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Abstract 
Controller Area Network (CAN) is used extensively 

in automotive applications, with in excess of 400 
million CAN enabled microcontrollers manufactured 
each year. In 1994 schedulability analysis was 
developed for CAN, showing how worst-case response 
times of CAN messages could be calculated and hence 
guarantees provided that message response times 
would not exceed their deadlines. This seminal 
research has been cited in over 200 subsequent papers 
and transferred to industry in the form of commercial 
CAN schedulability analysis tools. These tools have 
been used by a large number of major automotive 
manufacturers in the design of in-vehicle networks for 
a wide range of cars, millions of which have been 
manufactured over the last 8 years. 

This paper shows that the original schedulability 
analysis given for CAN messages is flawed. It may 
provide guarantees for messages that will in fact miss 
their deadlines in the worst-case. This paper provides 
revised analysis resolving the problems with the 
original approach. Further, it highlights that the 
priority assignment policy, previously claimed to be 
optimal for CAN, is not in fact optimal and cites a 
method of obtaining an optimal priority ordering that 
is applicable to CAN. The paper discusses the possible 
impact on commercial CAN systems designed and 
developed using flawed schedulability analysis and 
makes recommendations for the revision of CAN 
schedulability analysis tools. 

1. Introduction 
1.1. Background 

Controller Area Network (CAN) is a serial 
communications bus designed to provide simple, 
efficient and robust communications for in-vehicle 
networks. CAN was developed by Robert Bosch 
GmbH beginning in 1983 and presented to a wider 

audience at the Society of Automotive Engineers 
(SAE) Congress in 1986 – effectively the “birth of 
CAN”. In 1987 the first CAN controller chips were 
released by Intel (82526) and Philips (82C200). In the 
early 1990s Bosch submitted the CAN specification 
[20] for standardisation, leading to publication of the 
first ISO standard for CAN (11898) in 1993 [32]. 

Mercedes was the first automotive manufacturer to 
deploy CAN in a production car, the 1991 S-class. By 
the mid 1990s, the complexity of automotive 
electronics was increasing rapidly. The number of 
networked Electronic Control Units (ECUs) in 
Mercedes, BMW, Audi and VW cars went from 5 or 
less at the beginning of the 1990s to around 40 at the 
turn of the millennium. With this explosion in 
complexity traditional point-to-point wiring became 
increasingly expensive to manufacture, install, and 
maintain due to the hundreds of separate connections 
and tens of kilograms of copper wire required. As a 
result CAN was rapidly adopted by the cost-conscious 
automotive industry, providing an effective solution to 
the problems posed by increasing vehicle electronics 
content. Following on from Mercedes other 
manufacturers including Volvo, Saab, BMW, 
Volkswagen, Ford, Renault, PSA, Fiat and others all 
adopted CAN technology. 

As a result of the wholesale adoption of CAN by 
the automotive industry, sales of CAN nodes (8, 16 and 
32-bit microcontrollers with on-chip CAN peripherals) 
grew from just under 50 million in 1999 to over 340 
million in 20031 – see Figure 1. 

By 2004 there were at least 15 silicon vendors 
manufacturing, in total, over 50 different 
microprocessor families with on-chip CAN capability. 

Today almost every new car manufactured in 

                                                 
1 Figures from the CAN in Automation (CiA) website www.can-
cia.org 

1 

mailto:rob.davis@cs.york.ac.uk
mailto:alan.burns@cs.york.ac.uk
mailto:r.j.bril@tue.nl
mailto:j.j.lukkien@tue.nl


Europe is equipped with at least one CAN bus. In the 
United States, the Environmental Protection Agency 
has mandated the use of CAN, for On Board 
Diagnostics, in all cars and light trucks sold in the US 
from model year 2008 onwards. 
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Figure 1: Sales of Microcontrollers with on-

chip CAN Peripherals 

1.2. Automotive Applications 
In automotive applications, CAN is typically used 

to provide high speed networks (500Kbits/s) 
connecting chassis and power-train ECUs, for example 
engine management and transmission control. It is also 
used for low speed networks (100 or 125Kbits/s) 
connecting body and comfort electronics, for example 
door modules, seat modules and climate control. Data 
required by ECUs on different networks is typically 
gatewayed between the different CAN buses by a 
powerful ECU connected to both. 
 

 
Figure 2: VW Passat Network Architecture 

The network architecture of the VW Passat [33] 
shown in Figure 2, reproduced from [15], illustrates 
how a number of CAN buses are used to connect 
around 45 ECUs in that vehicle. Also shown in Figure 

2 are three Local Interconnect Networks (LIN). LIN is 
a complementary technology to CAN, and is used to 
provide inexpensive, low speed (20Kbits/s) 
connectivity. 

Table 1 summarises the requirements placed on in-
vehicle networks for the BMW 7 Series. This is typical 
of automotive applications, where individual CAN 
buses are used to connect between 2 and 32 ECUs at 
bandwidths ranging from 100 to 500Kbits/s. 

 Body Chassis Powertrain 
No. of ECUs 14-30 6-10 3-6 
Bandwidth 100 Kbits/s 500 Kbits/s 500Kbits/s 
No. of 
Messages 

300 180 36 

Cycle Times 50ms-2s 10ms-1s 10ms-10s 

Table 1: BMW 7 Series Network Requirements 

In automotive applications the messages sent on 
CAN are used to communicate state information, 
referred to as signals, between different ECUs. 
Examples of signals include: wheel speeds, oil and 
water temperature, engine rpm, gear selection, 
accelerator position, dashboard switch positions, 
climate control settings, window switch positions, fault 
codes, diagnostic information and so on. In a high-end 
vehicle there can be more than 2500 distinct signals, 
each effectively replacing what would, in a traditional 
point-to-point wiring loom, have been a separate wire. 

Many of these signals have real-time constraints 
associated with them. For example, an ECU reads the 
position of a switch attached to the brake pedal. This 
ECU must send a signal, carrying information that the 
brakes have been applied, over the CAN network so 
that the ECU responsible for the rear light clusters can 
recognise the change in the value of the signal and 
switch the brake lights on. All within a few tens of 
milliseconds of the brake pedal being pressed. Engine, 
transmission, and stability control systems typically 
place even tighter time constraints on signals, which 
may need to be sent as frequently as once every 5 
milliseconds to meet their time constraints. 

1.3. Research and Real-Time Analysis 
CAN is a serial data bus that supports priority 

based message arbitration and non-pre-emptive 
message transmission. In the early 1990s, a common 
misconception about CAN was that although the 
protocol was very good at transmitting the highest 
priority message with low latency, it was not possible 
to guarantee that less urgent signals, carried in lower 
priority messages, would meet their deadlines. 

In 1994 Tindell et al. [6, 8, 9] showed how research 
into fixed priority pre-emptive scheduling for single 
processor systems could be adapted and applied to the 
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scheduling of messages on CAN. This analysis 
provided a method of calculating the worst-case 
response times of all CAN messages. Using this 
analysis it became possible to engineer CAN based 
systems for timing correctness, providing guarantees 
that all messages, and the signals that they carry would 
meet their deadlines. 

Tindell’s seminal research heavily influenced the 
design of on-chip CAN peripherals such as Motorola 
msCAN [34] and has lead to a large body of work into 
schedulability theory and error models for CAN [22-
27, 29], including at least two PhD theses [13, 15]. 
Overall, this research into CAN scheduling has been 
cited in over 2002 subsequent papers. 

In 1995 Tindell’s research was recognised by 
Volvo Car Corporation and successfully used in the 
configuration and analysis of the CAN buses for the 
forthcoming Volvo S80 (P23) [11]. Following the 
success of this project, Volcano Communications 
Technologies AB3 used Tindell’s analysis as the basis 
of a commercial CAN schedulability analysis tool. 
Since 1998 these tools have been used, by a number of 
automotive manufacturers, in the design and 
development of the CAN networks and electronics 
systems for their vehicles. 

Prior to Tindell’s work, low levels of bus 
utilization, up to 30 or 40%, were typical in automotive 
applications, with extensive testing required to obtain 
confidence that CAN messages would meet their 
deadlines. With the advent of a systematic approach 
based on schedulability analysis, CAN bus utilization 
could be increased to around 80% [14] whilst still 
guaranteeing that deadlines would be met. 

