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Contrary to a driven classical system that exhibits chaotic 
behaviour and diffusive energy growth, a kicked quantum 
system can exhibit the emergence of dynamical localization, 
which limits energy absorption and leads to the breakdown of 
ergodicity1–4. The evolution of dynamically localized states in 
the presence of many-body interactions has long remained an 
open question5–7. Here we experimentally study an interacting 
one-dimensional ultracold gas periodically kicked by a pulsed 
optical lattice and observe the interaction-driven emergence 
of dynamical delocalization and many-body quantum chaos. 
The observed dynamics feature sub-diffusive energy growth 
over a broad parameter range of interaction and kick strengths. 
These results shed light on interaction-driven transport phe-
nomena in quantum many-body systems, in a regime where 
theoretical approaches are extremely challenging and provide 
conflicting predictions.

The classical kicked rotor is a textbook paradigm to explore 
chaos phenomena, displaying a diffusively growing kinetic 
energy proportional to time or kick number, above a critical kick 
strength8,9. Dynamical localization in the quantum kicked rotor 
(QKR)1,2 arises from quantum interference, and can be explained 
by mapping3,10 the Floquet dynamics of the QKR to a disordered 
Anderson model11 in the momentum-space lattice. In the past three 
decades, single-particle QKRs have been experimentally studied 
extensively with cold neutral atoms and dynamical localization has 
been observed4,12–18.

Understanding the role of many-body interactions in a disor-
dered quantum system has been a long-standing challenge since the 
discovery of Anderson localization11. In recent years, many-body 
localization in disordered lattices in position space has been exten-
sively studied both experimentally and theoretically by incorpo-
rating methods developed in quantum information science19–21. 
Despite the equivalence of dynamical localization3,10 to Anderson 
localization11 for a single particle, the infinite long-range interac-
tion in the momentum-space lattice is fundamentally different from 
the short-range interaction in position-space Anderson lattices19–22, 
posing a major obstacle for understanding many-body effects in 
dynamical localization5–7,23–27. In fact, conflicting theoretical predic-
tions exist: although mean-field calculations for interacting Bose–
Einstein condensates (BECs) predict delocalization in momentum 
space with a sub-diffusive character5,6 (that is, weaker-than-linear 
growth of system energy), the low-energy approximation based on 
Luttinger liquid theory of a kicked one-dimensional (1D) Lieb–
Liniger gas shows the persistence of dynamical localization7.

Here we perform the first experimental study of many-body 
effects in the dynamical localization of a QKR and report the 

observation of an interaction-driven transition between dynami-
cally localized and delocalized states. In our periodically kicked 1D 
bosonic system with contact interactions, the delocalization is evi-
dent as a clear onset of sub-diffusive energy growth with kick number 
as the interaction is strengthened through tight transverse confine-
ment. The sub-diffusive behaviour persists over a range of inter-
action strengths and kick parameters. Our theoretical modelling 
with mean-field and Hartree–Fock–Bogoliubov (HFB) approaches 
reasonably capture the observed dynamics in the deep delocaliza-
tion and localization regions. However, the mean-field theory fails 
across the phase transition boundary, potentially due to strong com-
petition between the disorder potential and interaction-induced 
infinite long-range coupling in the momentum-space lattice, which 
is extremely challenging to model in theory.

We initiate our experiments (Methods and Supplementary 
Information provide more experimental and theoretical details) 
by preparing an essentially pure three-dimensional (3D) BEC con-
taining 1.5 × 105 atoms of 174Yb with chemical potential h × 1.1 kHz 
in an optical dipole trap (ODT) and subsequently loading it into a 
two-dimensional optical lattice where the atoms reside in a set of 1D 
tubes with negligible intertube tunnelling (Fig. 1a). The starting BEC 
fraction in the tubes is higher than 85%. The kicks are implemented 
by a pulsed one-dimensional optical lattice along the axial direction 
of the tubes. Each of the three orthogonal lattices is formed from 
retro-reflected laser beams (≃100 μm waist) and has a spatial period 
of 1,073 nm/2 = π/kL with corresponding recoil energy Erec = ℏωrec, 
where ωrec = h̄k2L/2m = 2π × 1 kHz; m is the atom mass; kL is the 
wavenumber; h̄ is the reduced Planck constant. The kick parameters 
are tunable through the kick period T, pulse width tp and poten-
tial depth szErec. Each of the two transverse lattices has depth s⊥Erec. 
For the typical s⊥ = 106 used in this work, the transverse trap fre-
quency (for the central tube) is ω⊥ = 2√s⊥ ωrec = 2π × 20.5 kHz. 
The transverse oscillator length is a⊥ =

√

h̄/mω⊥  ≃ 53 nm, and the 
axial frequency is ωz = 2π × 64 Hz. From the Thomas–Fermi (TF) 
radii of the 3D trap and the measured axial size in the 1D tubes, 
we estimate a peak particle number of Natom = 650 and an initial 1D 
peak density of n̄1D = 24 µm–1 for the central tube.

