
A Survey of Real-time Operating Systems

Abstract

 A real-time operating system (RTOS) supports real-time applications and embedded
systems. Real-time applications have the requirement to meet task deadlines in addition to the
logical correctness of the results. In this report, we review the pre-requisites for an RTOS to be
POSIX 1003.1b compliant and discuss memory management and scheduling in RTOS. We
survey the prominent commercial and research RTOSs and outline steps in system
implementation with an RTOS. We select a popular commercial RTOS for each category of real-
time application and discuss its real-time features. A comparison of the commercial RTOSs is
also presented. We conclude by discussing the results of the survey and suggest future research
directions in the field of RTOS.

1 Introduction

 A real-time system is one whose correctness involves both the logical correctness of the
outputs and their timeliness [11]. A real-time system must satisfy bounded response-time
constraints; otherwise risk severe consequences, including failure. Real-time systems are
classified as hard, firm or soft systems. In hard real-time systems, failure to meet response-time
constraints leads to system failure. Firm real-time systems are those systems with hard deadlines,
but where a certain low probability of missing a deadline can be tolerated. Systems in which
performance is degraded but not destroyed by failure to meet response-time constraints are called
soft real-time systems. A real-time system is called an embedded system when the software
system is encapsulated by the hardware it controls. The microprocessor system used to control the
fuel/air mixture in the carburetor of many automobiles is an example of a real-time embedded
system. An RTOS differs from common OS, in that the user when using the former has the ability
to directly access the microprocessor and peripherals. Such an ability of the RTOS helps to meet
deadlines.
 The organization of this report is as follows. In Section 2, we discuss the basic
requirements of an RTOS to be POSIX 1003.1b compliant. In Section 3, we review memory
management and scheduling algorithms used in an RTOS. In Section 4, we outline and briefly
explain the steps in the implementation of a project with an RTOS. In Section 5, we select a
popular RTOS in each of the different categories of real-time applications and discuss the real-
time features of the selected RTOS. We also compare the different contemporary commercial
RTOSs. In Section 6, we conclude by discussing the results of this survey and our suggestions for
future research in the field of RTOS.

2 Features

 The kernel is the core of the OS that provides task scheduling, task dispatching and inter-
task communication. In embedded systems, the kernel can serve as an RTOS while commercial
RTOSs like those used for air-traffic control systems require all of the functionalities of a general
purpose OS. The desirable features of an RTOS include the ability to schedule tasks and meet
deadlines, ease of incorporating external hardware, recovery from errors, fast switching among
tasks and small size and small overheads. In this section we discuss the basic requirements of an
RTOS and the POSIX standards for an RTOS.

 2

2.1 Basic requirements

The following are the basic requirements of an RTOS.

(i) Multi-threading and preemptibility

 To support multiple tasks in real-time applications, an RTOS must be multi-threaded and
preemptible. The scheduler should be able to preempt any thread in the system and give the
resource to the thread that needs it most. An RTOS should also handle multiple levels of
interrupts i.e., the RTOS should not only be preemptible at thread level, but at the interrupt level
as well.

(ii) Thread priority

 In order to achieve preemption, an RTOS should be able to determine which thread needs
a resource the most, i.e., the thread with the earliest deadline to meet. Ideally, this should be done
at run-time. However, in reality, such a deadline-driven OS does not exist. To handle deadlines,
each thread is assigned a priority level. Deadline information is converted to priority levels and
the OS allocates resources according to the priority levels of threads. Although the approach of
resource allocation among competing threads is prone to error, in absence of another solution, the
notion of priority levels is used in an RTOS.

(iii) Predictable thread synchronization mechanisms

 For multiple threads to communicate among each other, in a timely fashion, predictable
inter-thread communication and synchronization mechanisms are required. Also, supported
should be the ability to lock/unlock resources to achieve data integrity.

(iv) Priority inheritance

 When using priority scheduling, it is important that the RTOS has a sufficient number of
priority levels, so that applications with stringent priority requirements can be implemented [13].
Unbounded priority inversion occurs when a higher priority task must wait on a low priority task
to release a resource while the low priority task is waiting for a medium priority task. The RTOS
can prevent priority inversion by giving the lower priority task the same priority as the higher
priority task that is being blocked (called priority inheritance). In this case, the blocking task can
finish execution without being preempted by a medium priority task. The designer must make
sure that the RTOS being used prevents unbounded priority inversion [10].

(v) Predefined latencies

 An OS that supports a real-time application needs to have information about the timing of
its system calls. The behavior metrics to be specified are:

• Task switching latency: Task or context-switching latency is the time to save the context of

a currently executing task and switch to another task. It is important that this latency be short.
• Interrupt latency: This is the time elapsed between the execution of the last instruction of

the interrupted task and the first instruction in the interrupt handler, or simply the time from
interrupt to task run [6]. This is a metric of system response to an external event.

 3

• Interrupt dispatch latency: This is the time to go from the last instruction in the interrupt
handler to the next task scheduled to run. This indicates the time needed to go from interrupt
level to task level.

2.2 POSIX compliance

 IEEE Portable Operating System Interface for Computer Environments, POSIX 1003.1b
(formerly 1003.4) provides the standard compliance criteria for RTOS services and is designed to
allow application programmers to write applications that can easily be ported across OSs. The
basic RTOS services covered by POSIX 1003.1b include:

• Asynchronous I/O: The ability to overlap application processing and application
initiated I/O operations [8].

