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Abstract 
 
              A real-time operating system (RTOS) supports real-time applications and embedded 
systems. Real-time applications have the requirement to meet task deadlines in addition to the 
logical correctness of the results. In this report, we review the pre-requisites for an RTOS to be 
POSIX 1003.1b compliant and discuss memory management and scheduling in RTOS. We 
survey the prominent commercial and research RTOSs and outline steps in system 
implementation with an RTOS. We select a popular commercial RTOS for each category of real-
time application and discuss its real-time features. A comparison of the commercial RTOSs is 
also presented. We conclude by discussing the results of the survey and suggest future research 
directions in the field of RTOS. 
 
1    Introduction 
 
             A real-time system is one whose correctness involves both the logical correctness of the 
outputs and their timeliness [11]. A real-time system must satisfy bounded response-time 
constraints; otherwise risk severe consequences, including failure. Real-time systems are 
classified as hard, firm or soft systems. In hard real-time systems, failure to meet response-time 
constraints leads to system failure. Firm real-time systems are those systems with hard deadlines, 
but where a certain low probability of missing a deadline can be tolerated. Systems in which 
performance is degraded but not destroyed by failure to meet response-time constraints are called 
soft real-time systems. A real-time system is called an embedded system when the software 
system is encapsulated by the hardware it controls. The microprocessor system used to control the 
fuel/air mixture in the carburetor of many automobiles is an example of a real-time embedded 
system. An RTOS differs from common OS, in that the user when using the former has the ability 
to directly access the microprocessor and peripherals. Such an ability of the RTOS helps to meet 
deadlines. 
             The organization of this report is as follows. In Section 2, we discuss the basic 
requirements of an RTOS to be POSIX 1003.1b compliant. In Section 3, we review memory 
management and scheduling algorithms used in an RTOS. In Section 4, we outline and briefly 
explain the steps in the implementation of a project with an RTOS. In Section 5, we select a 
popular RTOS in each of the different categories of real-time applications and discuss the real-
time features of the selected RTOS. We also compare the different contemporary commercial 
RTOSs. In Section 6, we conclude by discussing the results of this survey and our suggestions for 
future research in the field of RTOS. 
 
2 Features    
      
              The kernel is the core of the OS that provides task scheduling, task dispatching and inter-
task communication. In embedded systems, the kernel can serve as an RTOS while commercial 
RTOSs like those used for air-traffic control systems require all of the functionalities of a general 
purpose OS. The desirable features of an RTOS include the ability to schedule tasks and meet 
deadlines, ease of incorporating external hardware, recovery from errors, fast switching among 
tasks and small size and small overheads. In this section we discuss the basic requirements of an 
RTOS and the POSIX standards for an RTOS.  
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2.1 Basic requirements 
 
The following are the basic requirements of an RTOS. 
 
(i)  Multi-threading and preemptibility 
 
            To support multiple tasks in real-time applications, an RTOS must be multi-threaded and 
preemptible. The scheduler should be able to preempt any thread in the system and give the 
resource to the thread that needs it most. An RTOS should also handle multiple levels of 
interrupts i.e., the RTOS should not only be preemptible at thread level, but at the interrupt level 
as well. 
 
(ii)  Thread priority 
 
            In order to achieve preemption, an RTOS should be able to determine which thread needs 
a resource the most, i.e., the thread with the earliest deadline to meet. Ideally, this should be done 
at run-time. However, in reality, such a deadline-driven OS does not exist. To handle deadlines, 
each thread is assigned a priority level. Deadline information is converted to priority levels and 
the OS allocates resources according to the priority levels of threads. Although the approach of 
resource allocation among competing threads is prone to error, in absence of another solution, the 
notion of priority levels is used in an RTOS. 
 
(iii)  Predictable thread synchronization mechanisms 
 
            For multiple threads to communicate among each other, in a timely fashion, predictable 
inter-thread communication and synchronization mechanisms are required. Also, supported 
should be the ability to lock/unlock resources to achieve data integrity. 
 
(iv)  Priority inheritance 
 
            When using priority scheduling, it is important that the RTOS has a sufficient number of 
priority levels, so that applications with stringent priority requirements can be implemented [13]. 
Unbounded priority inversion occurs when a higher priority task must wait on a low priority task 
to release a resource while the low priority task is waiting for a medium priority task. The RTOS 
can prevent priority inversion by giving the lower priority task the same priority as the higher 
priority task that is being blocked (called priority inheritance). In this case, the blocking task can 
finish execution without being preempted by a medium priority task. The designer must make 
sure that the RTOS being used prevents unbounded priority inversion [10].  
 
(v)  Predefined latencies 
 
             An OS that supports a real-time application needs to have information about the timing of 
its system calls. The behavior metrics to be specified are: 
 
• Task switching latency: Task or context-switching latency is the time to save the context of 

a currently executing task and switch to another task. It is important that this latency be short. 
• Interrupt latency: This is the time elapsed between the execution of the last instruction of 

the interrupted task and the first instruction in the interrupt handler, or simply the time from 
interrupt to task run [6]. This is a metric of system response to an external event. 
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• Interrupt dispatch latency: This is the time to go from the last instruction in the interrupt 
handler to the next task scheduled to run. This indicates the time needed to go from interrupt 
level to task level. 

