)()(

τ (20)

Equation (20) extends Equation (11) to account for the
error recovery overhead. Note that as errors can impact
the transmission of message m itself, the time interval
considered in calculating the error recovery overhead
includes the transmission time of message m as well as
the queuing delay. Equations (20), (12) and (13) can be
used together to compute the response time of each
message instance q, and hence find the worst-case
response time of each message in the presence of errors
at the maximum rate specified by the error model.

The sufficient schedulability tests given in section
3.4 can be similarly modified via the addition of the
term to account for the error recovery
overhead.

)(m
n
mm CwE +

4. Discussion
In this section we consider various characteristics

of CAN systems and discuss whether flaws in the
existing analysis can result in erroneous guarantees
under specific circumstances that are relevant to real-
world systems.

We seek to answer the following questions.
1. Can the existing analysis give faulty guarantees to

messages of any priority?
2. If the bus utilization is low, can the existing

analysis still result in optimistic response times?
3. Do error models give sufficient engineering

margin for error to account for the flaw in the
analysis?

4. Does the omission of diagnostic messages during
normal operation reduce interference / blocking
enough to ensure that the deadlines of the
remaining messages will be met?

5. Which message guarantees can we be sure are not
at risk?

4.1. Priorities of Messages at Risk
We have found that, in general, the existing

analysis gives the correct worst-case response times for
the highest priority and the 2nd highest priority
message. However; it can compute incorrect worst-
case response times for messages from the 3rd highest
priority to the lowest priority.

Figure 7: Busy Period for Message X.

This is shown by the example message set constructed
below and illustrated in Figure 7. The example
message set consists of;
(i) a high priority message H;
(ii) a group of n (where) intermediate

priority messages, represented by I, which all
have the same periods and transmission times;

1≥n

(iii) a message X of priority below those messages
in group I, which highlights the flaw in the
analysis and

(iv) a group of k (where) low priority
messages represented by L, which all have the
same transmission times.

0≥k

The transmission times of the messages are H ,
I , and respectively. The example assumes

that .

C
C XC LC

LX
The low priority messages L, are assumed to have

very large periods and no jitter. These messages
contribute only blocking to the response time of
message X. (Note if there are no lower priority
messages, i.e. k=0, then the example still holds with

).

CC >

0=LC
The period of message H is:

2/)22(XIHLH CnCCCT +++=
The period of message X is:

2/)223(XIHLX CnCCCT +++=
The period of the intermediate messages I, is assumed
to be large (XI). However, the period less jitter
for each intermediate message is:

TT 2>>

XIHLII CnCCCJT +++=− 2
By contrast messages H and X are assumed to have no
jitter.

The busy period for message X is shown in Figure
7. For simplicity, there is only one intermediate
priority message shown in the diagram, however the
transmission time of this message is given as InC ,
representing the arbitrary number of intermediate
messages that are considered.

We now show that under certain conditions,

message X exhibits the problem with the existing
analysis. The length of the busy period for message X,
given by Equation (8), is:

XXIHLX TCnCCCt 2223 =+++=
Hence, according to Equation (10), there are two
instances of message X in the busy period that need to
have their response times computed.
 According to Equation (11), and as LX , the
queuing delay of the first instance of message X is:

CC >

IHLX nCCCw ++=)0(
Similarly for the second instance:

XIHLX CnCCCw +++= 23)1(
According to Equation (12), the response times of the
two instances are:

XIHLX CnCCCR +++=)0(
and

2/)223()1(XIHLX CnCCCR +++=
Comparing and , then, provided that

LH , the response time of the second instance is
greater than that of the first. Meaning that message X
exposes the flaw in the existing analysis. (In fact,
assuming XX

)0(XR)1(XR
CC >

TD = , the second instance of message X
is only just schedulable with). XX
 As we can choose an arbitrary number () of
intermediate priority messages and similarly an
arbitrary number () of lower priority messages,
message X may lie anywhere from the 3

TR =
1≥n

0≥k
rd highest to the

lowest priority in a set of messages with cardinality
greater than or equal to 3. We conclude that any
message from the lowest priority to the 3rd highest
priority in a set of 3 or more messages can be given an
optimistic response time and therefore a faulty
guarantee by the existing analysis.