1.4. Motivation 
The design and development of many in vehicle 

Controller Area Networks relies on the schedulability 
analysis of CAN given in [6, 8, 9]. In this section, we 
show that this analysis is flawed. It may result in 
computed worst-case response times for messages that 
are optimistic, i.e. less than the response times that 
may actually occur. The set of CAN messages listed in 
Table 2 serve to highlight the problem with the existing 
schedulability analysis of CAN. As a simple example, 
we have assumed a 125Kbit/s network with 3 
messages, each of which carries 7 bytes of signal data. 
Assuming 11-bit identifiers and worst-case bit-stuffing, 
the maximum length of each message is 125 bits and 
hence the maximum transmission time of each message 
is 1ms. 
                                                 
2 As of August 2006, reference [6] has 78 citations, reference [8] 199 
citations and reference [9] 110 citations (Google Scholar). 
3 Volcano Communications Technologies AB was acquired by 
Mentor Graphics in May 2005. 

The analysis method given in [6, 8, 9] calculates 
the worst-case response times of messages A, B and C 
as 2ms, 3ms and 3ms respectively. Hence the system is 
deemed to be schedulable – the analysis supposedly 
guarantees that all of the messages will meet their 
deadlines in the worst case, despite the high bus 
utilisation of 97%. 

Message Priority Period Deadline TX time 
A 1 2.5ms 2.5ms 1ms 
B 2 3.5ms 3.25ms 1ms 
C 3 3.5ms 3.25ms 1ms 

Table 2: CAN Messages Highlighting Flawed 
Analysis 

Figure 3 illustrates the worst-case scenario for 
transmission of message C. We note that the first 
invocation of this message is delayed by higher priority 
messages A and B, leading to a response time of 3ms – 
this is the “worst-case response time” calculated using 
existing CAN schedulability analysis methods. 
However, as message transmission is non-pre-
emptable, the first transmission of message C has a 
knock on effect, delaying subsequent transmissions of 
higher priority messages A and B. Some of this higher 
priority interference is pushed through into the next 
period of message C leading to a longer response time 
for the second instance of message C. 

Figure 3: Worst-case Scenario for Message C 

At time t = 7ms, the second instance of message C 
completes transmission with a response time of 3.5ms. 
(Note at time t = 7ms, there are no higher priority 
messages awaiting transmission and so there is no 
further push through interference that could delay 
subsequent instances of message C). 

The actual worst-case response time for message C 
is 3.5ms, which is greater than its deadline of 3.25ms, 
and so the system is in fact unschedulable; contrary to 
the guarantees given by [6, 8, 9]. 

In fact, if the periods of messages B and C are 
shortened from 3.5ms to 3.25ms then the existing 
analysis results in unchanged worst-case response 
times, implying that the system is still schedulable. 
However, with these shorter periods the overall bus 
utilisation exceeds 100% and so the system cannot 
possibly be schedulable! 
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1.5. Related work 
The schedulability analysis for CAN builds on 

previous research into fixed priority scheduling of 
tasks on single processor systems. 

In 1990, Lehoczky [5] introduced the concept of a 
busy period and showed that if tasks have deadlines 
greater than their periods, referred to as arbitrary 
deadlines, then it is necessary to examine the response 
times of all invocations of a task falling within a busy 
period in order to determine the worst-case response 
time. In 1991, Harbour [4] showed that if deadlines are 
less than or equal to periods, but priorities vary during 
execution, then again multiple invocations must be 
inspected to determine the worst-case response time. 
We note that non-pre-emptive scheduling is effectively 
a special case of pre-emptive scheduling with varying 
execution priority – as soon as a task starts to execute 
its priority is raised to the highest level. In 1994, 
Tindell et al. [7] improved upon the work of Lehoczky 
[5] providing a formulation for arbitrary deadline 
analysis based on a recurrence relation. 

Building upon these earlier results, comprehensive 
schedulability analysis of non-pre-emptive fixed 
priority scheduling for single processor systems was 
given by George et al in 1996 [3]. 

In 2006, Bril [2] refuted the analysis of fixed 
priority systems with deferred pre-emption given by 
Burns in [12], showing that this analysis may result in 
computed worst-case response times that are 
optimistic. The schedulability analysis for CAN given 
by Tindell in [6, 8, 9] builds upon [12] and suffers 
from essentially the same flaw. A similar issue with 
work on pre-emption thresholds [19] was first 
identified and corrected by Regehr [18] in 2002. 

The revised schedulability analysis presented in this 
paper aims to provide an evolutionary improvement 
upon the analysis of CAN given by Tindell in [6, 8, 9]. 
To do so, it draws upon the analysis of Tindell [7] for 
fixed priority pre-emptive scheduling of systems with 
arbitrary deadlines and the analysis of George et al. [3] 
for fixed priority non-pre-emptive systems. 

A technical report [16] and a workshop paper [17] 
highlight the problem for CAN but do not provide a 
specific in-depth solution. That is the purpose of this 
paper. 

1.6. Organisation 
The remainder of this paper is organised as follows: 

section 2 describes the CAN protocol and terminology 
before outlining a suitable scheduling model and 

notation on which to base revised schedulability 
analysis. Section 3 provides new schedulability 
analysis for CAN, correcting the flaws in the existing 
approach. Section 4 discusses the system and message 
parameters needed for the flaws in the existing analysis 
to result in incorrect worst-case response times and 
hence misleading guarantees. Section 5 discusses the 
issue of optimal priority assignment for CAN. Section 
6 summarises the implications of flaws in the existing 
analysis for commercial CAN applications. Finally, 
section 7 concludes with a summary of the main 
contributions of this paper and recommendations for 
further research. 

2. Controller Area Network (CAN) 
This section describes elements of the CAN 

protocol and characteristics of a system model that are 
needed to formulate a schedulability test. For a 
complete description of the CAN protocol see the CAN 
specification version 2.0 [20]. 

2.1. CAN Protocol and Terminology 
Controller Area Network (CAN) is a multi-master 

serial data bus which uses Carrier Sense Multiple 
Access/ Collision Resolution (CSMA/CR) to determine 
access. 

CAN was designed as a simple and robust 
broadcast bus capable of operating at speeds of up to 1 
Mbit/s. Message transfer over CAN is controlled by 4 
different types of frame: Data frames, Remote 
Transmit Request (RTR) frames, Overload frames and 
Error frames.  

The layout of a standard format data frame is 
shown in Figure 4. Each CAN data frame is required to 
have a unique identifier. Identifiers may be 11-bit 
(standard format) or 29-bit (extended format). The 
identifier serves two purposes beyond simply 
identifying the message. First, the identifier is used as a 
priority to determine which message among those 
contending for the bus will be transmitted next. 
Second, the identifier may be used by receivers to filter 
out messages that they are not interested in, and so 
reduce the load on the receiver’s host microprocessor. 

In this paper we are interested in the schedulability 
of data frames, with error frames also considered in 
section 3.5. The schedulability analysis can however 
easily be extended to include RTR frames using the 
approach given in [8]. 

 



 
Figure 4: Standard Format Data Frame 

2.1.1 Priority Based Arbitration 
The CAN physical layer supports two states termed 

dominant (‘0’) and recessive (‘1’). If two or more CAN 
controllers are transmitting at the same time and at 
least one of them transmits a ‘0’ then the value on the 
bus will be a ‘0’. This mechanism is used to control 
access to the bus and also to signal errors. 

The CAN protocol calls for nodes to wait until a 
bus idle period4 is detected before attempting to 
transmit. If two or more nodes start to transmit at the 
same time, then by monitoring each bit on the bus, 
each node can determine if it is transmitting the highest 
priority message (with a numerically lower identifier) 
and should continue or if it should stop transmitting 
and wait for the next bus idle period before trying 
again. As the message identifiers are unique, a node 
transmitting the last bit of the identifier field, without 
detecting a ‘0’ bit that it did not transmit, must be 
transmitting the message with the lowest numerical 
value and hence the highest priority that was ready at 
the start of arbitration. This node then continues to 
transmit the remainder of its message, all other nodes 
having backed off. 