• Synchronous I/O: The ability to assure return of the interface procedure when the I/O
operation is completed [8].

• Memory locking: The ability to guarantee memory residence by storing sections of a
process that were not recently referenced on secondary memory devices [24].

• Semaphores: The ability to synchronize resource access by multiple processes [19].
• Shared memory: The ability to map common physical space into independent process

specific virtual space [8].
• Execution scheduling: Ability to schedule multiple tasks. Common scheduling methods

include round robin and priority-based preemptive scheduling.
• Timers: Timers improve the functionality and determinism of the system. A system

should have at least one clock device (system clock) to provide good real-time services.
The system clock is called CLOCK_REALTIME when the system supports Real-time
POSIX [13].

• Inter-process Communication (IPC): IPC is a mechanism by which tasks share
information needed for a particular application. Common RTOS communication methods
include mailboxes and queues.

• Real-time files: The ability to create and access files with deterministic performance.
• Real-time threads: Real-time threads are schedulable entities of a real-time application

that have individual timeliness constraints and may have collective timeliness constraints
when belonging to a runnable set of threads [13].

3 Memory management and scheduling

 In this section, we discuss the various memory management and scheduling schemes adopted
in RTOSs.

3.1 Memory management

 Commonly an RTOS achieves small memory footprint by including only the
functionality needed for the user’s applications and discarding the rest [26]. There are two types
of memory management in RTOSs.
 The first type is used to provide tasks with temporary data space. The system’s free
memory is divided into fixed sized memory blocks, which can be requested by tasks. When a task
finishes using a memory block it must return it to the pool. Another way to provide temporary
space for tasks is via priorities. A pool of memory is dedicated to high priority tasks and another
to low priority tasks. The high-priority pool is sized to have the worst-case memory demand of
the system. The low priority pool is given the remaining free memory. If the low priority tasks

 4

exhaust the low priority memory pool, they must wait for memory to be returned to the pool
before further execution [1].
 The second type of memory management is used to dynamically swap code in and out of
main memory. Specific techniques are memory swapping, overlays, multiprogramming with a
fixed number of tasks (MFT), multiprogramming with a variable number of tasks (MVT) and
demand paging. The memory swapping method keeps the OS and one task in memory at the same
time. When another task needs to run, it replaces the first task in main memory, after the first task
and its context have been saved to secondary memory. When using overlays, the code is
partitioned into smaller pieces, which are swapped from disk to memory. In this way, programs
larger than the available memory can be executed. In MFT, a fixed number of equalized code
parts are in memory at the same time. As needed, these parts are overlaid from disk. MVT is
similar to MFT except that the size of the partition depends on the needs of the program in MVT.
Demand paging systems have fixed-size “pages” that are given to programs as needed in non-
continuous memory. Demand paging differs from MFT and MVT because the latter two can be
put only in continuous memory blocks [11].
 In many embedded systems, the kernel and user execute in the same space i.e., there is no
memory protection. Hence, a system and a procedure or function call within an application are
indistinguishable.

3.2 Scheduling algorithms of RTOS

 For small or static real-time systems, data and task dependencies are limited and therefore
the task execution time can be estimated prior to execution and the resulting task schedules can be
determined off-line. Periodic tasks typically arise from sensor data and control loops, however
sporadic tasks can arise from unexpected events caused by the environment or by operator
actions. A scheduling algorithm in RTOS must schedule all periodic and sporadic tasks such that
their timing requirements are met.
 The most commonly used static scheduling algorithm is the Rate Monotonic (RM)
scheduling algorithm of Liu and Layland [12]. The RM algorithm assigns different priorities
proportional to the frequency of tasks. RM can schedule a set of tasks to meet deadlines if total
resource utilization is less than 69.3%. If a successful schedule cannot be found using RM, no
other fixed priority scheduling system will avail. But the RM algorithm provides no support for
dynamically changing task periods and/or priorities and tasks that may experience priority
inversion. Priority inversion occurs in an RM system where in order to enforce rate-monotonicity,
a non-critical task with a high frequency of execution is assigned a higher priority than a critical
task with lower frequency of execution. A priority ceiling protocol (PCP) can be used to counter
priority inversion, wherein a task blocking a higher priority task inherits the higher priority for the
duration of the blocked task.
 Earliest deadline first (EDF) scheduling can be used for both static and dynamic real-time
scheduling. Its complexity is O(n2), where n is the number of tasks, and the upper bound of
process utilization is 100% [11]. An extension of EDF is the time-driven scheduler. This
scheduler aborts new tasks if the system is already overloaded and removes low-priority tasks
from the queue. A variant of EDF is Minimum Laxity First (MLF) scheduling where a laxity is
assigned to each task in the system and minimum laxity tasks are executed first. MLF considers
the execution time of a task, which EDF does not. Another variant of EDF is the Maximum
Urgency First (MUF) algorithm, where each task is given an explicit description of urgency.
 The cyclic executive is used in many large-scale dynamic real-time systems [3]. Here,
tasks are assigned to a set of harmonic periods. Within each period, tasks are dispatched
according to a table that lists the order to execute tasks. No start times need be specified, but a
prior knowledge of the maximum requirements of tasks in each cycle must be known.