4.2. Breakdown Utilisation
The example in section 1.4 has a bus utilisation of

97%. It is interesting to ask if the existing analysis can
yield optimistic worst-case response times for systems
with much lower utilisation.

12

Returning to the example message set, constructed
in section 4.1, we now consider how low the utilisation
of that message set can be.

To achieve the lowest possible utilisation, we need
only consider the contribution from messages H and X
as the utilisation of both the intermediate messages I,
and the low priority messages L, tends to zero when
their periods are increased to an arbitrarily large value.
We therefore have:

XIHL

H

XIHL

X

CnCCC
C

CnCCC
CU

+++
+

+++
=

22
2

223
2

with the constraints that and . LH CC > LX CC >
The overall utilisation is minimised by choosing

values of HC and XC as small as possible and IC as
large as possible. Given the constraints on CAN
message sizes, the minimum occurs when we choose
messages H and X to have zero data bytes, so

bitXH CC τ55== , the intermediate messages to have 8
data bytes and so bitIC

13

τ135= and no lower priority
messages, so . 0=LC

We note that this message set is somewhat
pathological in that all the intermediate priority
messages have arbitrarily large periods / deadlines and
correspondingly large queuing jitter. It does however
illustrate that in general the existing analysis breaks
down at very low levels of utilisation.

Table 4 provides an upper bound on this breakdown
utilisation: the existing analysis is known to breakdown
at these levels of utilisation, it may breakdown at still
lower levels.

Number of
Messages

Utilisation

3 45.5%
5 21.4%
10 9.2%
25 3.4%

100 0.82%

Table 4: Utilisation of Message Sets Breaking
the Existing Analysis

Whilst it is unlikely that real-world applications
will have message configurations that replicate the
pathological case discussed above, such systems may
in some cases include messages with large amounts of
queuing jitter. Typically these are gatewayed messages
that have inherited a large jitter from variability in the
response time of a source message sent on another
network. We conclude that, for applications
characterised by non-zero queuing jitter, it is prudent to
assume that there could be problems with the existing
analysis irrespective of overall bus utilisation.

In fact, for real-world CAN systems characterised
by messages with non-zero queuing jitter and
consequently deadlines less than periods, overall bus

utilisation is a poor indicator of system schedulability.

4.3. Margin for Error
In section 3.5 we saw how a generalised error

model could be included in the revised schedulability
analysis. Bit error rates on CAN are typically very low:

 up to depending on environmental
conditions [31]. However, errors do occur and it is
therefore appropriate that any commercial application
of CAN schedulability analysis should include at least
a simple error model to account for sporadic errors on
the bus. These errors are typically caused by external
sources of Electromagnetic Interference (EMI) such as
mobile phones, radar, radio transmitters and lightning
as well as other possible causes such as switch
contacts, and shielding or wiring faults. As such errors
are typically completely uncorrelated with message
transmission; it is therefore reasonable to assume that
any useful error model allows for the possibility of an
error occurring at any given time and hence the error
function for any time interval t.

1110− 610−

1)(≥tF
Let us now consider the situation where the

schedulability analysis given in [6, 8, 9] has been used
along with an error model with to determine
the schedulability of a system. The recurrence relation
used by the existing analysis is given below:

1)(=tF

k
mhpk k

bitk
n
m

m
n
mmm

n
m C

T
Jw

CwEBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+++=

)(

1)(
τ

 (21)
Given that , then from Equation (18), the

maximum additional delay to message m due to the
error recovery mechanism is always longer than the
transmission time of message m, i.e. .
Substituting for in Equation (21) gives:

1)(≥tF

mm CtE >)(
mC)(tEm

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
++=

)(

1 τ (22)

We note that as mm , the solution to Equation
(22) cannot be larger than the solution to Equation
(21).