The requirement for a node to be able to overwrite 
a recessive bit, and the transmitting node detect this 
change, limits the combination of physical length and 
speed of CAN bus. The duration of each bit must be 
sufficient for the signal to propagate the length of the 
network. This limits the maximum data rate to 1Mbit/s 
for a network up to 40m in length or to 125Kbit/s for a 
500m long network. 

The arbitration mechanism employed by CAN 
means that messages are sent as if all the nodes on the 
network shared a single global priority based queue. In 
effect messages are sent on the bus according to fixed 
priority non-pre-emptive scheduling. 

The above high level description is a somewhat 
simplified view of the timing behaviour of CAN. CAN 
does not have a global concept of time, rather each 
CAN controller typically has its own clock which, 
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4 A bus idle period is an interval of arbitrary length comprising only 
recessive bits and beginning with the last bit of the inter-frame space 
– the final 3-bit field shown in Figure 4. 

within a tolerance specified by the protocol, may drift 
with respect to the clocks of other nodes. The CAN 
protocol therefore requires that nodes re-synchronise 
on each message transmission. Specifically, every node 
must synchronise to the leading edge of the start of 
frame bit caused by whichever node starts to transmit 
first. 

Normally, CAN nodes are only allowed to start 
transmitting when the bus is idle. Thus, when the bus is 
idle beyond the 3-bit inter-frame space and a node 
starts to transmit a message beginning with the 
dominant start of frame bit (“0”), then all the other 
nodes synchronise on the leading edge of this bit and 
become receivers – i.e. they are not permitted to 
transmit until the bus next becomes idle. In this case 
any message that becomes ready for transmission after 
the leading edge of the start of frame bit has to wait for 
the next bus idle period before it can enter into 
arbitration. 

However, to avoid problems due to clock drift, the 
CAN protocol also specifies that, if a CAN node has a 
message ready for transmission and detects a dominant 
bit at the 3rd bit of the inter-frame space, it will 
interpret this as a start of frame bit, and, with the next 
bit, start transmitting its own message with the first bit 
of the identifier without first transmitting a start of 
frame bit and without becoming a receiver5. Again the 
leading edge of the start of frame bit causes a 
synchronisation. This behaviour ensures that any 
messages that become ready for transmission, whilst 
another message is being sent on the bus, are entered 
into the next round of arbitration, irrespective of any, 
within tolerance, clock drift. 

2.1.2 Error Detection 
CAN was designed as a robust and reliable form of 

communication for short messages. Each data frame 
carries between 0 and 8 bytes of payload data and has a 
15-bit Cyclic Redundancy Check (CRC). The CRC is 
used by receiving nodes to check for errors in the 
transmitted message. If a node detects an error in the 
transmitted message, which may be a bit-stuffing error 
(see section 2.1.3), a CRC error, a form error in the 

 
5 See page 54 of the CAN Specification version 2.0 [20]. 



fixed part of the message or an acknowledgement 
error, then it transmits an error flag. The error flag 
consists of 6 bits of the same polarity: ‘000000’ if the 
node is in the error active state and ‘111111’ if it is 
error passive. Transmission of an error flag typically 
causes other nodes to also detect an error, leading to 
transmission of further error flags. 

 
Figure 5: CAN Error Frames 

Figure 5 illustrates CAN error frames, for further 
details see [20] and [22]. The length of an error frame 
is between 17 and 31 bits. Hence each message 
transmission that is signalled as an error can lead to a 
maximum of 31 additional bits6 of error recovery 
overhead plus re-transmission of the message itself. 

2.1.3 Bit Stuffing 
As the bit patterns ‘000000’ and ‘111111’ are used 

to signal errors, it is essential that these bit patterns are 
avoided in the variable part of a transmitted message – 
see Figure 4. The CAN protocol therefore requires that 
a bit of the opposite polarity is inserted by the 
transmitter whenever 5 bits of the same polarity are 
transmitted. This process is referred to as bit-stuffing, 
and is reversed by the receiver. 

The worst-case scenario for bit-stuffing is shown in 
Figure 6. Note that each stuff bit begins a sequence of 
5 bits that is itself subject to bit stuffing. 

 
Figure 6: Worst-case Bit Stuffing 

Stuff bits increase the maximum transmission time 
of CAN messages. Including stuff bits and the inter-
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6 The analysis given in [6, 8, 9] uses 29 bits as the error recovery 
overhead as specified on page 8 of part A of the CAN specification 
2.0 [20] for standard identifiers only. We use 31 bits as specified on 
page 40 of the CAN specification 2.0 Part B [20] for both standard 
and extended identifiers. 

frame space, the maximum transmission time m , of a 
CAN message m containing data bytes is given by

C
ms 7: 

bit
m

mm
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sgC τ⎟⎟
⎠

⎞
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⎝

⎛
⎥
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where g is 34 for standard format (11-bit identifiers) or 
54 for extended format (29-bit identifiers), ⎣ ⎦ba / is 
notation for the floor function, which returns the 
largest integer less than or equal to a/b, and bitτ is the 
transmission time for a single bit.  
The formula given in Equation (1) simplifies to: 

bitmm sC τ)1055( +=       (2) 
for 11-bit identifiers and 

bitmm sC τ)1080( +=       (3) 
for 29-bit identifiers. 

2.2. Scheduling Model 
In this section we describe an appropriate system 

model and notation that can be used to analyse worst-
case response times of messages on CAN and hence 
determine system schedulability. 

The system is assumed to comprise a number of 
nodes (microprocessors) connected via CAN. Each 
node is assumed to be capable of ensuring that at any 
given time when arbitration starts, the highest priority 
message queued at that node is entered into arbitration. 

The system is assumed to contain a static set of 
hard real-time messages each statically assigned to a 
node on the network. Each message m has a fixed 
identifier and hence a unique priority. As priority 
uniquely identifies each message, in the remainder of 
this paper we will overload m to mean either message 
m or priority m as appropriate. Each message has a 
maximum number of data bytes m  and a maximum 
transmission time , given by Equation (1). 

s
m

Each message is assumed to be queued by a 
software task, process or interrupt handler executing on 
the host microprocessor. This task is either invoked by, 
or polls for, the event and takes a bounded amount of 
time between 0 and m  to queue the message ready 
for transmission. m  is referred to as the queuing jitter 
of the message and is inherited from the overall 
response time of the task, including any polling delay. 

C

J
J

The event that triggers queuing of the message is 
assumed to occur with a minimum inter-arrival time of 

m , referred to as the message period. This model 
supports events that occur strictly periodically with a 
period of mT , events that occur sporadically with a 
minimum separation of mT  and events that occur only 
once before the system is reset, in which case  is 

T

mT

                                                 
7 This formula corrects a similar one in [6, 8, 9] which does not 
account for the fact that stuff bits are themselves also subject to bit 
stuffing. 



infinite. 
Each message has a hard deadline m , 

corresponding to the maximum permitted time from 
occurrence of the initiating event to the end of 
successful transmission of the message, at which time 
the message data is assumed to be available on the 
receiving nodes that require it. Tasks on the receiving 
nodes may place different timing requirements on the 
data, however in such cases we assume that  is the 
tightest such time constraint. 

D

mD

The worst-case response time m , of a message is 
defined as the longest time from the initiating event 
occurring to the message being received by the nodes 
that require it. 

R

A message is said to be schedulable if and only if 
its worst-case response time is less than or equal to its 
deadline . The system is schedulable if and 
only if all of the messages in the system are 
schedulable. 

)( mm DR ≤

2.3. Practical Implications of the Model 
Engineers wanting to use the analysis given in 

section 3 to analyse CAN based systems must be 
careful to ensure that all of the assumptions of the 
above model hold for their system. 

In particular, it is important that each CAN 
controller and device driver is capable of ensuring that, 
at any given time when arbitration starts, the highest 
priority message queued at that node is entered into 
arbitration. This behaviour is essential if message 
transmission is to take place as if there were a single 
global priority queue and for the analysis given in 
section 3 to be applicable. As noted in [6], the Philips 
82C500 CAN controller cannot in general support this 
behaviour. Also the Intel 82527 CAN controller has a 
feature where messages are entered into arbitration in 
slot order rather than identifier order. In this case it is 
important that messages are allocated to slots in 
identifier order to preserve the correct priority based 
behaviour. 