 
2.2 POSIX compliance  
 
            IEEE Portable Operating System Interface for Computer Environments, POSIX 1003.1b 
(formerly 1003.4) provides the standard compliance criteria for RTOS services and is designed to 
allow application programmers to write applications that can easily be ported across OSs. The 
basic RTOS services covered by POSIX 1003.1b include:  
 

• Asynchronous I/O: The ability to overlap application processing and application 
initiated I/O operations [8]. 

• Synchronous I/O: The ability to assure return of the interface procedure when the I/O 
operation is completed [8]. 

• Memory locking: The ability to guarantee memory residence by storing sections of a 
process that were not recently referenced on secondary memory devices [24]. 

• Semaphores: The ability to synchronize resource access by multiple processes [19].  
• Shared memory: The ability to map common physical space into independent process 

specific virtual space [8]. 
• Execution scheduling: Ability to schedule multiple tasks. Common scheduling methods 

include round robin and priority-based preemptive scheduling. 
• Timers: Timers improve the functionality and determinism of the system. A system 

should have at least one clock device (system clock) to provide good real-time services. 
The system clock is called CLOCK_REALTIME when the system supports Real-time 
POSIX [13]. 

• Inter-process Communication (IPC): IPC is a mechanism by which tasks share 
information needed for a particular application. Common RTOS communication methods 
include mailboxes and queues. 

• Real-time files: The ability to create and access files with deterministic performance. 
• Real-time threads: Real-time threads are schedulable entities of a real-time application 

that have individual timeliness constraints and may have collective timeliness constraints 
when belonging to a runnable set of threads [13]. 

 
3 Memory management and scheduling 
 
       In this section, we discuss the various memory management and scheduling schemes adopted 
in RTOSs.   
   
3.1    Memory management 

        
             Commonly an RTOS achieves small memory footprint by including only the 
functionality needed for the user’s applications and discarding the rest [26]. There are two types 
of memory management in RTOSs.  
              The first type is used to provide tasks with temporary data space. The system’s free 
memory is divided into fixed sized memory blocks, which can be requested by tasks. When a task 
finishes using a memory block it must return it to the pool. Another way to provide temporary 
space for tasks is via priorities. A pool of memory is dedicated to high priority tasks and another 
to low priority tasks. The high-priority pool is sized to have the worst-case memory demand of 
the system. The low priority pool is given the remaining free memory. If the low priority tasks 
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exhaust the low priority memory pool, they must wait for memory to be returned to the pool 
before further execution [1].  
             The second type of memory management is used to dynamically swap code in and out of 
main memory. Specific techniques are memory swapping, overlays, multiprogramming with a 
fixed number of tasks (MFT), multiprogramming with a variable number of tasks (MVT) and 
demand paging. The memory swapping method keeps the OS and one task in memory at the same 
time. When another task needs to run, it replaces the first task in main memory, after the first task 
and its context have been saved to secondary memory. When using overlays, the code is 
partitioned into smaller pieces, which are swapped from disk to memory. In this way, programs 
larger than the available memory can be executed. In MFT, a fixed number of equalized code 
parts are in memory at the same time. As needed, these parts are overlaid from disk. MVT is 
similar to MFT except that the size of the partition depends on the needs of the program in MVT. 
Demand paging systems have fixed-size “pages” that are given to programs as needed in non-
continuous memory. Demand paging differs from MFT and MVT because the latter two can be 
put only in continuous memory blocks [11]. 
             In many embedded systems, the kernel and user execute in the same space i.e., there is no 
memory protection. Hence, a system and a procedure or function call within an application are 
indistinguishable. 
 
3.2 Scheduling algorithms of RTOS 

 
             For small or static real-time systems, data and task dependencies are limited and therefore 
the task execution time can be estimated prior to execution and the resulting task schedules can be 
determined off-line. Periodic tasks typically arise from sensor data and control loops, however 
sporadic tasks can arise from unexpected events caused by the environment or by operator 
actions. A scheduling algorithm in RTOS must schedule all periodic and sporadic tasks such that 
their timing requirements are met. 
             The most commonly used static scheduling algorithm is the Rate Monotonic (RM) 
scheduling algorithm of Liu and Layland [12]. The RM algorithm assigns different priorities 
proportional to the frequency of tasks. RM can schedule a set of tasks to meet deadlines if total 
resource utilization is less than 69.3%. If a successful schedule cannot be found using RM, no 
other fixed priority scheduling system will avail. But the RM algorithm provides no support for 
dynamically changing task periods and/or priorities and tasks that may experience priority 
inversion. Priority inversion occurs in an RM system where in order to enforce rate-monotonicity, 
a non-critical task with a high frequency of execution is assigned a higher priority than a critical 
task with lower frequency of execution. A priority ceiling protocol (PCP) can be used to counter 
priority inversion, wherein a task blocking a higher priority task inherits the higher priority for the 
duration of the blocked task.  
             Earliest deadline first (EDF) scheduling can be used for both static and dynamic real-time 
scheduling. Its complexity is O(n2), where n is the number of tasks, and the upper bound of 
process utilization is 100% [11]. An extension of EDF is the time-driven scheduler. This 
scheduler aborts new tasks if the system is already overloaded and removes low-priority tasks 
from the queue. A variant of EDF is Minimum Laxity First (MLF) scheduling where a laxity is 
assigned to each task in the system and minimum laxity tasks are executed first. MLF considers 
the execution time of a task, which EDF does not. Another variant of EDF is the Maximum 
Urgency First (MUF) algorithm, where each task is given an explicit description of urgency.  
              The cyclic executive is used in many large-scale dynamic real-time systems [3]. Here, 
tasks are assigned to a set of harmonic periods. Within each period, tasks are dispatched 
according to a table that lists the order to execute tasks. No start times need be specified, but a 
prior knowledge of the maximum requirements of tasks in each cycle must be known.  
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              One disadvantage of dynamic real-time scheduling algorithms is that even though 
deadline failures can be easily detected, a critical task set cannot be specified and hence there is 
no way to specify tasks that are allowed to fail during a transient overload. 
 