CtE >)(

Recall that Equation (16) provides a correct
sufficient but not necessary schedulability test for the
case where there are no errors on the CAN bus.
Comparing Equation (22) and Equation (16), we
observe that, as mmmm CBCB +≤+)max(, the solution
to Equation (16) cannot be larger than the solution to
Equation (22) and hence cannot be larger than the
solution to Equation (21). This means that if message
m is deemed to be schedulable given the queuing delay
computed by Equation (21) for the case where there are
errors on the bus, then it must also be schedulable
given the queuing delay computed via Equation (16)
for the case where there are no errors on the bus.

This is an important result. It means that if the
existing analysis showed that every message was
schedulable in the presence of any reasonable error
model (), then, despite the flaw in the existing
analysis, every message is actually guaranteed to be
schedulable when no errors are present. Put another
way, the engineering margin for error provided by the
error model is sufficient to account for the error in the
analysis.

1)(≥tF

We observe however, that the robustness of
systems analysed using the schedulability analysis in
[6, 8, 9] may not be all that was expected. Flaws in the
existing analysis could lead to message configurations
that will miss their deadlines in the presence of errors
at a rate within the parameters of the specified error
model, even though we can be sure that they will not
miss their deadlines when no errors are present on the
bus.

4.4. Message Omission
Many CAN applications allow for 8 data byte

diagnostic messages, which are not transmitted during
the normal mode of operation. These messages are
transmitted only when the system is in diagnostic
mode9 and linked to service equipment. In this section,
we consider whether the omission of diagnostic
messages provides sufficient reduction in interference /
blocking to ensure that messages do not miss their
deadlines during normal operation, despite being given
potentially optimistic worst-case response times by the
existing analysis.

To answer this question, we consider a system that
is deemed to be schedulable by the existing analysis.
We assume that this system includes an 8 data byte
diagnostics message x, which is only transmitted when
the system is in diagnostic mode. We note that as
message x has the maximum number of data bytes, its
transmission time is equivalent to the largest possible
blocking factor, so . The blocking factor
for each message m of higher priority than x, is
therefore given by , which means that the
existing analysis based on Equation (7) computes
exactly the same worst-case response time for each
higher priority message m, as the correct sufficient but
not necessary schedulability analysis test based on
Equation (17). The existing analysis cannot therefore
result in optimistic worst-case response times for
messages of higher priority than x.

MAX
x BC =

MAX
m BB =

For each message of lower priority than x, the
interference due to message x is at least .
Comparing Equation (7) and Equation (17), we

MAXB

14

9 Typically all normal mode messages continue to be transmitted
during diagnostic mode.

observe that the solution to Equation (7), with
diagnostic message x included in the set of higher
priority messages, is at least as large as the solution to
Equation (17) when message x is excluded. This means
that if a lower priority message m is deemed to be
schedulable by the existing analysis when message x is
present, then it must also be schedulable according to
the correct sufficient but not necessary schedulability
analysis when message x is omitted.

We conclude that the omission of a single
maximum length message of arbitrary priority provides
sufficient reduction in interference / blocking to ensure
that the flaw in the existing analysis cannot lead to any
of the remaining messages missing their deadlines.

4.5. Message Guarantees not at Risk
In this section, we consider the circumstances under

which the first instance of a message in the busy period
is guaranteed to have the longest response time. Under
these circumstances, despite its flaws, the existing
analysis gives correct results.
 Assuming that message deadlines do not exceed
their periods, then Equation (15) in section 3.4
provides an upper bound on the queuing delay for the
second and subsequent instances of message m in the
busy period.