Many on-chip CAN controllers have multiple slots 
that can be allocated to either transmit or receive a 
specific message. For example some Motorola, 
National Semiconductor, Fujitsu and Hitachi on-chip 
CAN peripherals have 14, 15 or 16 such slots. These 
slots typically have only a single buffer and therefore it 
is necessary to ensure that the previous instance of a 
message has been transmitted before any new data is 
written into the buffer, otherwise the previous message 
will be overwritten and lost. This behaviour provides 
an additional constraint on message transmission: the 
deadline of each message must be less than or equal to 
its period ( ). mm

Recall that the worst-case response time of a 

message is from the occurrence of the initiating event 
to the end of successful message reception at the 
receiving nodes. As noted by Broster in [13], receiving 
nodes can access the message following the end of 
frame marker and before the 3-bit inter-frame space – 
see Figure 4. The analysis given in the remainder of 
this paper is slightly pessimistic in that it includes the 
3-bit inter-frame space in the computed worst-case 
response times. To remove this small degree of 
pessimism it is valid to simply subtract 3

TD ≤

bitτ  from the 
computed response time values. 

Typically the response time of a message represents 
only part of an overall end-to-end response time that is 
of interest to engineers. Once the message is received it 
may cause an interrupt or be polled for at the receiving 
node. Typically the data in the message will be 
processed by a task or interrupt handler and some 
output made. The worst-case response time of the 
receiving task or interrupt handler, including any 
polling delay, needs to be added to the worst-case 
response time of the message to determine the overall 
end-to-end response time. 

The scheduling model assumed in this paper uses 
only one time domain, whilst CAN typically has a 
separate clock source for each node on the network. To 
ensure that the schedulability analysis for a real 
network does not produce optimistic results, it is 
necessary to take clock tolerances into account. This 
can be achieved by converting to real-time as follows: 
for message jitters and bit times on the bus the 
conversion to real-time should assume that the node 
clocks run as slowly as their tolerance allows. 
Similarly, message periods and deadlines derived from 
node clocks should be converted to real-time assuming 
that the node clocks run as quickly as their tolerance 
allows. 

3. Response Time Analysis 
Response time analysis for CAN aims to provide a 

method of calculating the worst-case response time of 
each message. These values can then be compared to 
the message deadlines to determine if the system is 
schedulable. Initially we provide analysis assuming no 
errors on the CAN bus. This analysis is then extended, 
in section 3.5, to account for errors on the bus. 

For systems complying with the scheduling model 
given in section 2.2, CAN effectively implements fixed 
priority non-pre-emptive scheduling of messages. 
Following the analysis in [6, 8, 9] the worst-case 
response time of a message can be viewed as being 
made up of three elements: 
(i) The queuing jitter m , corresponding to the 

longest time between the initiating event and 
the message being queued, ready to be 

J
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transmitted on the bus. 
(ii) The queuing delay m , corresponding to the 

longest time that the message can remain in 
the CAN controller slot or device driver queue 
before commencing successful transmission 
on the bus. 

w

(iii) The transmission time m , corresponding to 
the longest time that the message can take to 
be transmitted. 

C

The worst-case response time of message m is given 
by: 

mmmm CwJR ++=     (4) 
The queuing delay comprises blocking m , due to 

lower priority messages which may be in the process of 
being transmitted when message m is queued and 
interference due to higher priority messages which 
may win arbitration and be transmitted in preference to 
message m. 

B

Given the behaviour of CAN described in the final 
two paragraphs of section 2.1.1, the maximum amount 
of blocking occurs when a lower priority message 
starts transmission immediately before message m is 
queued, ready to be transmitted on the bus. Message m 
must wait until the bus is idle before it can be entered 
into arbitration. The maximum blocking time , is 
given by: 

mB

)(max
)(

k
mlpk

m CB
∈

=     (5) 

where lp(m) is the set of messages with lower priority 
than m. 

The concept of a busy period, introduced by 
Lehoczky [5], is fundamental in analysing worst-case 
response times. Modifying the definition of a busy 
period given in [4] to apply to CAN messages, a 
priority level-m busy period is defined as follows: 
(i) It starts at some time when a message of 

priority m or higher is queued ready for 
transmission and there are no messages of 
priority m or higher waiting to be transmitted 
that were queued strictly before time . 

st

st
(ii) It is a contiguous interval of time during 

which any message of priority lower than m is 
unable to start transmission and win 
arbitration. 

(iii) It ends at the earliest time when the bus 
becomes idle, ready for the next round of 
transmission and arbitration, yet there are no 
messages of priority m or higher waiting to be 
transmitted that were queued strictly before 
time . 

et

et
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The key characteristic of a busy period is that all 
messages of priority m or higher queued strictly before 
the end of the busy period are transmitted during the 
busy period. These messages cannot therefore cause 

any interference on a subsequent instance of message 
m queued at or after the end of the busy period. 

In mathematical terminology, busy periods can be 
viewed as right half-open intervals: [ , ) where  
is the start of the busy period and  the end. Thus the 
end of one busy period may correspond to the start of 
another separate busy period. This is in contrast to the 
simpler definition given in [5], which unifies two 
adjacent busy periods as we have defined them, and 
therefore sometimes results in analysis of more 
message instances than is strictly necessary. For 
example, in the extreme case of 100% utilisation, the 
busy period defined in [5] never ends and an infinite 
number of message instances would need to be 
considered. 

st et st
et

The worst-case queuing delay for message m 
occurs for some instance of message m queued within a 
priority level-m busy period that starts immediately 
after the longest lower priority message begins 
transmission. This maximal busy period begins with a 
so-called critical instant [21] where message m is 
queued simultaneously with all higher priority 
messages and then each of these messages is 
subsequently queued again after the shortest possible 
time intervals. In the remainder of this paper whenever 
we refer to a busy period we mean this maximum 
length busy period. 

If more than one instance of message m is 
transmitted during a priority level-m busy period then 
it is necessary to determine the response time of each 
instance in order to find the overall worst-case 
response time of the message. 

3.1. Basic Analysis and Stopping Condition 
In [6, 8, 9], Tindell gives the following equation for 

the worst-case queuing delay: 

k
mhpk k

bitkm
mm C

T
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where hp(m) is the set of messages with priorities 
higher than m and ⎡ ⎤ba /  is notation for the ceiling 
function which returns the smallest integer greater than 
or equal to a/b. 

Although m  appears on both sides of Equation 
(6), as the right hand side is a monotonic non-
decreasing function of m , the equation may be solved 
using the recurrence relation below. 

w

w
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A suitable starting value is . The relation 
iterates until either  in which 
case the message is not schedulable or , in 
which case the worst-case response time of the first 

mm Bw =0

mm
n
mm DCwJ >++ +1

n
m

n
m ww =+1



instance of the message in the busy period is given by: 
. m

 The flaw in the above analysis is that, given the 
constraint mm , it implicitly assumes that if 
message m is schedulable then the priority level-m 
busy period will end at or before mT . We observe that 
with fixed priority pre-emptive scheduling this would 
always be the case, as on completion of transmission of 
message m; no higher priority message could be 
awaiting transmission. However, with fixed priority 
non-pre-emptive scheduling, a higher priority message 
can be awaiting transmission when message m 
completes transmission, and thus the busy period can 
extend beyond  as shown by the example in section 
1.4. 

n
mm CwJ ++ +1

TD ≤

mT

The length m , of the priority level-m busy period 
is given by the following recurrence relation, starting 
with an initial value of  and finishing when 

: 

t

mm Ct =0

n
m

n
m tt =+1
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where  is the set of messages with priority 
m or higher. As the right hand side is a monotonic non-
decreasing function of m  then the recurrence relation 
is guaranteed to converge provided that the bus 
utilisation m , for messages of priority m and higher, 
is less than 1: 

mmhp ∪)(

t

U

∑
∪∈∀

=
mmhpk k

k
m T

C
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    (9) 

If mmm  then the busy period ends at or 
before the second instance of message m is queued. 
This means that only the first instance of the message 
is transmitted during the busy period. The existing 
analysis calculates the worst-case queuing time for this 
instance via Equation (7) and hence provides the 
correct worst-case response time in this case. 