3.2.1 Scheduling for hard real-time systems 
 
               An increasing proportion of all computers do not sit in air-conditioned computer centers 
or even on desktops; they are embedded in automobiles, lathes, microwave ovens, cloth dryers, 
aluminum rolling mills and airplane cockpits. The software system in these computer systems 
must meet hard real-time deadlines, e.g., a flight control surface must be adjusted several times 
each second to keep some new aircraft stable.  
               For the class of hard real-time systems, mechanisms and policies that ensure consistency 
and minimize worst-case blocking without incurring any unbounded or excessive run-time 
overheads are desired. Since most recent work in maintaining integrity of shared data has been 
carried out in the context of database systems, one can consider adapting database concurrency 
control techniques to the domain of hard real-time systems. But since virtually all database 
concurrency control approaches have been designed to optimize average-case performance rather 
than worst-case latency, these techniques must be adapted and extended for hard real-time 
systems. The techniques adapted must employ semantic information that is necessarily available 
at design time to guarantee optimum scheduling.  
 
4    System implementation with RTOS 
 
             Implementation of a system using an RTOS requires calculation and planning. The 
designer has to consider all the timing aspects of the system. Based on timing calculations, and 
the task partitioning used, the designer can decide if the desired RTOS can provide the needed 
capabilities. In addition, the designer must consider task prioritization, use of interrupts, 
multiprocessor support, if applicable, as well as language support by the chosen RTOS. 
 
4.1  Response time   
 
            The system should respond with an output before the next input. Therefore, the system’s 
response time should be shorter than the minimum time between successive inputs. 
 
4.2 Task partitioning 
 
            After determining the required response time, the designer continues by dividing the 
project into tasks. The designer must balance the amount of parallelism and communication [5]. 
Task cohesion criteria are used to optimize partitioning by combining parallel tasks to execute 
sequentially. Combining tasks minimizes overhead by reducing the context switches and inter-
task communications.  
 
4.3 RTOS considerations  
 
            After a designer has completed task partitioning, it must be determined if an RTOS is 
capable of handling the set of tasks. The key considerations are the available timer period, inter-
task communication methods, contention resolution, and memory protection.  
 
4.4 Task priority 
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             The priority assigned to each task is essential for proper operation of an application. 
Starvation occurs when higher priority tasks are always ready to run, resulting in insufficient 
processor time for lower priority tasks [13]. The designer must determine which tasks are critical 
in meeting the deadlines and give them the highest priorities. However, when execution time is at 
a premium, tasks, which do not contribute in meeting real-time deadlines of the system, may not 
get a “ fair”  amount of execution time compared to time-critical tasks.  
  
4.5 Interrupts 
 
            When designing a system that uses non-prioritized interrupts, the designer must ensure 
that interrupt-handling time is minimized. If possible, the interrupt handler should save the 
context, create a task that will handle the interrupt service, and return control back to the 
operating system. Using a task to perform bulk of the interrupt service allows the service to be 
performed based on a priority chosen by the designer. It helps preserve the priority system of the 
RTOS. Without preservation of priorities, a lower priority event can cause an interrupt during 
execution of a high priority task causing missed deadlines. Non-prioritized interrupts should not 
be used if there is a task that cannot be preempted without causing system failure. 
           In systems where interrupts are used, the designer must also consider the input of the 
RTOS detecting the interrupts. Typically, when an RTOS is performing system operations, such 
as determining which task should execute next, it will turn the interrupts off. The time period 
during which interrupts are turned off is called the “ interrupt latency” of the RTOS. During the 
interrupt latency time, interrupts can be delayed or even lost. It is preferable that a RTOS with a 
small interrupt latency be used in a system where delaying or missing an interrupt is not 
acceptable. 
 
4.6 Multiprocessor RTOS 
 
             Embedded multiprocessor systems typically have a processor controlling each device in 
the system. Most RTOSs that are multiprocessor-capable use a separate instance of the kernel on 
each processor. The multiprocessor ability comes from the kernel’s ability to send and receive 
information between processors. In many RTOSs that support multiprocessing, there is no 
difference between the single processor case and the multiprocessor case from the task’s point of 
view. The RTOS uses a table in each local kernel that contains the location of each task in the 
system. When one task sends a message to another task the local kernel looks up the location of 
the destination task and routes the message appropriately. From the task’s point of view all tasks 
are executing on the same processor [6]. 
 