Comparing Equations (7) and (15), we observe that
provided mm , then the first instance of message
m is guaranteed to have a longer response time than
any subsequent ones. From the definition of m given
in Equation (5), we conclude the following important
result: the existing analysis gives the correct response
time for any message where there exists at least one
lower priority message with equal or longer
transmission time / message length.

CB ≥

B

5. Priority Assignment Policies
The analysis presented in section 3 is applicable

independent of the priority ordering of CAN messages.
However, choosing an appropriate priority ordering is
important in obtaining a schedulable system and in
maximising robustness to errors.

Priority ordering is determined by a priority
assignment policy. A priority assignment policy P is
referred to as optimal if there are no systems that are
schedulable using any other priority assignment policy
that are not also schedulable using policy P.

In [6, 8] it was claimed that deadline monotonic
[35] and “deadline minus jitter” or (D-J)-monotonic
[10] priority assignment policies are optimal for CAN.
However, whilst these policies are optimal for fixed
priority pre-emptive scheduling assuming deadlines no
greater than periods, they are not optimal for fixed
priority non-pre-emptive scheduling [3] and are

therefore not optimal for CAN. This is illustrated by
the following example using the set of messages given
in Table 5.

Message Period Deadline Number
of bits

TX time

A 3.0ms 3.0ms 135 1.08ms
B 4.0ms 4.0ms 135 1.08ms
C 4.5ms 4.5ms 65 0.52ms

Table 5: CAN Messages Highlighting Non-
optimal Priority Assignment

This example assumes a 125Kbit/s network and 11-
bit identifiers. Messages A and B contain 8 data bytes
and message C contains 1 data byte, giving
transmission times of 1.08, 1.08 and 0.52ms
respectively, assuming worst-case bit stuffing. In
addition there are a number of lower priority messages,
each containing 8 data bytes, which are also sent on the
network. Their transmission times are also 1.08ms.

Setting message priorities in the order A – highest,
then B, then C results in an unschedulable system. The
worst-case response times of messages A and B are
2.16ms and 3.24ms respectively. However, in the worst
case, message C does not even begin transmission
before its deadline.

Figure 8 illustrates the long delays that message C
is subject to before transmission. Messages A, B and C
are assumed to be queued just too late to enter
arbitration at time t = 0 and hence the low priority
message L is transmitted first.

15

Figure 8: Message Response Times with
“Optimal” Priority Assignment

The priority ordering A, B, C corresponds to both
deadline monotonic and also (D-J)-monotonic priority
ordering – as all the messages have zero queuing jitter.
If these priority assignment policies are optimal then
we should not be able to find another priority ordering
which results in all the deadlines being met. However,
if we use the priority ordering A, C, B then the worst-
case response times of the messages are: A = 2.16ms,

C = 2.68ms and B = 3.76ms as illustrated in Figure
9. With this priority ordering, all of the messages meet
their deadlines.

R
R R

Figure 9: Message Response Times with an

Alternative Priority Assignment

The reason that the revised priority ordering results
in a schedulable system is that giving the shortest
message a higher priority enables all three messages to
start transmission within 3ms of being queued and
hence none of them are subject to interference from a
second instance of message A and subsequently a
second instance of message B. This example shows
that the priority assignment policies assumed in [6, 8]
to be optimal are not.

In [3] George et al. claimed that deadline
monotonic priority assignment is optimal for non-pre-
emptive systems with no jitter, provided that deadlines
and execution times are in the same order i.e. ji DD <
implies ji . The proof assumes that “as CC ≤ i∀ ,

ii TD ≤ the worst-case response time of any task is
found in its first instance”, however this assumption is
false as we have seen with the simple example in
section 1.4 and so the proof is undermined. The
theorem may or may not still be true.