JTt −≤

If mmm  then the existing analysis may 
give an optimistic worst-case response time dependent 
upon whether the first or subsequent instances of 
message m in the busy period have the longest 
response time. 

JTt −>

We observe that the analysis presented in appendix 
A.2 of [3] suggests that mt  is the smallest value that is 
a solution to Equation (8), however this is not strictly 
correct. For the lowest priority message  and so 

 is trivially the smallest solution. We avoid this 
problem by using an initial value of . 

0=mB
0=mt

mm Ct =0

3.2. Checking Multiple Instances 
The number of instances m , of message m that 

become ready for transmission before the end of the 
busy period is given by: 

Q

⎥
⎥

⎤
⎢
⎢

⎡ +
=

m

mm
m T

Jt
Q      (10) 

To determine the worst-case response time of message 
m, it is necessary to calculate the response time of each 
of the mQ  instances. The maximum of these values 
then gives the worst-case response time. 
 In the following analysis, we use the index 
variable q to represent an instance of message m. The 
first instance in the busy period corresponds to 

0=q and the final instance to . The longest 
time from the start of the busy period to instance q 
beginning successful transmission is given by: 

1−= mQq
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 (11) 
The recurrence relation starts with a value of 

 and ends when  
or when mmm  in which 
case the message is unschedulable. For values of q > 0 
an efficient starting value is given by 

. 

mmm qCBqw +=)(0 )()(1 qwqw n
m

n
m =+

n
mm DCqTqwJ >+−+ + )(1

mm
The event initiating instance q of the message 

occurs at time mm

m Cqwqw +−= )1()(0

JqT −  relative to the start of the 
busy period so the response time of instance q is given 
by: 

mmmmm CqTqwJqR +−+= )()(    (12) 
The worst-case response time of message m is 
therefore: 

))((max
1..0

qRR m
Qq

m
m−=

=     (13) 

We note that the analysis presented above is also 
applicable when messages have deadlines that are 
greater than their periods, so called arbitrary deadlines. 
However, if such timing characteristics are specified 
then the software device drivers or CAN controller 
hardware may need to be capable of buffering more 
than one instance of a message. The number of 
instances of each message that need to be buffered is 
bounded by: 

⎥
⎥

⎤
⎢
⎢

⎡
=

m

m
m T

R
N      (14) 

We observe that the analysis presented in [3] 
effectively uses ⎣ ⎦ 1/ += mmm TtQ  rather than 

⎡ ⎤mmm TtQ /= . This yields a value which is one too 
large when the length of the busy period plus jitter is 
an integer multiple of the message period. Although 
this does not give rise to problems, we prefer the more 
efficient formulation given by Equation (10). 
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3.3. Example 
In section 1.4 we showed, with the aid of a simple 

example, how the existing analysis can provide 
optimistic worst-case response times and hence flawed 
guarantees that messages will meet their deadlines. We 
return to this example to illustrate how the analysis 
presented in this paper computes the correct worst-case 
response times. For ease of reference, the table of 
message parameters is repeated below. 

Message Priority Period Deadline TX time 
A 1 2.5ms 2.5ms 1ms 
B 2 3.5ms 3.25ms 1ms 
C 3 3.5ms 3.25ms 1ms 

Table 3: CAN Messages 

Using the new analysis, the worst-case response 
time of message C (m = 3) is calculated as follows. As 
there are no lower priority messages,  Starting 
with a value of , the recurrence relation 
given by Equation (8) iterates as follows: , 

, , , converging as . 
The length of the busy period is therefore 7.0ms and 
the number of instances of message C that need to be 
examined is given by Equation (10): 

.03 =B
13

0
3 == Ct

31
3 =t

42
3 =t 63

3 =t 74
3 =t 74

3
5
3 == tt

2
5.3
0.7

3 =⎥⎥
⎤

⎢⎢
⎡=Q       

This tells us that there is the possibility that the 
existing analysis will calculate an optimistic worst-case 
response time. The value could still be correct if the 
first instance of the message has the longest response 
time. 

Calculation of the response time of the first 
instance proceeds using Equation (11): , 

, converging when . 
Using Equation (12) we have , the same 
response time calculated by the existing analysis. 

0)0(0
3 =w

2)0(1
3 =w 2)0()0( 1

3
2
3 == ww

3)0(3 =R

Moving on to the second instance, 
, , , 

. At this point computation would normally 
stop as the response time, given by 

3333  has reached 3.5 ms which is 
greater than the message deadline. However, if we 
continue iterating, assuming a longer deadline, then the 
recurrence relation converges on  
and hence ms. The worst-case response 
time of message C is in fact 3.5ms as previously 
illustrated by Figure 3 in section 1.4. 

3)0()1( 3
0
3 =+= mCww 4)1(1

3 =w 5)1(2
3 =w

6)1(3
3 =w

)( CqTqwJ +−+

6)1()1( 3
3

4
3 == ww

5.3)1(3 =R
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3.4. Sufficient Schedulability Tests 
The analysis given in sections 3.1 and 3.2 corrects a 

significant flaw in the existing schedulability analysis 
for CAN. However, the schedulability test presented is 
more complex, potentially requiring the computation of 
multiple response times. 

In this section, we present two simpler but more 
pessimistic schedulability tests, which are applicable 
given the constraint that message deadlines do not 
exceed their periods. These tests are referred to as 
“sufficient but not necessary”. By “sufficient”, we 
mean that all systems deemed to be schedulable by the 
tests are in fact schedulable, and by “not necessary” we 
mean that not all systems deemed to be unschedulable 
by the tests are in fact unschedulable. 

The response time of the first instance of a message 
in the busy period is given by Equation (7). Assuming 
that this first instance completes transmission before its 
deadline and hence before the end of its period, then 
we have two possibilities to consider. 
(i) If the busy period ends before the next 

instance of message m is queued, then 
Equation (7) gives the correct worst-case 
response time. 

(ii) Alternatively if the busy period continues 
beyond the time at which the next instance of 
message m is queued, then we must also 
consider the response time of the second and 
any subsequent instances of message m, 
queued before the end of the busy period. 

In the latter case, the maximum amount of higher 
priority interference that can be pushed through into 
the next period of message m due to the non-pre-
emptive transmission of the previous instance is m . 
Further, as the first instance of message m completed 
transmission at or before the end of its period, and the 
priority level-m busy period extends at least as far as 
the end of that period, then there can be no outstanding 
messages of lower priority blocking the next instance. 

C

We now take an alternative and pessimistic view of 
the response time of the next instance of message m. 
The queuing time of this instance can be considered in 
isolation. We assume that, 
(i) it is queued simultaneously with all other 

messages of higher priority – a critical instant, 
(ii) it is subject to push through interference of 

 from the previous instance of message m. m
An upper bound on the queuing delay of the second 
and subsequent instances of message m within the busy 
period is therefore given by: 

C
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This result suggests a simple but pessimistic 
schedulability test. An instance of message m can 
either be subject to blocking due to lower priority 
messages or to push through interference of at most 

m  due to the previous instance of the same message, 
but not both. Hence we can modify Equation (7) to 
provide a correct sufficient but not necessary 

C



schedulability test: 
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 (16) 
A further simplification is to assume that the blocking 
factor always takes its maximum possible value: 
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Where  corresponds to the transmission time of 
the longest possible CAN message (8 data bytes) 
irrespective of the characteristics and priorities of the 
messages in the system

MAXB

8. 

3.5. Error model 
So far we have assumed that no errors occur on the 

CAN bus, however as originally shown in [6, 8, 9] 
schedulability analysis of CAN may be extended to 
include an appropriate error model. 

In this paper we consider only a very simple and 
general error model. We assume that the maximum 
number of errors present on the bus in some time 
interval t is given by the function F(t). We assume no 
specific details about this function; save that it is a 
monotonic non-decreasing function of t. For a more 
detailed discussion of appropriate error models for 
CAN see [22, 24, 25]. 