4.7 Language support  
 
            The RTOS should reduce the programmer’s coding burden by handling resource 
management. A language that directly supports synchronization primitives such as SCHEDULE, 
SIGNAL and WAIT, etc. greatly simplifies the translation from design to code. The SCHEDULE 
command schedules a process based on time or an event; SIGNAL and WAIT commands 
manipulate a semaphore that enables concurrent tasks to be synchronized.  
 
 
 
5    Categories of RTOS 
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             In this section, we select a prominent commercial RTOS for each category of real-time 
applications and discuss its features. But first, we list the common capabilities of these operating 
systems: 
 
5.1 Commonalities of commercial Real-time Operating Systems 
 

• Speed and efficiency: Most RTOSs are microkernels that have low overhead. In some, 
no context switch overhead is incurred in sending a message to the system service 
provider. 

• System calls: Certain portions of system calls are non-preemptable for mutual exclusion. 
These parts are highly optimized, made as short and deterministic as possible. 

• Scheduling: For POSIX compliance, all RTOSs offer at least 32 priority levels. Many 
offer 128 or 256 while others offer even 512 priority levels.  

• Priority inversion control: Many operating systems support resource access control 
schemes that do not need priority inheritance. This avoids the overhead of priority 
inheritance.  

• Memory management: Support for virtual memory management exists but not 
necessarily paging. The users are offered choices among multiple levels of memory 
protection. 

 
5.2 RTOS for small footprint, mobile and connected devices 
 
             In this section, we outline the real-time features of Windows CE 3.0 [15], a highly 
modular real-time embedded OS for small footprint, mobile 32-bit intelligent connected devices. 
Windows CE 3.0 can work on 12 different processor architectures. It can be customized to meet 
specific product requirements with a minimum footprint of 400KB. 
            Windows CE 3.0 provides quantum-level thread control (the OS divides CPU time among 
the threads in timeslices or quantum) and 256 priority levels thus facilitating control over the 
scheduling and behavior of embedded systems. To optimize performance all threads are enabled 
to run in kernel mode. 
            Windows CE 3.0 supports system calls within interrupt service threads (ISTs). Nested 
interrupts are supported. Fast high-priority thread response helps to know when thread transitions 
occur. 
            Windows CE 3.0 kernel has the following features: 

• Timer accuracy is 1 ms for Sleep and Wait related APIs. 
• While executing non-preemptive code in the kernel, translation look-aside buffer (TLB) 

misses are avoided by moving all kernel data into physical memory. 
• Kcalls, all non-preemptible but interruptible portions of the kernel, are broken down into 

small non-preemptible sections. Although complexity is increased by increased number of 
sections, preemption is turned off for short periods. 

• All kernel objects (such as processes, threads, critical sections, mutexes, events and 
semaphores) are allocated in virtual memory and thus the memory for these objects is 
allocated on demand. 

            It uses a memory management unit (MMU) for virtual memory management. The use of 
multiple execute-in-place (XIP) regions eliminates boot time, avoids double footprint and reduces 
hardware requirements.  
            The use of an OEM* Adaptation Layer (OAL) isolates device dependent routines to 
increase OS portability. Hardware-assisted debugging enables the debugging of the OAL before 

                                                
* Original Equipment Manufacturer 
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the kernel starts running. The OEM can specify the modules and processes that are trusted on a 
particular platform. This model prevents unauthorized applications from accessing system 
Application Programming Interfaces (APIs) and potentially damaging the platform.  
 
5.3 RTOS for complex, hard real-time applications 
 
            In this section, we discuss LynxOS [14], a POSIX-compatible, multiprocess, 
multithreaded OS designed for complex real-time applications that require fast and deterministic 
response. LynxOS is scalable RTOS from large and complex switching systems down to small-
embedded products.          
            LynxOS 3.0 has moved from the monolithic architecture to a microkernel design. The 
microkernel is 28 KB in size and provides essential services like scheduling, interrupt dispatch 
and synchronization. Other services are offered by the kernel lightweight service modules, called 
the Kernel Plug-Ins (KPIs). With the addition of KPIs to the microkernel, the system can be 
configured to suport TCP/IP streams, I/O and file systems, sockets, etc. The KPIs are 
multithreaded and there is no context switch when sending a message to a KPI, and inter-KPI 
communication takes only a few instructions [2].  
            LynxOS provides common code base across different microprocessor families. In 
response to an interrupt, LynxOS kernel dispatches a kernel thread, which can be prioritized and 
scheduled as any other thread in the system. Thus the priority of the kernel thread that executes a 
scheduled interrupt handling routine is the priority of the user thread that handles the interrupting 
device [2]. Kernel threads allow interrupt routines to be short and fast. In other words, kernel 
threads ensure predictable response even in the presence of heavy I/O. LynxOS provides memory 
protection through hardware memory management units (MMUs) but also offers optional demand 
paging. 
            LynxOS uses numerous scheduling policies such as prioritized FIFO, dynamic deadline 
monotonic scheduling, prioritized round robin and time-slicing etc. LynxOS offers 512 thread 
priority levels with typical thread switch latency between 4µs to 19µs. 
            Linux applications need to be recompiled in order to run on RTOSs such as QNX. With 
LynxOS’ Application Binary Interface (ABI) compatibility [22] a Linux program’s binary image 
can be run directly on LynxOS. LynxOS includes the AT&T System V.3 and 4.3 BSD system 
call interfaces and libraries, which provide a high degree of source-level compatibility for 
applications written in either flavor of UNIX.  
            Unlike many embedded RTOS, LynxOS supports memory protection. LynxOS also 
provides support for diskless remote operation as well as boot capability.                                 
 