George et al. [3] also showed that the optimal
priority assignment algorithm devised by Audsley [1]
is applicable to non-pre-emptive systems. In general,
Audsley’s algorithm is applicable provided that the
worst-case response time of a message:
(i) does not depend upon the specific priority

ordering of higher priority messages and,
(ii) does not get longer if the message is given a

higher priority.
Inspection of the various equations presented in this
paper shows that both of the above conditions hold:
neither the length of queuing delay, nor the length of
the busy period depend upon the specific priority order
of higher priority messages, nor can they increase in
length with increasing priority. Although the blocking
term can get larger with increased priority this is
always counteracted by a decrease in interference that
is at least as large. Audsley’s optimal priority
assignment algorithm, given below, is therefore
applicable for determining the priority ordering of
CAN messages.

16

Optimal Priority Assignment Algorithm

for each priority level, lowest first
{

for each unassigned message m
{
 if m is schedulable at this priority
 {
 assign m this priority
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

For n messages, Audsley’s algorithm performs at
most n(n-1)/2 schedulability tests and is guaranteed to
find a schedulable priority assignment if one exists. It
does not however specify an order in which messages
should be tried at each priority level. This order
heavily influences the priority assignment chosen if
there is more than one ordering that is schedulable. In
fact, a poor choice of initial ordering can result in a
priority assignment that leaves the system only just
schedulable. We suggest that, as a useful heuristic,
messages are tried at each priority level in (D-J) order,
largest value of (D-J) first, with ties broken according
to message length, longest first.

6. Implications and Recommendations
In this section, we discuss the implications of flaws

in existing CAN schedulability analysis on commercial
CAN schedulability analysis tools and deployed CAN
applications.

6.1. CAN Schedulability Analysis Tools
CAN schedulability analysis tools need to take

account of the findings presented in this paper. This
will involve checking and if necessary updating the
analysis they employ, to ensure that it cannot provide
optimistic worst-case response times and false
guarantees.

The sufficient but not necessary schedulability tests
given in section 3.4 provide a “quick-fix” solution as
the changes required to the existing analysis are
minimal. These tests are however pessimistic and
implementing the revised analysis, given in section 3,
would potentially lead to a technically better solution.

Whilst “deadline minus jitter” or (D-J)-monotonic
priority ordering is still a good heuristic to use, it is not
necessarily the optimal priority assignment policy for
CAN. Implementing priority ordering based upon
Audsley’s optimal priority assignment algorithm would
ensure that a schedulable priority ordering is found
whenever one exists.

6.2. Commercial CAN Applications
System Designers configuring commercial CAN

applications often take the engineering approach that
all messages in the system should remain schedulable
given the addition of any number of low priority
messages that can be used for development and test
purposes. Such analysis based on [6, 8, 9] would
assume that every message is subject to the maximum
blocking factor, as per the sufficient schedulability test
given by Equation (17). This schedulability test
computes a correct upper bound on the actual response
time of each message and so provides a correct
guarantee that the configured messages will meet their
deadlines.

Given the flaws in the existing schedulability
analysis, it would however be prudent for System
Designers to check the precise details of the analysis
used to compute worst-case response times for their
systems. If the analysis used has the potential to
compute erroneous worst-case response times, then the
feasibility of all the CAN configurations designed,
developed and deployed using that analysis should be
checked to ensure that they are in fact schedulable and
robust to errors at the rate specified by the prescribed
error model.

6.3. Faults in Deployed Systems
Many deployed CAN systems, for example those in

automotive applications, will have been analysed using
the pragmatic engineering approach described in the
previous section. The flaws in the existing analysis
cannot lead to a problem with a deployed system in
this case.

Many CAN applications allow for maximum length
(8 data byte) diagnostic messages that are not
transmitted during normal operation. Assuming that the
existing analysis deemed the system schedulable with
these diagnostic messages present, then section 4.4
showed that the omission of a single diagnostic
message provides sufficient reduction in interference /
blocking to ensure that the flaws in the existing
analysis cannot lead to any messages missing their
deadlines during normal operation.