We now modify the schedulability equations to 
account for the error recovery overhead. The worst-
case impact of a single bit error is to cause 
transmission of an additional 31 bits of error recovery 
overhead plus re-transmission of the affected message. 
Only errors affecting message m or higher priority 
messages can delay message m from being successfully 
transmitted. The maximum additional delay caused by 
the error recovery mechanism is therefore given by:  

)()(max31)(
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Revising Equation (8) to compute the length of the 
busy period we have:  
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Again an appropriate initial value is mm . 
Equation (19) is guaranteed to converge on a solution 
provided that the utilisation  including error 

Ct =0

mU
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8 In [8], Tindell et al. state that the “blocking time on CAN is 
defined as the longest time that a message can take to be physically 
transmitted on the bus”. This simplified view provides a sufficient 
but not necessary schedulability test that corresponds to Equation 
(17). However, later in [8], the blocking term is described as “the 
longest time that any lower priority message can occupy the bus”. 
This description, also in [6, 9], results in a flawed schedulability test. 

recovery overhead is less than 1. 
As before, Equation (10) can be used to compute 

the number of message instances that need to be 
examined to find the worst-case response time.  
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Equation (20) extends Equation (11) to account for the 
error recovery overhead. Note that as errors can impact 
the transmission of message m itself, the time interval 
considered in calculating the error recovery overhead 
includes the transmission time of message m as well as 
the queuing delay. Equations (20), (12) and (13) can be 
used together to compute the response time of each 
message instance q, and hence find the worst-case 
response time of each message in the presence of errors 
at the maximum rate specified by the error model. 

The sufficient schedulability tests given in section 
3.4 can be similarly modified via the addition of the 
term  to account for the error recovery 
overhead. 

)( m
n
mm CwE +

4. Discussion 
In this section we consider various characteristics 

of CAN systems and discuss whether flaws in the 
existing analysis can result in erroneous guarantees 
under specific circumstances that are relevant to real-
world systems. 

We seek to answer the following questions. 
1. Can the existing analysis give faulty guarantees to 

messages of any priority? 
2. If the bus utilization is low, can the existing 

analysis still result in optimistic response times? 
3. Do error models give sufficient engineering 

margin for error to account for the flaw in the 
analysis? 

4. Does the omission of diagnostic messages during 
normal operation reduce interference / blocking 
enough to ensure that the deadlines of the 
remaining messages will be met? 

5. Which message guarantees can we be sure are not 
at risk? 

4.1. Priorities of Messages at Risk 
We have found that, in general, the existing 

analysis gives the correct worst-case response times for 
the highest priority and the 2nd highest priority 
message. However; it can compute incorrect worst-
case response times for messages from the 3rd highest 
priority to the lowest priority.  
 



Figure 7: Busy Period for Message X. 

 
This is shown by the example message set constructed 
below and illustrated in Figure 7. The example 
message set consists of; 
(i) a high priority message H; 
(ii) a group of n (where ) intermediate 

priority messages, represented by I, which all 
have the same periods and transmission times; 

1≥n

(iii) a message X of priority below those messages 
in group I, which highlights the flaw in the 
analysis and 

(iv) a group of k (where ) low priority 
messages represented by L, which all have the 
same transmission times. 

0≥k

The transmission times of the messages are H , 
I ,  and respectively. The example assumes 

that . 

C
C XC LC

LX
The low priority messages L, are assumed to have 

very large periods and no jitter. These messages 
contribute only blocking to the response time of 
message X. (Note if there are no lower priority 
messages, i.e. k=0, then the example still holds with 

). 

CC >

0=LC
The period of message H is: 

2/)22( XIHLH CnCCCT +++=  
The period of message X is: 

2/)223( XIHLX CnCCCT +++=  
The period of the intermediate messages I, is assumed 
to be large ( XI ). However, the period less jitter 
for each intermediate message is: 

TT 2>>

XIHLII CnCCCJT +++=− 2  
By contrast messages H and X are assumed to have no 
jitter. 

The busy period for message X is shown in Figure 
7. For simplicity, there is only one intermediate 
priority message shown in the diagram, however the 
transmission time of this message is given as InC , 
representing the arbitrary number of intermediate 
messages that are considered. 

We now show that under certain conditions, 

message X exhibits the problem with the existing 
analysis. The length of the busy period for message X, 
given by Equation (8), is: 

XXIHLX TCnCCCt 2223 =+++=  
Hence, according to Equation (10), there are two 
instances of message X in the busy period that need to 
have their response times computed. 
 According to Equation (11), and as LX , the 
queuing delay of the first instance of message X is: 

CC >

IHLX nCCCw ++=)0(  
Similarly for the second instance: 

XIHLX CnCCCw +++= 23)1(  
According to Equation (12), the response times of the 
two instances are: 

XIHLX CnCCCR +++=)0(  
and  

2/)223()1( XIHLX CnCCCR +++=  
Comparing  and , then, provided that 

LH , the response time of the second instance is 
greater than that of the first. Meaning that message X 
exposes the flaw in the existing analysis. (In fact, 
assuming XX

)0(XR )1(XR
CC >

TD = , the second instance of message X 
is only just schedulable with ). XX
 As we can choose an arbitrary number ( ) of 
intermediate priority messages and similarly an 
arbitrary number ( ) of lower priority messages, 
message X may lie anywhere from the 3

TR =
1≥n

0≥k
rd highest to the 

lowest priority in a set of messages with cardinality 
greater than or equal to 3. We conclude that any 
message from the lowest priority to the 3rd highest 
priority in a set of 3 or more messages can be given an 
optimistic response time and therefore a faulty 
guarantee by the existing analysis. 

4.2. Breakdown Utilisation 
The example in section 1.4 has a bus utilisation of 

97%. It is interesting to ask if the existing analysis can 
yield optimistic worst-case response times for systems 
with much lower utilisation. 
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Returning to the example message set, constructed 
in section 4.1, we now consider how low the utilisation 
of that message set can be. 

To achieve the lowest possible utilisation, we need 
only consider the contribution from messages H and X 
as the utilisation of both the intermediate messages I, 
and the low priority messages L, tends to zero when 
their periods are increased to an arbitrarily large value. 
We therefore have: 

XIHL

H

XIHL

X

CnCCC
C

CnCCC
CU

+++
+

+++
=

22
2

223
2

with the constraints that and . LH CC > LX CC >
The overall utilisation is minimised by choosing 

values of HC  and XC  as small as possible and IC  as 
large as possible. Given the constraints on CAN 
message sizes, the minimum occurs when we choose 
messages H and X to have zero data bytes, so 

bitXH CC τ55== , the intermediate messages to have 8 
data bytes and so bitIC

13 

τ135=  and no lower priority 
messages, so . 0=LC

We note that this message set is somewhat 
pathological in that all the intermediate priority 
messages have arbitrarily large periods / deadlines and 
correspondingly large queuing jitter. It does however 
illustrate that in general the existing analysis breaks 
down at very low levels of utilisation. 

Table 4 provides an upper bound on this breakdown 
utilisation: the existing analysis is known to breakdown 
at these levels of utilisation, it may breakdown at still 
lower levels. 

Number of 
Messages 

Utilisation 

3 45.5% 
5 21.4% 
10 9.2% 
25 3.4% 

100 0.82% 

Table 4: Utilisation of Message Sets Breaking 
the Existing Analysis 

Whilst it is unlikely that real-world applications 
will have message configurations that replicate the 
pathological case discussed above, such systems may 
in some cases include messages with large amounts of 
queuing jitter. Typically these are gatewayed messages 
that have inherited a large jitter from variability in the 
response time of a source message sent on another 
network. We conclude that, for applications 
characterised by non-zero queuing jitter, it is prudent to 
assume that there could be problems with the existing 
analysis irrespective of overall bus utilisation. 

In fact, for real-world CAN systems characterised 
by messages with non-zero queuing jitter and 
consequently deadlines less than periods, overall bus 

utilisation is a poor indicator of system schedulability. 

4.3. Margin for Error 
In section 3.5 we saw how a generalised error 

model could be included in the revised schedulability 
analysis. Bit error rates on CAN are typically very low: 

 up to depending on environmental 
conditions [31]. However, errors do occur and it is 
therefore appropriate that any commercial application 
of CAN schedulability analysis should include at least 
a simple error model to account for sporadic errors on 
the bus. These errors are typically caused by external 
sources of Electromagnetic Interference (EMI) such as 
mobile phones, radar, radio transmitters and lightning 
as well as other possible causes such as switch 
contacts, and shielding or wiring faults. As such errors 
are typically completely uncorrelated with message 
transmission; it is therefore reasonable to assume that 
any useful error model allows for the possibility of an 
error occurring at any given time and hence the error 
function  for any time interval t. 