5.4 General purpose RTOS in the embedded industry 
       
            In this section, we discuss VxWorks [25], the most widely adopted RTOS in the 
embedded industry. VxWorks is the fundamental run-time component of Tornado II, a visual, 
automated and integrated development environment for embedded systems. VxWorks is a 
flexible, scalable RTOS with over 1800 APIs and is available on all popular CPU platforms.  
            VxWorks comprises the core capabilities of network support, file system, I/O 
management, and other standard run-time support. The microkernel supports a full-range of real-
time features including 256 priority levels, multitasking, deterministic context switching and 
preemptive and round robin scheduling. Binary and counting semaphores and mutual exclusion 
with inheritance are used for controlling critical system resources. 
            VxWorks is designed for scalability, which enables developers to allocate scarce memory 
resources to their application rather than to the OS. Portability requires a distinct separation of 
low-level hardware dependent code from high-level application or OS code. A Board Support 
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Package (BSP) represents the hardware-dependent layer. A BSP is required for any target board 
that executes VxWorks.  
            TCP, UDP, sockets and standard Berkeley network services can all be scaled in or out of 
the networking stack as necessary. VxWorks supports ATM, SMDS, frame relay, ISDN, 
IPX/SPX, AppleTalk, RMON, web-based solutions for distributed network management and 
CORBA for distributed computing environments.  
            VxWorks [25] supports virtual memory configuration. It is possible to choose to have 
only virtual address mapping, to have text segments and exception vector tables write protected, 
and to give each task a private virtual memory upon request. 
            RainFront [17] provides a highly available and load-balancing platform for embedded 
systems built using VxWorks. VxWorks is the embedded RTOS used in networking equipments 
running Voice over IP (VoIP) and Fax over IP (FoIP) [7]. The CompactNET multiprocessing 
technology [4] supports processing with VxWorks. 
 
5.5 RTOS for the Java Platform 
 
            The Jbed RTOS package [9] is a real-time capable virtual machine developed for 
embedded systems and Internet applications under the Java platform. It allows an entire 
application including the device drivers to be written using Java. Instead of interpreting the 
bytecode, the Jbed RTOS translates the bytecode to fast machine code prior to downloading or 
class loading.  
            The component-based architecture allows loading of code dynamically and makes Jbed 
scalable from small ROM-based devices to high performance devices connected to the Internet. 
Jbed also facilitates real-time memory allocation, exception handling and automatic object 
destruction. Jbed real-time class library supports hard real-time applications.  
            Jbed Light is a smaller, low-cost version for fast and precompiled standalone applications. 
It contains the basic components including the core Jbed virtual machine, a small set of standard 
Java libraries, and the Jbed libraries required to directly access peripherals.   
            The Java virtual machine calls are directly implemented in the kernel. This avoids the 
need for a slow and complex Java Native Interface (JNI), which would otherwise be needed to 
make system calls. Also no adapter is needed to translate between the Java and native OS threads.  
            Jbed runs on 32-bit microprocessors and controllers. Current versions support ARM7, 68k 
and the PowerPC architectures. The Jbed RTOS supports up to 10-thread priority levels. The 
thread switch latency and maximum interrupt latency are processor dependent. The standard Java 
thread API is suitable only for soft real-time parts of an application. Additional thread API is 
added in Jbed support hard real-time features of an application. The scheduling policy of the hard 
real-time threads is Earliest Deadline First, which is widely applicable for periodic, harmonic and 
sporadic tasks.  
 
5.6 Objected-oriented RTOS 
 
            pSOSystem is a modular object-oriented operating system. The objects in pSOS include 
tasks, memory regions, message queues, and semaphores. Objects may be global or local. A 
global object can be accessed from any processor in the system, while a local object can be 
accessed only by tasks on its local processor. Node of residence is the processor on which the 
system call that created an object was made.   
            pSOS schedules a task in a preemptive priority-driven or time-driven fashion like EDF. 
User tasks can be chosen by the application developer to run in either user or supervisory mode. It 
supports both priority inheritance and priority-ceiling protocol.  
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            The application developer is given complete control over interrupt handling. Device 
drivers can be loaded and removed at run-time. During an interrupt, the processor jumps directly 
to the interrupt service routine pointed to by the vector table.  
            A memory region is a physically contiguous block of memory, created in response to a 
call from an application. pSOS allocates memory regions to tasks. Like all objects, a memory 
region may be local (i.e., strictly in local memory) or global.  
 
5.7 Real-time features of general purpose operating systems 
 
            In this section, we review the real-time features of two common general purpose operating 
systems viz., Windows NT and UNIX. Windows NT (in this report, we base our discussion with 
reference to Microsoft Windows NT operating system Version 4.0) on an Intel platform clearly 
delivers many of the open system promises that UNIX systems failed to: binary compatibility, 
market acceptance, a common development environment and ubiquitous third-party software. 
Table 1 shows the comparison between the real-time features of Windows NT and native UNIX. 
 