 5

 One disadvantage of dynamic real-time scheduling algorithms is that even though
deadline failures can be easily detected, a critical task set cannot be specified and hence there is
no way to specify tasks that are allowed to fail during a transient overload.

3.2.1 Scheduling for hard real-time systems

 An increasing proportion of all computers do not sit in air-conditioned computer centers
or even on desktops; they are embedded in automobiles, lathes, microwave ovens, cloth dryers,
aluminum rolling mills and airplane cockpits. The software system in these computer systems
must meet hard real-time deadlines, e.g., a flight control surface must be adjusted several times
each second to keep some new aircraft stable.
 For the class of hard real-time systems, mechanisms and policies that ensure consistency
and minimize worst-case blocking without incurring any unbounded or excessive run-time
overheads are desired. Since most recent work in maintaining integrity of shared data has been
carried out in the context of database systems, one can consider adapting database concurrency
control techniques to the domain of hard real-time systems. But since virtually all database
concurrency control approaches have been designed to optimize average-case performance rather
than worst-case latency, these techniques must be adapted and extended for hard real-time
systems. The techniques adapted must employ semantic information that is necessarily available
at design time to guarantee optimum scheduling.

4 System implementation with RTOS

 Implementation of a system using an RTOS requires calculation and planning. The
designer has to consider all the timing aspects of the system. Based on timing calculations, and
the task partitioning used, the designer can decide if the desired RTOS can provide the needed
capabilities. In addition, the designer must consider task prioritization, use of interrupts,
multiprocessor support, if applicable, as well as language support by the chosen RTOS.

4.1 Response time

 The system should respond with an output before the next input. Therefore, the system’s
response time should be shorter than the minimum time between successive inputs.

4.2 Task partitioning

 After determining the required response time, the designer continues by dividing the
project into tasks. The designer must balance the amount of parallelism and communication [5].
Task cohesion criteria are used to optimize partitioning by combining parallel tasks to execute
sequentially. Combining tasks minimizes overhead by reducing the context switches and inter-
task communications.

4.3 RTOS considerations

 After a designer has completed task partitioning, it must be determined if an RTOS is
capable of handling the set of tasks. The key considerations are the available timer period, inter-
task communication methods, contention resolution, and memory protection.

4.4 Task priority

 6

 The priority assigned to each task is essential for proper operation of an application.
Starvation occurs when higher priority tasks are always ready to run, resulting in insufficient
processor time for lower priority tasks [13]. The designer must determine which tasks are critical
in meeting the deadlines and give them the highest priorities. However, when execution time is at
a premium, tasks, which do not contribute in meeting real-time deadlines of the system, may not
get a “ fair” amount of execution time compared to time-critical tasks.

4.5 Interrupts

 When designing a system that uses non-prioritized interrupts, the designer must ensure
that interrupt-handling time is minimized. If possible, the interrupt handler should save the
context, create a task that will handle the interrupt service, and return control back to the
operating system. Using a task to perform bulk of the interrupt service allows the service to be
performed based on a priority chosen by the designer. It helps preserve the priority system of the
RTOS. Without preservation of priorities, a lower priority event can cause an interrupt during
execution of a high priority task causing missed deadlines. Non-prioritized interrupts should not
be used if there is a task that cannot be preempted without causing system failure.
 In systems where interrupts are used, the designer must also consider the input of the
RTOS detecting the interrupts. Typically, when an RTOS is performing system operations, such
as determining which task should execute next, it will turn the interrupts off. The time period
during which interrupts are turned off is called the “ interrupt latency” of the RTOS. During the
interrupt latency time, interrupts can be delayed or even lost. It is preferable that a RTOS with a
small interrupt latency be used in a system where delaying or missing an interrupt is not
acceptable.

4.6 Multiprocessor RTOS

 Embedded multiprocessor systems typically have a processor controlling each device in
the system. Most RTOSs that are multiprocessor-capable use a separate instance of the kernel on
each processor. The multiprocessor ability comes from the kernel’s ability to send and receive
information between processors. In many RTOSs that support multiprocessing, there is no
difference between the single processor case and the multiprocessor case from the task’s point of
view. The RTOS uses a table in each local kernel that contains the location of each task in the
system. When one task sends a message to another task the local kernel looks up the location of
the destination task and routes the message appropriately. From the task’s point of view all tasks
are executing on the same processor [6].

4.7 Language support

 The RTOS should reduce the programmer’s coding burden by handling resource
management. A language that directly supports synchronization primitives such as SCHEDULE,
SIGNAL and WAIT, etc. greatly simplifies the translation from design to code. The SCHEDULE
command schedules a process based on time or an event; SIGNAL and WAIT commands
manipulate a semaphore that enables concurrent tasks to be synchronized.

5 Categories of RTOS

 7

 In this section, we select a prominent commercial RTOS for each category of real-time
applications and discuss its features. But first, we list the common capabilities of these operating
systems:

5.1 Commonalities of commercial Real-time Operating Systems

• Speed and efficiency: Most RTOSs are microkernels that have low overhead. In some,
no context switch overhead is incurred in sending a message to the system service
provider.

• System calls: Certain portions of system calls are non-preemptable for mutual exclusion.
These parts are highly optimized, made as short and deterministic as possible.

• Scheduling: For POSIX compliance, all RTOSs offer at least 32 priority levels. Many
offer 128 or 256 while others offer even 512 priority levels.