In section 4.5 we saw that the existing analysis
gives the correct response time for any message where
there is at least one lower priority message with equal
or longer transmission time / message length. Many
CAN applications use exclusively 8 data byte messages
as a means of addressing the high ratio of overhead to
useful data on CAN. In this case, the existing analysis
is guaranteed to compute correct response times for all
but the lowest priority message.

Even if a message has the potential to be given an
erroneous worst-case response time by the existing

17

analysis, then unless that message is close to being
unschedulable, the computed worst-case response time
is still likely to be the true value. Even if an optimistic
value is computed, then the true value may still be less
than the message deadline. Finally, for a deadline miss
to actually happen in a deployed system requires that
the worst-case message phasing occurs and, at the
same time, a number of the messages take close to their
maximum transmission times. This requires worst-case
or near worst-case bit stuffing to occur which is, in
itself, highly unlikely [23].

Normal practice with commercial CAN
configurations is to ensure that schedulability analysis
includes provision for an error model of some sort. In
this case, section 4.3 showed that such systems are
guaranteed to be schedulable when no errors are
present on the CAN bus provided that they were
deemed to be schedulable in the presence of errors by
the existing analysis.

We conclude that deadline misses in deployed
CAN systems due to flaws in the existing analysis are
extremely unlikely. Any such deadline failures are
more likely to occur due to errors occurring on the bus
at a higher rate than that accounted for by the error
model.

We note that embedded CAN-based systems are
built to be resilient to some messages missing their
deadlines and to much simpler forms of error such as
wiring faults. CAN is not used in its basic form for
safety critical systems due to known issues such as the
“double receive” and “babbling idiot” problems [28,
29, 30].

7. Summary and Conclusions
In this paper we highlighted a significant flaw in

long-standing highly cited and widely used
schedulability analysis of CAN. We showed how this
flaw could lead to the computation of optimistic worst-
case response times for CAN messages, broken
guarantees and deadline misses. This paper provides
revised analysis that can be used to calculate correct
worst-case response times for CAN.

In addition, we showed that:
1. The existing analysis can provide optimistic worst-

case response times for messages from the 3rd
highest priority to the lowest priority.

2. The existing analysis can lead to broken
guarantees and hence deadline misses in systems
with low bus utilisation.

3. Where an error model has been considered, the
flaw in the existing analysis is not sufficient to
lead to CAN configurations that will result in
missed deadlines when no errors are present on the
bus. The desired robustness to errors may not

however be achieved.
4. The omission of a single maximum length

diagnostic message, accounted for by the existing
analysis, reduces interference / blocking enough to
ensure that the deadlines of all the remaining
messages are met during normal operation.

5. Despite its flaws, the existing analysis gives the
correct response time for any message where there
is at least one lower priority message with the
same or greater transmission time / message
length.

We discussed the implications of these results for
commercial CAN systems developed using flawed
analysis and provided two simple, sufficient
schedulability tests enabling a “quick-fix” to be made
to commercial CAN schedulability analysis tools.

Finally, we showed that the neither deadline
monotonic nor (D-J)-monotonic priority assignment is
optimal for CAN. Audsley’s optimal priority
assignment algorithm is however optimal for fixed
priority non-pre-emptive systems and may be used to
obtain a schedulable priority ordering for CAN
whenever one exists.

7.1. Future Work
A considerable body of academic work has grown

up from Tindell’s seminal analysis of CAN. The flaws
in that original work may have partly undermined
some of the subsequent research built upon it. Authors
that have cited the original CAN analysis in their work
are encouraged to check the implications. In particular
the academic work most likely to be affected is that
which extends the original analysis and pushes system
schedulability to its limits, for example work on error
models.

8. Acknowledgements
This work was partially funded by the UK EPSRC

funded DIRC project, the EU funded FRESCOR
project and the IST-004527 funded ARTIST 2 network
of excellence on Embedded Systems Design.