Real-time feature Windows NT Native UNIX 
Preemptive, priority-based 
multitasking 

Yes Yes 

Interrupt threads (Deferred 
Procedure Calls in NT) 

Yes No 
 

Non-degrading, real-time 
priorities 

Yes No 

Processor isolation/ processor 
binding 

Some No 

Locking virtual memory Yes Yes 
Precision of timers 1 millisecond 10 milliseconds 
Asynchronous I/O Yes No 

 
Table 1. Comparison of real-time features in Windows NT and native UNIX 

 
• Preemption: Even though the Windows NT kernel in general is non-preemptable, there 

exist certain points within the kernel where a process can be preempted. Native UNIX on 
the other hand, disables preemption any time a system call is performed or an interrupt 
service routine is executed.  

• Deferred procedure calls (DPCs): DPCs in Windows NT permit the kernel to defer major 
portions of interrupt processing to a later point in time decided by its scheduling 
mechanisms. Since interrupt service routines (ISRs) disable other interrupts while 
executing, using DPCs or interrupt threads permits interrupts to be responded to at more 
regular intervals.  

• Non-degrading real-time priorities: These are the priorities that are not dynamically 
altered by the operating system. The scheduler to ensure fairness to all activities of the 
system constantly manipulates normal thread priorities for UNIX and Windows NT. Both 
Windows NT provides a band of interrupt priorities that are fixed – unaltered by the 
kernel under any circumstances. 

• Processor isolation/processor binding: This feature is advantageous in multiprocessor 
systems to help isolate real-time activities from non-real-time activities of the operating 
system. Windows NT has processor isolation and process binding capabilities but lacks 
the ability to eliminate or minimize interprocessor synchronization interrupts on isolated 
CPUs.  
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5.7.1 Interrupt handling in Windows NT 
 
             Even though Windows NT provides very fast response times, it is not as deterministic as 
a hard RTOS [1. This is evident from how the kernel handles interrupts. Assume that a user 
thread is blocked awaiting the completion of an I/O request. When an interrupt occurs to notify 
the system that the I/O request can be fulfilled, it is first handled by an interrupt service routine 
(ISR) that is part of the device driver written for the interrupting device. An ISR will simply post 
a request for a DPC to be queued and then relinquish the CPU. The DPC will run at a later time 
on behalf of the ISR and would complete the I/O request and notify the user thread that the 
request is complete.  
              All DPCs are added to a first-in, first-out (FIFO) queue of pending DPCs. Once, 
executing a DPC will run to completion. ISRs always run before DPCs and DPCs always run 
before user threads. The user thread becomes ready to run once the DPC has fulfilled the I/O 
request, but it is not dispatched until there are no ISRs executing and the DPC queue is empty. 
The major flaws in the mechanism explained above include: (a) DPCs executing in FIFO order 
instead of priority (b) user threads not sharing priority space with DPCs (c) DPCs not 
preemptable by other DPCs or threads and (d) developers having no control over third-party 
drivers.  
              In Windows NT, it is not possible for a user-level thread to execute at a higher priority 
than ISRs or DPCs. In other words, even low-priority ISRs, such as mouse and keyboard handlers 
will be able to preempt real-time processes. There are two classes of thread priorities: a real-time 
class and a dynamic class. Real-time class threads operate with fixed priorities that are not altered 
by the kernel. There are 16 priority levels in the real-time class. But any given thread is restricted 
only to a subset of priorities in the range of (+ or -) 2 levels of its initial priority plus the two 
extreme priorities of the class.  
              The Windows NT kernel has no support for priority inheritance, so deadlocks can occur 
when using real-time priorities. On heavily loaded systems, high-priority real-time processes 
could potentially be blocked indefinitely. Additionally, Windows NT has no support for priority 
queuing in its inter-thread communication mechanisms. In other words, if there are multiple 
threads at multiple priorities blocked waiting for a resource, the threads will be granted access to 
that resource in FIFO order rather than in priority order. Conversely, a RTOS queues the threads 
according to priority. 
 
5.8 Other commercial RTOS 
 
          The following table lists the other widely used commercial RTOSs and their main features 
with respect to the five basic requirements of an RTOS as explained in Section 2. 
 
 
RTOS, Vendor Scheduling Thread 

priority 
levels 

Synchronization 
mechanisms 

Priority 
inversion 

prevention 
provided 

Development hosts, kernel 
characteristics  and 

behavior metrics 

AMX 
 
KADAK 
Products 
Limited. 

Preemptive N/A 

Mailbox or 
Message 
exchange 
manager; wait-
wake requests 

Yes 

Windows, portable. 
A pre-configured collection 
of AMX tasks and AMX 
compatible device drivers 
form the basis of the Palm 
OS; predictable memory 
block availability 
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C Executive 
 
JMI Software 
Systems, Inc. 

Prioritized 
FIFO, time 
slicing 

32000  

64 system calls; 
messages and 
dynamic data 
queues 

Yes 

Windows, Solaris.  
95% ANSI portable C; ROM 
resident kernel;  
Thread switch latency: 3µs; 
Maximum Interrupt latency: 
2µs  

CORTEX 
 
Australian 
Real-time 
Embedded 
Systems. 