• Priority inversion control: Many operating systems support resource access control
schemes that do not need priority inheritance. This avoids the overhead of priority
inheritance.

• Memory management: Support for virtual memory management exists but not
necessarily paging. The users are offered choices among multiple levels of memory
protection.

5.2 RTOS for small footprint, mobile and connected devices

 In this section, we outline the real-time features of Windows CE 3.0 [15], a highly
modular real-time embedded OS for small footprint, mobile 32-bit intelligent connected devices.
Windows CE 3.0 can work on 12 different processor architectures. It can be customized to meet
specific product requirements with a minimum footprint of 400KB.
 Windows CE 3.0 provides quantum-level thread control (the OS divides CPU time among
the threads in timeslices or quantum) and 256 priority levels thus facilitating control over the
scheduling and behavior of embedded systems. To optimize performance all threads are enabled
to run in kernel mode.
 Windows CE 3.0 supports system calls within interrupt service threads (ISTs). Nested
interrupts are supported. Fast high-priority thread response helps to know when thread transitions
occur.
 Windows CE 3.0 kernel has the following features:

• Timer accuracy is 1 ms for Sleep and Wait related APIs.
• While executing non-preemptive code in the kernel, translation look-aside buffer (TLB)

misses are avoided by moving all kernel data into physical memory.
• Kcalls, all non-preemptible but interruptible portions of the kernel, are broken down into

small non-preemptible sections. Although complexity is increased by increased number of
sections, preemption is turned off for short periods.

• All kernel objects (such as processes, threads, critical sections, mutexes, events and
semaphores) are allocated in virtual memory and thus the memory for these objects is
allocated on demand.

 It uses a memory management unit (MMU) for virtual memory management. The use of
multiple execute-in-place (XIP) regions eliminates boot time, avoids double footprint and reduces
hardware requirements.
 The use of an OEM* Adaptation Layer (OAL) isolates device dependent routines to
increase OS portability. Hardware-assisted debugging enables the debugging of the OAL before

* Original Equipment Manufacturer

 8

the kernel starts running. The OEM can specify the modules and processes that are trusted on a
particular platform. This model prevents unauthorized applications from accessing system
Application Programming Interfaces (APIs) and potentially damaging the platform.

5.3 RTOS for complex, hard real-time applications

 In this section, we discuss LynxOS [14], a POSIX-compatible, multiprocess,
multithreaded OS designed for complex real-time applications that require fast and deterministic
response. LynxOS is scalable RTOS from large and complex switching systems down to small-
embedded products.
 LynxOS 3.0 has moved from the monolithic architecture to a microkernel design. The
microkernel is 28 KB in size and provides essential services like scheduling, interrupt dispatch
and synchronization. Other services are offered by the kernel lightweight service modules, called
the Kernel Plug-Ins (KPIs). With the addition of KPIs to the microkernel, the system can be
configured to suport TCP/IP streams, I/O and file systems, sockets, etc. The KPIs are
multithreaded and there is no context switch when sending a message to a KPI, and inter-KPI
communication takes only a few instructions [2].
 LynxOS provides common code base across different microprocessor families. In
response to an interrupt, LynxOS kernel dispatches a kernel thread, which can be prioritized and
scheduled as any other thread in the system. Thus the priority of the kernel thread that executes a
scheduled interrupt handling routine is the priority of the user thread that handles the interrupting
device [2]. Kernel threads allow interrupt routines to be short and fast. In other words, kernel
threads ensure predictable response even in the presence of heavy I/O. LynxOS provides memory
protection through hardware memory management units (MMUs) but also offers optional demand
paging.
 LynxOS uses numerous scheduling policies such as prioritized FIFO, dynamic deadline
monotonic scheduling, prioritized round robin and time-slicing etc. LynxOS offers 512 thread
priority levels with typical thread switch latency between 4µs to 19µs.
 Linux applications need to be recompiled in order to run on RTOSs such as QNX. With
LynxOS’ Application Binary Interface (ABI) compatibility [22] a Linux program’s binary image
can be run directly on LynxOS. LynxOS includes the AT&T System V.3 and 4.3 BSD system
call interfaces and libraries, which provide a high degree of source-level compatibility for
applications written in either flavor of UNIX.
 Unlike many embedded RTOS, LynxOS supports memory protection. LynxOS also
provides support for diskless remote operation as well as boot capability.

5.4 General purpose RTOS in the embedded industry

 In this section, we discuss VxWorks [25], the most widely adopted RTOS in the
embedded industry. VxWorks is the fundamental run-time component of Tornado II, a visual,
automated and integrated development environment for embedded systems. VxWorks is a
flexible, scalable RTOS with over 1800 APIs and is available on all popular CPU platforms.
 VxWorks comprises the core capabilities of network support, file system, I/O
management, and other standard run-time support. The microkernel supports a full-range of real-
time features including 256 priority levels, multitasking, deterministic context switching and
preemptive and round robin scheduling. Binary and counting semaphores and mutual exclusion
with inheritance are used for controlling critical system resources.
 VxWorks is designed for scalability, which enables developers to allocate scarce memory
resources to their application rather than to the OS. Portability requires a distinct separation of
low-level hardware dependent code from high-level application or OS code. A Board Support

 9

Package (BSP) represents the hardware-dependent layer. A BSP is required for any target board
that executes VxWorks.
 TCP, UDP, sockets and standard Berkeley network services can all be scaled in or out of
the networking stack as necessary. VxWorks supports ATM, SMDS, frame relay, ISDN,
IPX/SPX, AppleTalk, RMON, web-based solutions for distributed network management and
CORBA for distributed computing environments.
 VxWorks [25] supports virtual memory configuration. It is possible to choose to have
only virtual address mapping, to have text segments and exception vector tables write protected,
and to give each task a private virtual memory upon request.
 RainFront [17] provides a highly available and load-balancing platform for embedded
systems built using VxWorks. VxWorks is the embedded RTOS used in networking equipments
running Voice over IP (VoIP) and Fax over IP (FoIP) [7]. The CompactNET multiprocessing
technology [4] supports processing with VxWorks.