9. References
[1] N.C. Audsley, "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK,
December 1991.
[2] R.J. Bril. “Existing worst-case response time analysis of real-
time tasks under fixed-priority scheduling with deferred pre-
emption is too optimistic”. CS-Report 06-05, Technische
Universiteit Eindhoven (TU/e) The Netherlands, February 2006.
[3] L. George, N. Rivierre, and M. Spuri. “Pre-emptive and non-
pre-emptive real-time uni-processor scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et
en Automatique (INRIA), France, September 1996
[4] M.G. Harbour, M.H. Klein, J.P. Lehoczky. “Fixed priority
scheduling of periodic tasks with varying execution priority”. In

18

Proceedings 12th IEEE Real-Time Systems Symposium, pp. 116-
128, IEEE Computer Society Press, December 1991.
[5] J. Lehoczky. “Fixed priority scheduling of periodic task sets
with arbitrary deadlines”. In Proceedings 11th IEEE Real-Time
Systems Symposium, pp. 201–209, IEEE Computer Society
Press, December 1990.
[6] K.W. Tindell and A. Burns. “Guaranteeing message latencies
on Controller Area Network (CAN)”, In Proceedings of 1st
International CAN Conference, pp. 1-11, September 1994.
[7] K. W. Tindell, A. Burns, and A.J. Wellings. “An extendible
approach for analysing fixed priority hard real-time systems”.
Journal of Real-Time Systems, 6(2): 133-152, March 1994.
[8] K.W. Tindell, A. Burns, and A. J. Wellings. “Calculating
Controller Area Network (CAN) message response times”.
Control Engineering Practice, 3(8): 1163-1169, August 1995.
[9] K.W. Tindell, H. Hansson, and A.J. Wellings. “Analysing
real-time communications: Controller Area Network (CAN)”. In
Proceedings 15th Real-Time Systems Symposium (RTSS’94), pp.
259-263. IEEE Computer Society Press, 1994.
[10] A. Zuhily “Optimality of (D-J)-monotonic priority
assignment”. Technical Report YCS404. Dept. of Computer
Science, University of York, UK, May 2006.
[11] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg.
“Volcano - a revolution in on-board communications”. Volvo
Technology Report, 1998/1.
[12] A. Burns. “Pre-emptive priority based scheduling: An
appropriate engineering approach”. In S. Son, editor, Advances
in Real-Time Systems, pp. 225-248. Prentice-Hall, 1994.
[13] I. Broster. “Flexibility in dependable communication”. PhD
Thesis, Department of Computer Science, University of York,
UK, August 2003.
[14] R. DeMeis “Cars sag under weighty wiring” Electronic
Times 10/24/2005.
[15] T. Nolte “Share-driven scheduling of embedded networks”,
PhD Thesis, Malardalen University Press, May 2006.
[16] R.J. Bril, J J. Lukkien, R.I. Davis, and A. Burns. Message
response time analysis for ideal controller area network (CAN)
refuted. CS-Report 06-19, Technische Universiteit Eindhoven
(TU/e) The Netherlands, May 2006.
[17] R J. Bril, J.J. Lukkien, R.I. Davis, and A. Burns. “Message
response time analysis for ideal controller area network (CAN)
refuted”. In Proceedings 5th International Workshop on Real-
Time Networks (RTN’06). To appear 2006.
[18] J. Regehr. “Scheduling tasks with mixed pre-emption
relations for robustness to timing faults” In Proceedings 23rd
Real-Time Systems Symposium, pp. 315-326, IEEE Computer
Society Press, December 2002.
[19] Y. Wang and M. Saksena. “Scheduling fixed priority tasks
with pre-emption threshold”. In Proceedings of the 6th
International Workshop on Real-Time Computing Systems and
Applications (RTCSA’99), pp. 328-335, December 1999.
[20] Bosch. “CAN Specification version 2.0”. Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart, 1991.
[21] C. L. Liu and J. W. Layland. "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1): 46-61, 1973.
[22] S. Punnekkat, H. Hansson, C. Norstrom. “Response time
analysis under errors for CAN”. In Proceedings 6th Real-Time
Technology and Applications Symposium, pp. 258-265, IEEE
Computer Society Press May/June 2000.