1110− 610−

1)( ≥tF
Let us now consider the situation where the 

schedulability analysis given in [6, 8, 9] has been used 
along with an error model with  to determine 
the schedulability of a system. The recurrence relation 
used by the existing analysis is given below: 
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Given that , then from Equation (18), the 

maximum additional delay to message m due to the 
error recovery mechanism is always longer than the 
transmission time of message m, i.e. . 
Substituting  for  in Equation (21) gives:  
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We note that as mm , the solution to Equation 
(22) cannot be larger than the solution to Equation 
(21). 

CtE >)(

Recall that Equation (16) provides a correct 
sufficient but not necessary schedulability test for the 
case where there are no errors on the CAN bus. 
Comparing Equation (22) and Equation (16), we 
observe that, as mmmm CBCB +≤+ )max( , the solution 
to Equation (16) cannot be larger than the solution to 
Equation (22) and hence cannot be larger than the 
solution to Equation (21). This means that if message 
m is deemed to be schedulable given the queuing delay 
computed by Equation (21) for the case where there are 
errors on the bus, then it must also be schedulable 
given the queuing delay computed via Equation (16) 
for the case where there are no errors on the bus. 



This is an important result. It means that if the 
existing analysis showed that every message was 
schedulable in the presence of any reasonable error 
model ( ), then, despite the flaw in the existing 
analysis, every message is actually guaranteed to be 
schedulable when no errors are present. Put another 
way, the engineering margin for error provided by the 
error model is sufficient to account for the error in the 
analysis. 

1)( ≥tF

We observe however, that the robustness of 
systems analysed using the schedulability analysis in 
[6, 8, 9] may not be all that was expected. Flaws in the 
existing analysis could lead to message configurations 
that will miss their deadlines in the presence of errors 
at a rate within the parameters of the specified error 
model, even though we can be sure that they will not 
miss their deadlines when no errors are present on the 
bus. 

4.4. Message Omission 
Many CAN applications allow for 8 data byte 

diagnostic messages, which are not transmitted during 
the normal mode of operation. These messages are 
transmitted only when the system is in diagnostic 
mode9 and linked to service equipment. In this section, 
we consider whether the omission of diagnostic 
messages provides sufficient reduction in interference / 
blocking to ensure that messages do not miss their 
deadlines during normal operation, despite being given 
potentially optimistic worst-case response times by the 
existing analysis. 

To answer this question, we consider a system that 
is deemed to be schedulable by the existing analysis. 
We assume that this system includes an 8 data byte 
diagnostics message x, which is only transmitted when 
the system is in diagnostic mode. We note that as 
message x has the maximum number of data bytes, its 
transmission time is equivalent to the largest possible 
blocking factor, so . The blocking factor 
for each message m of higher priority than x, is 
therefore given by , which means that the 
existing analysis based on Equation (7) computes 
exactly the same worst-case response time for each 
higher priority message m, as the correct sufficient but 
not necessary schedulability analysis test based on 
Equation (17). The existing analysis cannot therefore 
result in optimistic worst-case response times for 
messages of higher priority than x.  

MAX
x BC =

MAX
m BB =

For each message of lower priority than x, the 
interference due to message x is at least . 
Comparing Equation (7) and Equation (17), we 

MAXB
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9 Typically all normal mode messages continue to be transmitted 
during diagnostic mode. 

observe that the solution to Equation (7), with 
diagnostic message x included in the set of higher 
priority messages, is at least as large as the solution to 
Equation (17) when message x is excluded. This means 
that if a lower priority message m is deemed to be 
schedulable by the existing analysis when message x is 
present, then it must also be schedulable according to 
the correct sufficient but not necessary schedulability 
analysis when message x is omitted. 

We conclude that the omission of a single 
maximum length message of arbitrary priority provides 
sufficient reduction in interference / blocking to ensure 
that the flaw in the existing analysis cannot lead to any 
of the remaining messages missing their deadlines. 

4.5. Message Guarantees not at Risk 
In this section, we consider the circumstances under 

which the first instance of a message in the busy period 
is guaranteed to have the longest response time. Under 
these circumstances, despite its flaws, the existing 
analysis gives correct results.  
 Assuming that message deadlines do not exceed 
their periods, then Equation (15) in section 3.4 
provides an upper bound on the queuing delay for the 
second and subsequent instances of message m in the 
busy period. 

Comparing Equations (7) and (15), we observe that 
provided mm , then the first instance of message 
m is guaranteed to have a longer response time than 
any subsequent ones. From the definition of m  given 
in Equation (5), we conclude the following important 
result: the existing analysis gives the correct response 
time for any message where there exists at least one 
lower priority message with equal or longer 
transmission time / message length. 

CB ≥

B

5. Priority Assignment Policies 
The analysis presented in section 3 is applicable 

independent of the priority ordering of CAN messages. 
However, choosing an appropriate priority ordering is 
important in obtaining a schedulable system and in 
maximising robustness to errors. 

Priority ordering is determined by a priority 
assignment policy. A priority assignment policy P is 
referred to as optimal if there are no systems that are 
schedulable using any other priority assignment policy 
that are not also schedulable using policy P. 

In [6, 8] it was claimed that deadline monotonic 
[35] and “deadline minus jitter” or (D-J)-monotonic 
[10] priority assignment policies are optimal for CAN. 
However, whilst these policies are optimal for fixed 
priority pre-emptive scheduling assuming deadlines no 
greater than periods, they are not optimal for fixed 
priority non-pre-emptive scheduling [3] and are 



therefore not optimal for CAN. This is illustrated by 
the following example using the set of messages given 
in Table 5. 

Message Period Deadline Number 
of bits 

TX time 

A 3.0ms 3.0ms 135 1.08ms 
B 4.0ms 4.0ms 135 1.08ms 
C 4.5ms 4.5ms 65 0.52ms 

Table 5: CAN Messages Highlighting Non-
optimal Priority Assignment 

This example assumes a 125Kbit/s network and 11-
bit identifiers. Messages A and B contain 8 data bytes 
and message C contains 1 data byte, giving 
transmission times of 1.08, 1.08 and 0.52ms 
respectively, assuming worst-case bit stuffing. In 
addition there are a number of lower priority messages, 
each containing 8 data bytes, which are also sent on the 
network. Their transmission times are also 1.08ms. 

Setting message priorities in the order A – highest, 
then B, then C results in an unschedulable system. The 
worst-case response times of messages A and B are 
2.16ms and 3.24ms respectively. However, in the worst 
case, message C does not even begin transmission 
before its deadline. 

Figure 8 illustrates the long delays that message C 
is subject to before transmission. Messages A, B and C 
are assumed to be queued just too late to enter 
arbitration at time t = 0 and hence the low priority 
message L is transmitted first. 
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Figure 8: Message Response Times with  
“Optimal” Priority Assignment 

The priority ordering A, B, C corresponds to both 
deadline monotonic and also (D-J)-monotonic priority 
ordering – as all the messages have zero queuing jitter. 
If these priority assignment policies are optimal then 
we should not be able to find another priority ordering 
which results in all the deadlines being met. However, 
if we use the priority ordering A, C, B then the worst-
case response times of the messages are: A = 2.16ms, 

C = 2.68ms and B = 3.76ms as illustrated in Figure 
9. With this priority ordering, all of the messages meet 
their deadlines. 

R
R R

 
Figure 9: Message Response Times with an 

Alternative Priority Assignment 

The reason that the revised priority ordering results 
in a schedulable system is that giving the shortest 
message a higher priority enables all three messages to 
start transmission within 3ms of being queued and 
hence none of them are subject to interference from a 
second instance of message A and subsequently a 
second instance of message B. This example shows 
that the priority assignment policies assumed in [6, 8] 
to be optimal are not. 

In [3] George et al. claimed that deadline 
monotonic priority assignment is optimal for non-pre-
emptive systems with no jitter, provided that deadlines 
and execution times are in the same order i.e. ji DD <  
implies ji . The proof assumes that “as CC ≤ i∀ , 

ii TD ≤  the worst-case response time of any task is 
found in its first instance”, however this assumption is 
false as we have seen with the simple example in 
section 1.4 and so the proof is undermined. The 
theorem may or may not still be true. 