5.5 RTOS for the Java Platform

 The Jbed RTOS package [9] is a real-time capable virtual machine developed for
embedded systems and Internet applications under the Java platform. It allows an entire
application including the device drivers to be written using Java. Instead of interpreting the
bytecode, the Jbed RTOS translates the bytecode to fast machine code prior to downloading or
class loading.
 The component-based architecture allows loading of code dynamically and makes Jbed
scalable from small ROM-based devices to high performance devices connected to the Internet.
Jbed also facilitates real-time memory allocation, exception handling and automatic object
destruction. Jbed real-time class library supports hard real-time applications.
 Jbed Light is a smaller, low-cost version for fast and precompiled standalone applications.
It contains the basic components including the core Jbed virtual machine, a small set of standard
Java libraries, and the Jbed libraries required to directly access peripherals.
 The Java virtual machine calls are directly implemented in the kernel. This avoids the
need for a slow and complex Java Native Interface (JNI), which would otherwise be needed to
make system calls. Also no adapter is needed to translate between the Java and native OS threads.
 Jbed runs on 32-bit microprocessors and controllers. Current versions support ARM7, 68k
and the PowerPC architectures. The Jbed RTOS supports up to 10-thread priority levels. The
thread switch latency and maximum interrupt latency are processor dependent. The standard Java
thread API is suitable only for soft real-time parts of an application. Additional thread API is
added in Jbed support hard real-time features of an application. The scheduling policy of the hard
real-time threads is Earliest Deadline First, which is widely applicable for periodic, harmonic and
sporadic tasks.

5.6 Objected-oriented RTOS

 pSOSystem is a modular object-oriented operating system. The objects in pSOS include
tasks, memory regions, message queues, and semaphores. Objects may be global or local. A
global object can be accessed from any processor in the system, while a local object can be
accessed only by tasks on its local processor. Node of residence is the processor on which the
system call that created an object was made.
 pSOS schedules a task in a preemptive priority-driven or time-driven fashion like EDF.
User tasks can be chosen by the application developer to run in either user or supervisory mode. It
supports both priority inheritance and priority-ceiling protocol.

 10

 The application developer is given complete control over interrupt handling. Device
drivers can be loaded and removed at run-time. During an interrupt, the processor jumps directly
to the interrupt service routine pointed to by the vector table.
 A memory region is a physically contiguous block of memory, created in response to a
call from an application. pSOS allocates memory regions to tasks. Like all objects, a memory
region may be local (i.e., strictly in local memory) or global.

5.7 Real-time features of general purpose operating systems

 In this section, we review the real-time features of two common general purpose operating
systems viz., Windows NT and UNIX. Windows NT (in this report, we base our discussion with
reference to Microsoft Windows NT operating system Version 4.0) on an Intel platform clearly
delivers many of the open system promises that UNIX systems failed to: binary compatibility,
market acceptance, a common development environment and ubiquitous third-party software.
Table 1 shows the comparison between the real-time features of Windows NT and native UNIX.

Real-time feature Windows NT Native UNIX
Preemptive, priority-based
multitasking

Yes Yes

Interrupt threads (Deferred
Procedure Calls in NT)

Yes No

Non-degrading, real-time
priorities

Yes No

Processor isolation/ processor
binding

Some No

Locking virtual memory Yes Yes
Precision of timers 1 millisecond 10 milliseconds
Asynchronous I/O Yes No

Table 1. Comparison of real-time features in Windows NT and native UNIX

• Preemption: Even though the Windows NT kernel in general is non-preemptable, there

exist certain points within the kernel where a process can be preempted. Native UNIX on
the other hand, disables preemption any time a system call is performed or an interrupt
service routine is executed.

• Deferred procedure calls (DPCs): DPCs in Windows NT permit the kernel to defer major
portions of interrupt processing to a later point in time decided by its scheduling
mechanisms. Since interrupt service routines (ISRs) disable other interrupts while
executing, using DPCs or interrupt threads permits interrupts to be responded to at more
regular intervals.

• Non-degrading real-time priorities: These are the priorities that are not dynamically
altered by the operating system. The scheduler to ensure fairness to all activities of the
system constantly manipulates normal thread priorities for UNIX and Windows NT. Both
Windows NT provides a band of interrupt priorities that are fixed – unaltered by the
kernel under any circumstances.

• Processor isolation/processor binding: This feature is advantageous in multiprocessor
systems to help isolate real-time activities from non-real-time activities of the operating
system. Windows NT has processor isolation and process binding capabilities but lacks
the ability to eliminate or minimize interprocessor synchronization interrupts on isolated
CPUs.