Prioritized 
FIFO, 
prioritized 
round-
robin, time 
slicing 

62  

Recursive 
resource locks, 
mutexes, 
monitors and 
counting 
semaphores 

Yes, uses 
priority 
ceiling 

Windows, Solaris, Linux. 
CPU-independent software 
interrupt manager; statically 
and dynamically segmented 
memory models, high degree 
of configurability. 
 

Delta OS 
 
CoreTek 
Systems, Inc. 

Prioritized 
round-
robin 

256 
Semaphores, 
timers and 
message queues 

Yes 

Windows, Linux. 
Thread switch latency: 23µs;  
Maximum interrupt latency: 
13µs; 1µs clock resolution; 
System calls made from 
Interrupt service routines 
(ISR) return to the ISR, 
eliminating time-consuming 
kernel scheduling 
mechanisms. 

ECos 
 
RedHat, Inc. 

Prioritized 
FIFO, 
Bitmap 

1 to 32 

Rich set of 
synchronous 
primitives 
including timers 
and counters 

Yes, uses 
priority 
ceiling 

Windows, RedHat Linux 
5.x, 6.x. 
For soft real-time uses;  
Supports EL/IX Level 1, a 
Linux compatibility 
interface for embedded 
applications in small devices 

embOS 
 
SEGGER 
Microcontroller 
Systems. 

Prioritized 
round-
robin 

255 
Mailbox, binary 
and counting 
semaphore 

No 

Windows, Linux. 
Uses profiling to collect 
precise timing information 
for every task; System 
analysis via UART; task 
activation time is 
independent of number of 
tasks. 

eRTOS 
 
JK 
Microsystems, 
Inc.  

Prioritized 
round-
robin 

256 

Inter-thread 
messaging 
(messages and 
queues), 
semaphores 

No 

Windows, DOS, OS/2. 
High-speed interrupt driven 
serial port routines; Provides 
a fast, general-purpose 
mathematical library called 
eMath. 
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INTEGRITY 
 
GreenHills 
Software, Inc. 

Prioritized 
round-
robin, 
ARINC 
653 

255, but 
configur
able 

Semaphores; 
break-points can 
be placed any 
where in the 
system including 
ISRs. 

Yes, using 
mutex, 
highest 
locker 
semaphore 

Used in mission critical 
embedded applications; 
object-oriented design; 
supports distributed 
processing and dynamic 
downloading of user 
applications; per task and 
system wide execution 
profiling. 

IRIX 
 
SGI 

Prioritized 
FIFO, 
round-
robin 

255 Message queues Yes 

SGI. 
Double-precision matrix 
support; Multi-pipe 
scalability; multiple root 
partitions on a system disk; 
supports scheduled transfer 
protocol (STP).  

Nuclear Plus 
 
Accelerated 
Technology, 
Inc.  

Prioritized 
FIFO 

N/A 

Mailboxes, pipes 
and queues can 
be created 
dynamically as 
required 

Yes 

Windows.  
Highly portable, functional, 
usable and configurable; 
written completely in ANSI 
C. 

OS-9 
 
Microware 
Systems 
Corporation. 

Prioritized 65535 

Uses Active 
Queue, Event 
Queue, 
Semaphore 
Queue, Wait 
Queue and Sleep 
Queue. 

Yes 

Windows.  
Provides advanced 
networking and graphics 
capabilities for embedded 
devices. Uses the Hawk 
Integrated Development 
Environment (IDE); 
dynamic and modular 
architecture. 

OSE 
 
OSE Systems. 

Prioritized 
FIFO 

32 
Message-based 
architecture 

Yes 

Windows, Solaris, Linux. 
User-defined system clock 
resolution; first certified 
RTOS for safety; fault-
tolerant; suited mainly for 
wireless telecom and 
wireless applications. 

RT-Linux 
 
Finite State 
Machine Labs. 

Prioritized 
FIFO, uses 
an 
extensible 
scheduler 

1024 

Realtime tasks in 
RT-Linux can 
communicate 
with Linux 
processes via 
either shared 
memory or 
through a file-
like interface.  

Yes, uses 
lock free 
data 
structures 
and priority 
ceiling 

Linux. 
Runs Linux and NetBSD as 
the idle thread (GPOS) of 
the real-time kernel; 
supports hard real-time 
applications; uses a "virtual 
machine scheduler" to run 
lower priority independent 
tasks in the standard linux 
kernel. 
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ThreadX 
 
Express Logic, 
Inc. 
 

Prioritized 
FIFO, 
preemption
-threshold 

32 

Event flags, 
mutexes, couting 
semaphores and 
message services 

Yes, using 
preemption
-threshold 
(disables 
preemption 
over ranges 
of priorities 
instead of 
disabling 
preemption 
of the 
entire 
system) 
and priority 
inheritance 

Windows. 
Thread switch latency: 2µs 
Maximum interrupt latency: 
2µs. 
ThreadX software timers are 
kept in an ordered list of 
expiration without 
performing a linear search 
on each timer activation; 
boosts the performance of a 
higher priority thread by 
placing its stack in a fast 
memory area. 
 

QNX Neutrino 
 
QNX Software 
Systems Ltd. 