George et al. [3] also showed that the optimal 
priority assignment algorithm devised by Audsley [1] 
is applicable to non-pre-emptive systems. In general, 
Audsley’s algorithm is applicable provided that the 
worst-case response time of a message: 
(i) does not depend upon the specific priority 

ordering of higher priority messages and, 
(ii) does not get longer if the message is given a 

higher priority. 
Inspection of the various equations presented in this 
paper shows that both of the above conditions hold: 
neither the length of queuing delay, nor the length of 
the busy period depend upon the specific priority order 
of higher priority messages, nor can they increase in 
length with increasing priority. Although the blocking 
term can get larger with increased priority this is 
always counteracted by a decrease in interference that 
is at least as large. Audsley’s optimal priority 
assignment algorithm, given below, is therefore 
applicable for determining the priority ordering of 
CAN messages. 
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Optimal Priority Assignment Algorithm 
 
for each priority level, lowest first 
{ 

for each unassigned message m 
{ 
  if m is schedulable at this priority 
  { 
   assign m this priority 
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 
 

For n messages, Audsley’s algorithm performs at 
most n(n-1)/2 schedulability tests and is guaranteed to 
find a schedulable priority assignment if one exists. It 
does not however specify an order in which messages 
should be tried at each priority level. This order 
heavily influences the priority assignment chosen if 
there is more than one ordering that is schedulable. In 
fact, a poor choice of initial ordering can result in a 
priority assignment that leaves the system only just 
schedulable. We suggest that, as a useful heuristic, 
messages are tried at each priority level in (D-J) order, 
largest value of (D-J) first, with ties broken according 
to message length, longest first. 

6. Implications and Recommendations 
In this section, we discuss the implications of flaws 

in existing CAN schedulability analysis on commercial 
CAN schedulability analysis tools and deployed CAN 
applications. 

6.1. CAN Schedulability Analysis Tools 
CAN schedulability analysis tools need to take 

account of the findings presented in this paper. This 
will involve checking and if necessary updating the 
analysis they employ, to ensure that it cannot provide 
optimistic worst-case response times and false 
guarantees. 

The sufficient but not necessary schedulability tests 
given in section 3.4 provide a “quick-fix” solution as 
the changes required to the existing analysis are 
minimal. These tests are however pessimistic and 
implementing the revised analysis, given in section 3, 
would potentially lead to a technically better solution. 

Whilst “deadline minus jitter” or (D-J)-monotonic 
priority ordering is still a good heuristic to use, it is not 
necessarily the optimal priority assignment policy for 
CAN. Implementing priority ordering based upon 
Audsley’s optimal priority assignment algorithm would 
ensure that a schedulable priority ordering is found 
whenever one exists. 

6.2. Commercial CAN Applications 
System Designers configuring commercial CAN 

applications often take the engineering approach that 
all messages in the system should remain schedulable 
given the addition of any number of low priority 
messages that can be used for development and test 
purposes. Such analysis based on [6, 8, 9] would 
assume that every message is subject to the maximum 
blocking factor, as per the sufficient schedulability test 
given by Equation (17). This schedulability test 
computes a correct upper bound on the actual response 
time of each message and so provides a correct 
guarantee that the configured messages will meet their 
deadlines. 

Given the flaws in the existing schedulability 
analysis, it would however be prudent for System 
Designers to check the precise details of the analysis 
used to compute worst-case response times for their 
systems. If the analysis used has the potential to 
compute erroneous worst-case response times, then the 
feasibility of all the CAN configurations designed, 
developed and deployed using that analysis should be 
checked to ensure that they are in fact schedulable and 
robust to errors at the rate specified by the prescribed 
error model. 

6.3. Faults in Deployed Systems 
Many deployed CAN systems, for example those in 

automotive applications, will have been analysed using 
the pragmatic engineering approach described in the 
previous section. The flaws in the existing analysis 
cannot lead to a problem with a deployed system in 
this case. 

Many CAN applications allow for maximum length 
(8 data byte) diagnostic messages that are not 
transmitted during normal operation. Assuming that the 
existing analysis deemed the system schedulable with 
these diagnostic messages present, then section 4.4 
showed that the omission of a single diagnostic 
message provides sufficient reduction in interference / 
blocking to ensure that the flaws in the existing 
analysis cannot lead to any messages missing their 
deadlines during normal operation. 

In section 4.5 we saw that the existing analysis 
gives the correct response time for any message where 
there is at least one lower priority message with equal 
or longer transmission time / message length. Many 
CAN applications use exclusively 8 data byte messages 
as a means of addressing the high ratio of overhead to 
useful data on CAN. In this case, the existing analysis 
is guaranteed to compute correct response times for all 
but the lowest priority message. 

Even if a message has the potential to be given an 
erroneous worst-case response time by the existing 
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analysis, then unless that message is close to being 
unschedulable, the computed worst-case response time 
is still likely to be the true value. Even if an optimistic 
value is computed, then the true value may still be less 
than the message deadline. Finally, for a deadline miss 
to actually happen in a deployed system requires that 
the worst-case message phasing occurs and, at the 
same time, a number of the messages take close to their 
maximum transmission times. This requires worst-case 
or near worst-case bit stuffing to occur which is, in 
itself, highly unlikely [23]. 

Normal practice with commercial CAN 
configurations is to ensure that schedulability analysis 
includes provision for an error model of some sort. In 
this case, section 4.3 showed that such systems are 
guaranteed to be schedulable when no errors are 
present on the CAN bus provided that they were 
deemed to be schedulable in the presence of errors by 
the existing analysis. 

We conclude that deadline misses in deployed 
CAN systems due to flaws in the existing analysis are 
extremely unlikely. Any such deadline failures are 
more likely to occur due to errors occurring on the bus 
at a higher rate than that accounted for by the error 
model.  

We note that embedded CAN-based systems are 
built to be resilient to some messages missing their 
deadlines and to much simpler forms of error such as 
wiring faults. CAN is not used in its basic form for 
safety critical systems due to known issues such as the 
“double receive” and “babbling idiot” problems [28, 
29, 30]. 

7. Summary and Conclusions 
In this paper we highlighted a significant flaw in 

long-standing highly cited and widely used 
schedulability analysis of CAN. We showed how this 
flaw could lead to the computation of optimistic worst-
case response times for CAN messages, broken 
guarantees and deadline misses. This paper provides 
revised analysis that can be used to calculate correct 
worst-case response times for CAN. 

In addition, we showed that: 
1. The existing analysis can provide optimistic worst-

case response times for messages from the 3rd 
highest priority to the lowest priority. 

2. The existing analysis can lead to broken 
guarantees and hence deadline misses in systems 
with low bus utilisation. 

3. Where an error model has been considered, the 
flaw in the existing analysis is not sufficient to 
lead to CAN configurations that will result in 
missed deadlines when no errors are present on the 
bus. The desired robustness to errors may not 

however be achieved. 
4. The omission of a single maximum length 

diagnostic message, accounted for by the existing 
analysis, reduces interference / blocking enough to 
ensure that the deadlines of all the remaining 
messages are met during normal operation. 

5. Despite its flaws, the existing analysis gives the 
correct response time for any message where there 
is at least one lower priority message with the 
same or greater transmission time / message 
length. 

We discussed the implications of these results for 
commercial CAN systems developed using flawed 
analysis and provided two simple, sufficient 
schedulability tests enabling a “quick-fix” to be made 
to commercial CAN schedulability analysis tools. 

Finally, we showed that the neither deadline 
monotonic nor (D-J)-monotonic priority assignment is 
optimal for CAN. Audsley’s optimal priority 
assignment algorithm is however optimal for fixed 
priority non-pre-emptive systems and may be used to 
obtain a schedulable priority ordering for CAN 
whenever one exists. 

7.1. Future Work 
A considerable body of academic work has grown 

up from Tindell’s seminal analysis of CAN. The flaws 
in that original work may have partly undermined 
some of the subsequent research built upon it. Authors 
that have cited the original CAN analysis in their work 
are encouraged to check the implications. In particular 
the academic work most likely to be affected is that 
which extends the original analysis and pushes system 
schedulability to its limits, for example work on error 
models. 
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