 11

5.7.1 Interrupt handling in Windows NT

 Even though Windows NT provides very fast response times, it is not as deterministic as
a hard RTOS [1. This is evident from how the kernel handles interrupts. Assume that a user
thread is blocked awaiting the completion of an I/O request. When an interrupt occurs to notify
the system that the I/O request can be fulfilled, it is first handled by an interrupt service routine
(ISR) that is part of the device driver written for the interrupting device. An ISR will simply post
a request for a DPC to be queued and then relinquish the CPU. The DPC will run at a later time
on behalf of the ISR and would complete the I/O request and notify the user thread that the
request is complete.
 All DPCs are added to a first-in, first-out (FIFO) queue of pending DPCs. Once,
executing a DPC will run to completion. ISRs always run before DPCs and DPCs always run
before user threads. The user thread becomes ready to run once the DPC has fulfilled the I/O
request, but it is not dispatched until there are no ISRs executing and the DPC queue is empty.
The major flaws in the mechanism explained above include: (a) DPCs executing in FIFO order
instead of priority (b) user threads not sharing priority space with DPCs (c) DPCs not
preemptable by other DPCs or threads and (d) developers having no control over third-party
drivers.
 In Windows NT, it is not possible for a user-level thread to execute at a higher priority
than ISRs or DPCs. In other words, even low-priority ISRs, such as mouse and keyboard handlers
will be able to preempt real-time processes. There are two classes of thread priorities: a real-time
class and a dynamic class. Real-time class threads operate with fixed priorities that are not altered
by the kernel. There are 16 priority levels in the real-time class. But any given thread is restricted
only to a subset of priorities in the range of (+ or -) 2 levels of its initial priority plus the two
extreme priorities of the class.
 The Windows NT kernel has no support for priority inheritance, so deadlocks can occur
when using real-time priorities. On heavily loaded systems, high-priority real-time processes
could potentially be blocked indefinitely. Additionally, Windows NT has no support for priority
queuing in its inter-thread communication mechanisms. In other words, if there are multiple
threads at multiple priorities blocked waiting for a resource, the threads will be granted access to
that resource in FIFO order rather than in priority order. Conversely, a RTOS queues the threads
according to priority.

5.8 Other commercial RTOS

 The following table lists the other widely used commercial RTOSs and their main features
with respect to the five basic requirements of an RTOS as explained in Section 2.

RTOS, Vendor Scheduling Thread

priority
levels

Synchronization
mechanisms

Priority
inversion

prevention
provided

Development hosts, kernel
characteristics and

behavior metrics

AMX

KADAK
Products
Limited.

Preemptive N/A

Mailbox or
Message
exchange
manager; wait-
wake requests

Yes

Windows, portable.
A pre-configured collection
of AMX tasks and AMX
compatible device drivers
form the basis of the Palm
OS; predictable memory
block availability

 12

C Executive

JMI Software
Systems, Inc.

Prioritized
FIFO, time
slicing

32000

64 system calls;
messages and
dynamic data
queues

Yes

Windows, Solaris.
95% ANSI portable C; ROM
resident kernel;
Thread switch latency: 3µs;
Maximum Interrupt latency:
2µs

CORTEX

Australian
Real-time
Embedded
Systems.

Prioritized
FIFO,
prioritized
round-
robin, time
slicing

62

Recursive
resource locks,
mutexes,
monitors and
counting
semaphores

Yes, uses
priority
ceiling

Windows, Solaris, Linux.
CPU-independent software
interrupt manager; statically
and dynamically segmented
memory models, high degree
of configurability.

Delta OS

CoreTek
Systems, Inc.

Prioritized
round-
robin

256
Semaphores,
timers and
message queues

Yes

Windows, Linux.
Thread switch latency: 23µs;
Maximum interrupt latency:
13µs; 1µs clock resolution;
System calls made from
Interrupt service routines
(ISR) return to the ISR,
eliminating time-consuming
kernel scheduling
mechanisms.

ECos

RedHat, Inc.

Prioritized
FIFO,
Bitmap

1 to 32

Rich set of
synchronous
primitives
including timers
and counters

Yes, uses
priority
ceiling

Windows, RedHat Linux
5.x, 6.x.
For soft real-time uses;
Supports EL/IX Level 1, a
Linux compatibility
interface for embedded
applications in small devices

embOS

SEGGER
Microcontroller
Systems.

Prioritized
round-
robin

255
Mailbox, binary
and counting
semaphore

No

Windows, Linux.
Uses profiling to collect
precise timing information
for every task; System
analysis via UART; task
activation time is
independent of number of
tasks.

eRTOS

JK
Microsystems,
Inc.

Prioritized
round-
robin

256

Inter-thread
messaging
(messages and
queues),
semaphores

No

Windows, DOS, OS/2.
High-speed interrupt driven
serial port routines; Provides
a fast, general-purpose
mathematical library called
eMath.

 13

INTEGRITY

GreenHills
Software, Inc.

Prioritized
round-
robin,
ARINC
653

255, but
configur
able

Semaphores;
break-points can
be placed any
where in the
system including
ISRs.

Yes, using
mutex,
highest
locker
semaphore

Used in mission critical
embedded applications;
object-oriented design;
supports distributed
processing and dynamic
downloading of user
applications; per task and
system wide execution
profiling.