Prioritized 
FIFO, 
prioritized 
round-
robin 

64 
Message-based 
architecture 

Yes, using 
message-
based 
priority 
inheritance 

Windows, Solaris, Linux, 
QNX4. 
Symmetrical multiprocessor 
systems. 
Every OS component runs in 
its own MMU-protected 
address space; supports 
Execute-in-place (XIP), 
which allows applications to 
run directly out of ROM or 
flash. Programs the clock 
device to raise an interrupt at 
each timer expiration time.  
 

 
Table 2. Commercial RTOSs and their features 

 
 
5.9 Research real-time kernels 

 
                      In this section, we discuss two real-time kernels, namely, the Spring and Arx to provide 

an overview of the scope and type of ongoing research in the field of RTOS. Other prominent 
research kernels include Chimera [CMU], Harmony [National Research Council of Canada], 
Maruti [University of Maryland], etc. 
            Arx [18] is a research kernel being developed at Seoul National University. Arx uses user-
level threads in scheduling and signal handling and multithreading.  
            Arx consists of virtual threads and a scheduling event upcall mechanism. Virtual threads 
provide a kernel-level execution environment for user threads. They are passive entities that 
would be temporarily bound to user-level threads when necessary. The scheduling event upcall 
mechanism enables the kernel to notify user processes of kernel events such as thread blocking 
and timer expiration.  
             User-level I/O allows programmers to write flexible and efficient device drivers for 
proprietary devices. To support user-level I/O, embedded RTOS should support the delivery of 
external interrupts from an I/O device to a process in a predictable and efficient manner. An 
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efficient user-level I/O scheme is implemented in Arx, exploiting the multithreaded architecture 
of the kernel such as virtual threads and scheduling event upcalls.   
            The Spring real-time kernel [21] provides real-time support for distributed systems. It can 
schedule arriving tasks dynamically based upon execution time and resource constraints. Thus the 
need to a priori compute the worst case blocking time for tasks is avoided. The Spring kernel also 
deals with safety-critical tasks through a static table-driven scheduling. The kernel helps to retain 
a significant amount of application semantics to improve fault-tolerance and performance in 
overload situations. The kernel supports both application and system level predictability. 
            Spring supports abstraction for process groups [23], which provides a high level of 
granularity and a real-time group communication mechanism. A process group in Spring is a 
collection of processes that work towards a common goal. Spring supports a system description 
language (SDL), which allows programmers to predefine groups and impose timing and 
precedence constraints on them. Spring supports synchronous and asynchronous multicasting 
groups. 
            The Spring kernel achieves predictable low-level distributed communication using global 
replicated memory [21]. It provides abstractions for reservation, planning and end-to-end timing 
support.  
            EMERALDS (Extensible Microkernel for Embedded ReAL-time Distributed Systems) is 
a real-time microkernel designed for cost-conscious, small to medium size embedded systems 
[27]. EMERALDS maps the kernel into each user-level address space, hence with even full 
memory protection, a system call may not need context switches unless a user-level server is 
involved. Also EMERALDS supports adding user-level communication protocol stacks and 
device drivers without modifying the kernel. Moreover, EMERALDS provides the flexibility of 
having multiple protocol stacks on the same node.   
             EMERALDS provides fully-preemptive fixed-priority scheduling and partial support for 
dynamic scheduling. A user can choose the priority for a thread based on rate-monotonic, 
deadline-monotonic or any fixed-priority scheme suitable for a given application. At run time, a 
system call can be provided to change a thread’s priority to respond to changing operating 
conditions. This feature can be used to emulate dynamic earliest-deadline first (EDF) scheduling 
at the user level. EMERALDS supports 32-bit non-unique thread priorities, hence by setting a 
thread’s priority to its deadline, EDF scheduling can be realized [27].  
              EMERALDS supports both direct network access and use of protocol stacks for inter-
process communication (IPC). Shared memory is used for intra-processor communication and the 
primary IPC mechanism is message passing using mailboxes. EMERALDS allows a 32-bit 
priority to be assigned to each message that can be used to sort messages in a mail box so that the 
receiver thread retrieves the highest-priority message first. 
              EMERALDS supports system calls that allow a device driver to map a memory-mapped 
device into its address space [27]. It also provides system calls that allow device drivers to handle 
interrupts. Hence device drivers will be able to tell the kernel which ISR subroutine to execute 
when an interrupt occurs. EMERALDS supports non-device drivers also to use such system calls.   
 
6 Conclusion 
 
            In this report, we reviewed the basic requirements of an RTOS including the POSIX 
1003.1b features. The POSIX 1003.1b standard does not address support for fixed-size buffers 
and heterogeneous multiprocessing. RTOS use is beneficial in most real-time embedded design 
projects. If an applic ation has real-time requirements, an RTOS provides a deterministic 
framework for code development and portability. To meet the needs of commercial multimedia 
applications, low code size and high peripheral integration is needed. Reliability in complex real-
time systems could be achieved using multilevel specifications that check the correctness of 
systems at compile-time and run-time. The popular Windows CE and Jbed need further 



 16

development in order to be used for hard real-time applications. RTOSs should be ABI 
compatible in order to avoid third-party vendor applications to be recompiled. Code reuse 
considerations are also important. Lastly, since the use of an RTOS is important in the embedded 
design world, a fast time to market and minimized development costs are as important as low 
hardware costs.           
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