[23] T. Nolte, H. Hansson, and C. Norstrom. “Minimizing CAN
response-time analysis jitter by message manipulation”. In
Proceedings 8th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS'02), pp 197-206, September
2002.
[24] I. Broster, A. Burns and G. Rodriguez-Navas, “Timing
analysis of real-time communication under electromagnetic
interference”, Real-Time Systems, 30(1-2) pp. 55-81, May 2005.
[25] I. Broster, A. Burns , G. Rodríguez-Navas, “Probabilistic
Analysis of CAN with Faults”, In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS'02), pp.269-278,
December, 2002
[26] H. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat.
“Integrating Reliability and Timing Analysis of CAN-based
Systems”. IEEE Transaction on Industrial Electronics 49(6):
1240-1250, December 2002.
[27] T. Nolte, H. Hansson, and C. Norstrom, "Probabilistic
worst-case response-time analysis for the Controller Area
Network." In Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS'03),
pp. 200-207, May 2003.
[28] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L.
Rodrigues. “Fault-tolerant broadcasts in CAN”. In Digest of
Papers, The 28th IEEE International Symposium on Fault-
Tolerant Computing (FTCS’98) pp. 150-159, June 1998.
[29] I. Broster and A. Burns. “An Analysable Bus-Guardian for
Event-Triggered Communication”. In Proceedings of the 24th
Real-time Systems Symposium, pp.410-419, IEEE Computer
Society Press, December 2003.
[30] J. Rufino “Computational System for Real-Time Distributed
Control”. PhD-Thesis, Technical University of Lisbon, Instituto
Superior, July 2002.
[31] J. Ferreira, A. Oliveira, P. Fonseca, J. A. Fonseca. “An
Experiment to Assess Bit Error Rate in CAN” In Proceedings of
3rd International Workshop of Real-Time Networks (RTN2004)
pp. 15-18 2004.
[32] ISO 11898-1. “Road Vehicles – interchange of digital
information – controller area network (CAN) for high-speed
communication”, ISO Standard-11898, International Standards
Organisation (ISO), November 1993.
[33] J. Leohold. “Automotive system architecture”. In
Proceedings of the Summer School “Architectural Paradigms
for Dependable Embedded Systems”. pp.545-591, Vienna,
Austria, September 2005. Vienna University of Technology.
[34] Motorola Inc. “MSCAN Block Guide V03.01” Document
No. SV12MSCANV3/D. FreeScale Semiconductor Inc.May 1998
(Revised July 2004).
[35] J. Y.-T. Leung and J. Whitehead, "On the complexity of
fixed-priority scheduling of periodic real-time tasks,"
Performance Evaluation, 2(4): 237-250, December 1982.

	Abstract
	Introduction
	Background
	Automotive Applications
	Research and Real-Time Analysis
	Motivation
	Related work
	Organisation

	Controller Area Network (CAN)
	CAN Protocol and Terminology
	Priority Based Arbitration
	Error Detection
	Bit Stuffing

	Scheduling Model
	Practical Implications of the Model

	Response Time Analysis
	Basic Analysis and Stopping Condition
	Checking Multiple Instances
	Example
	Sufficient Schedulability Tests
	Error model

	Discussion
	Priorities of Messages at Risk
	Breakdown Utilisation
	Margin for Error
	Message Omission
	Message Guarantees not at Risk

	Priority Assignment Policies
	Implications and Recommendations
	CAN Schedulability Analysis Tools
	Commercial CAN Applications
	Faults in Deployed Systems

	Summary and Conclusions
	Future Work

	Acknowledgements
	References