IRIX

SGI

Prioritized
FIFO,
round-
robin

255 Message queues Yes

SGI.
Double-precision matrix
support; Multi-pipe
scalability; multiple root
partitions on a system disk;
supports scheduled transfer
protocol (STP).

Nuclear Plus

Accelerated
Technology,
Inc.

Prioritized
FIFO

N/A

Mailboxes, pipes
and queues can
be created
dynamically as
required

Yes

Windows.
Highly portable, functional,
usable and configurable;
written completely in ANSI
C.

OS-9

Microware
Systems
Corporation.

Prioritized 65535

Uses Active
Queue, Event
Queue,
Semaphore
Queue, Wait
Queue and Sleep
Queue.

Yes

Windows.
Provides advanced
networking and graphics
capabilities for embedded
devices. Uses the Hawk
Integrated Development
Environment (IDE);
dynamic and modular
architecture.

OSE

OSE Systems.

Prioritized
FIFO

32
Message-based
architecture

Yes

Windows, Solaris, Linux.
User-defined system clock
resolution; first certified
RTOS for safety; fault-
tolerant; suited mainly for
wireless telecom and
wireless applications.

RT-Linux

Finite State
Machine Labs.

Prioritized
FIFO, uses
an
extensible
scheduler

1024

Realtime tasks in
RT-Linux can
communicate
with Linux
processes via
either shared
memory or
through a file-
like interface.

Yes, uses
lock free
data
structures
and priority
ceiling

Linux.
Runs Linux and NetBSD as
the idle thread (GPOS) of
the real-time kernel;
supports hard real-time
applications; uses a "virtual
machine scheduler" to run
lower priority independent
tasks in the standard linux
kernel.

 14

ThreadX

Express Logic,
Inc.

Prioritized
FIFO,
preemption
-threshold

32

Event flags,
mutexes, couting
semaphores and
message services

Yes, using
preemption
-threshold
(disables
preemption
over ranges
of priorities
instead of
disabling
preemption
of the
entire
system)
and priority
inheritance

Windows.
Thread switch latency: 2µs
Maximum interrupt latency:
2µs.
ThreadX software timers are
kept in an ordered list of
expiration without
performing a linear search
on each timer activation;
boosts the performance of a
higher priority thread by
placing its stack in a fast
memory area.

QNX Neutrino

QNX Software
Systems Ltd.

Prioritized
FIFO,
prioritized
round-
robin

64
Message-based
architecture

Yes, using
message-
based
priority
inheritance

Windows, Solaris, Linux,
QNX4.
Symmetrical multiprocessor
systems.
Every OS component runs in
its own MMU-protected
address space; supports
Execute-in-place (XIP),
which allows applications to
run directly out of ROM or
flash. Programs the clock
device to raise an interrupt at
each timer expiration time.

Table 2. Commercial RTOSs and their features

5.9 Research real-time kernels

 In this section, we discuss two real-time kernels, namely, the Spring and Arx to provide

an overview of the scope and type of ongoing research in the field of RTOS. Other prominent
research kernels include Chimera [CMU], Harmony [National Research Council of Canada],
Maruti [University of Maryland], etc.
 Arx [18] is a research kernel being developed at Seoul National University. Arx uses user-
level threads in scheduling and signal handling and multithreading.
 Arx consists of virtual threads and a scheduling event upcall mechanism. Virtual threads
provide a kernel-level execution environment for user threads. They are passive entities that
would be temporarily bound to user-level threads when necessary. The scheduling event upcall
mechanism enables the kernel to notify user processes of kernel events such as thread blocking
and timer expiration.
 User-level I/O allows programmers to write flexible and efficient device drivers for
proprietary devices. To support user-level I/O, embedded RTOS should support the delivery of
external interrupts from an I/O device to a process in a predictable and efficient manner. An

 15

efficient user-level I/O scheme is implemented in Arx, exploiting the multithreaded architecture
of the kernel such as virtual threads and scheduling event upcalls.
 The Spring real-time kernel [21] provides real-time support for distributed systems. It can
schedule arriving tasks dynamically based upon execution time and resource constraints. Thus the
need to a priori compute the worst case blocking time for tasks is avoided. The Spring kernel also
deals with safety-critical tasks through a static table-driven scheduling. The kernel helps to retain
a significant amount of application semantics to improve fault-tolerance and performance in
overload situations. The kernel supports both application and system level predictability.
 Spring supports abstraction for process groups [23], which provides a high level of
granularity and a real-time group communication mechanism. A process group in Spring is a
collection of processes that work towards a common goal. Spring supports a system description
language (SDL), which allows programmers to predefine groups and impose timing and
precedence constraints on them. Spring supports synchronous and asynchronous multicasting
groups.
 The Spring kernel achieves predictable low-level distributed communication using global
replicated memory [21]. It provides abstractions for reservation, planning and end-to-end timing
support.
 EMERALDS (Extensible Microkernel for Embedded ReAL-time Distributed Systems) is
a real-time microkernel designed for cost-conscious, small to medium size embedded systems
[27]. EMERALDS maps the kernel into each user-level address space, hence with even full
memory protection, a system call may not need context switches unless a user-level server is
involved. Also EMERALDS supports adding user-level communication protocol stacks and
device drivers without modifying the kernel. Moreover, EMERALDS provides the flexibility of
having multiple protocol stacks on the same node.
 EMERALDS provides fully-preemptive fixed-priority scheduling and partial support for
dynamic scheduling. A user can choose the priority for a thread based on rate-monotonic,
deadline-monotonic or any fixed-priority scheme suitable for a given application. At run time, a
system call can be provided to change a thread’s priority to respond to changing operating
conditions. This feature can be used to emulate dynamic earliest-deadline first (EDF) scheduling
at the user level. EMERALDS supports 32-bit non-unique thread priorities, hence by setting a
thread’s priority to its deadline, EDF scheduling can be realized [27].
 EMERALDS supports both direct network access and use of protocol stacks for inter-
process communication (IPC). Shared memory is used for intra-processor communication and the
primary IPC mechanism is message passing using mailboxes. EMERALDS allows a 32-bit
priority to be assigned to each message that can be used to sort messages in a mail box so that the
receiver thread retrieves the highest-priority message first.
 EMERALDS supports system calls that allow a device driver to map a memory-mapped
device into its address space [27]. It also provides system calls that allow device drivers to handle
interrupts. Hence device drivers will be able to tell the kernel which ISR subroutine to execute
when an interrupt occurs. EMERALDS supports non-device drivers also to use such system calls.

6 Conclusion

 In this report, we reviewed the basic requirements of an RTOS including the POSIX
1003.1b features. The POSIX 1003.1b standard does not address support for fixed-size buffers
and heterogeneous multiprocessing. RTOS use is beneficial in most real-time embedded design
projects. If an applic ation has real-time requirements, an RTOS provides a deterministic
framework for code development and portability. To meet the needs of commercial multimedia
applications, low code size and high peripheral integration is needed. Reliability in complex real-
time systems could be achieved using multilevel specifications that check the correctness of
systems at compile-time and run-time. The popular Windows CE and Jbed need further

 16

development in order to be used for hard real-time applications. RTOSs should be ABI
compatible in order to avoid third-party vendor applications to be recompiled. Code reuse
considerations are also important. Lastly, since the use of an RTOS is important in the embedded
design world, a fast time to market and minimized development costs are as important as low
hardware costs.

References

 [1] S.R.Ball, Embedded Microprocessor Systems, Second edition, Butterworth-Heinemann,
 2000.

 [2] M.Bunnell, “Galaxy White Paper,” http://www.lynx.com/lynx_directory/galaxy/
 galwhite.html

 [3] G.D.Carlow, “Architecture of the Space Shuttle Primary Avionics Software System,”
 CACM, v 27, n 9, 1984.

 [4] CompactNET, http://www.compactnet.com.

 [5] H.Gomaa, Software Design Methods for Concurrent and Real-time Systems, First edition,
 Addison-Wesley, 1993.

 [6] S.Heath, Embedded Systems Design, First edition, Butterworth-Heinemann, 1997.

 [7] http://www.rtos4voip.com/index.html

 [8] IEEE. Information technology--Portable Operating System Interface (POSIX)-Part1:
 System Application: Program Interface (API) [C Language], ANSI/IEEE Std 1003.1,
 1996 Edition.

 [9] Jbed RTOS, http://www.esmertec.com

[10] E.Klein, “RTOS Design: How is Your Application Affected?,” Embedded Systems
 Conference, 2001.

[11] P.A.Laplante, Real-Time Systems Design and Analysis: An Engineer’s Handbook,
 Second edition, IEEE Press, 1997.

[12] C.L.Liu and J.W.Layland, “Scheduling Algorithms for Multiprogramming in a Hard
 Real-time Environment,” Journal of the ACM, v 20, n 1, pp. 46-61, 1973.

[13] J.W.S.Liu, Real-time Systems, First edition, Prentice Hall, 2000.

[14] LynxOS, http://www.lynuxworks.com

[15] Microsoft Windows NT workstation resource kit.

[16] C.Muench and R.Kath, The Windows CE Technology Tutorial: Windows Powered
 Solutions for the Developer, First edition, Addison-Wesley, 2000.

[17] Rainfinity: http://www.rainfinity.com/index.html

 17

[18] H.Y.Seo, and J.Park. “ARX/ULTRA: A new real-time kernel architecture for supporting
 user-level threads,” Technical Report SNU-EE-TR1997-3, School of Electrical
 Engineering, Seoul National University, 1997.

[19] A.Silberschatz, P.B.Galvin and G.Gagne, Operating Systems Concepts, Sixth edition, John
 Wiley, 2001.

[20] W.Stallings, Operating Systems: Internals and Design Principles, Third edition, Prentice-
 Hall, 1997.

[21] J.A.Stankovic and K.Ramamritham, “The Spring Kernel: A New Paradigm for Hard Real-
 time Operating Systems,” ACM Operating Systems Review, v 23, n 3, pp. 54-71, 1989.

[22] M.Stokely and N.Clayton, FreeBSD Handbook, Second edition, Wind River Systems,
 2001.

[23] M.Teo, “A Preliminary Look at Spring and POSIX 4,” Spring Internal Document, 1995.

[24] The Open Group, http://www.opengroup.org/

[25] VxWorks, http://www.windriver.com

[26] C.Walls, “RTOS for Microcontroller Applications,” Electronic Engineering, v 68, n 831,
 pp. 57-61, 1996.

[27] K.M.Zuberi and K.G.Shin, “EMERALDS: A Microkernel for Embedded Real-Time
 Systems,” Proceedings of RTAS, pp.241-249, 1996.