We monitor the system by diabetically turning off all the optical 
potentials after a desired number (np) of kicks and then taking a 
time-of-flight absorption image from which we extract the atomic 
momentum distribution in both axial and transverse directions. The 
measured transverse distribution is consistent with the transverse 
ground-state energy (Fig. 1b). The 1D geometry with ω⊥ ≫ ωrec sup-
presses two-body scattering from the axial to the transverse direc-
tions, as evident in the negligible growth of transverse energy 〈E⊥〉 
during the kicking process (Fig. 1b) for s⊥ ≥ 20. As interactions are 
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increased by raising s⊥, the axial (z) momentum width after many 
pulses also increases (np = 0, 100; Fig. 1c–h), providing a key signa-
ture for examining the many-body QKR.

Even though condensation is not possible in the homogeneous 
1D case28–30, axial harmonic confinement supports BEC31. For our 
experimental parameters, the system is quasi-1D where the gas is 
kinematically 1D with the two-body scattering length as = 5.55 nm 
(≪a⊥), retaining its 3D value. The correlation length lc = h̄/√mḡn̄1D  
is much larger than the mean interparticle separation 1/n̄1D, which 
makes the ground state of the initial system a true TF condensate32. 
Here ḡ = 2h̄2as/(ma2⊥) is the mean-field interaction constant.

We model the many-body dynamics of bosons with the 
mean-field theory, where the QKR wavefunction Φ is governed by 
the nonlinear Gross–Pitaevskii (GP) equation:

 
where θ = 2kLz and τ = t/T are dimensionless parameters, and 
ꝁ = 8ωrecT is the dimensionless effective Planck constant. The dimen-
sionless kick strength K and interaction constant g are defined as

 
The dimensionless axial frequency is ωθ = ωzT and the dimen-

sionless initial peak density is n1D = |Φ(0, 0)|2 = n̄1D/2kL, where 
the wavefunction is normalized as ∫dθ∣Φ(θ, τ)∣2 = Natom. We control 

(1)

(2)

the interaction strength gn1D through the transverse confinement of 
the 1D tubes; throughout this Letter, the quoted interaction strength 
is an average value that takes into account the variation in the atom 
number in different tubes. When the two-dimensional lattice is off, 
the BEC resides purely in the ODT and has the weakest interaction 
strength. In this case, the system is 3D and we obtain an effective 1D 
interaction strength gneff1D by adjusting a⊥ (equation (2)) to match 
the measured chemical potential of the BEC in the ODT.

We first discuss QKR experiments on a 3D system, implemented 
by applying the pulsed lattice on the BEC trapped in the ODT with 
no transverse lattice. Here we always observe dynamical localization 
(Fig. 2a,c,e,g), consistent with weak interactions. Following some 
initial coherent dynamics, the momentum distribution and mean 
energy 〈Ez〉 quickly saturate. Compared with the exponentially 
localized function e−∣p∣/ξ, the observed momentum profile exceeds 
the expected dynamical localization length ξ = K2/4ꝁ2 = 0.25 (in 
units of ℏkL) for a non-interacting system, but is better contained by 
ξ = 0.92 corresponding to the observed saturated value 〈Ez〉 = 1.7Erec 
(Fig. 2c–f, dashed and dotted lines). Although the momentum 
distribution is clearly localized at long times, its asymptotic shape 
has peaks at ±2ℏkL. The exponential functions serve only to allow 
comparison against the non-interacting case, with the observed 
deviations stemming from the small but non-zero g and the nar-
row initial momentum width compared with 2ℏkL. In striking con-
trast to the 3D case, many-body dynamical delocalization is evident 
for higher interaction strengths available in the 1D geometry, with 
sub-diffusive energy growth (Fig. 2b,d,f,g).

Figure 3 shows a study of the delocalization behaviour for different 
kick strengths K (tuned through sz) and interaction strengths (tuned 
through s⊥). The dynamics are strongly dependent on K (Fig. 3a),  
with the earliest onset of delocalization for (gn1D, K) = (18.7, 5.3) 
exhibiting substantial energy growth even within the first ten 
pulses. We note that this timescale (1 ms) is more than ten times 
shorter than the axial oscillation period, indicating that harmonic 
confinement along the tube is not a prerequisite for the observed 
delocalization. As K is lowered, the onset time of delocalization is 
delayed, extending to nearly 100 pulses for the lowest K. This is also 
evident in Fig. 3b which corresponds to a vertical cut of the data 
in Fig. 3a (fixed np = 15 and gn1D = 18.7) and shows the monotonic 
growth of the mean axial energy with K.

We investigate the dependence of delocalization behaviour on 
the interaction strength by changing the external confinement 
through s⊥, which changes a⊥ and hence g and n1D. As shown in 
Fig. 3c, we find stronger delocalization with higher gn1D for fixed 
K = 2.6, with only the lowest gneff1D = 3.9 case remaining localized. 
This is also evident in Fig. 3d, which corresponds to a vertical cut of 
the data in Fig. 3c (fixed np = 100 and K = 2.6) and shows the mono-
tonic growth of the mean axial energy with gn1D.

To compare with earlier theoretical results of interaction-driven 
sub-diffusive energy evolution in the QKR6,24, we fit our delocaliza-
tion data using power-law functions E0τα to 〈Ez〉 (Fig. 3a,c, black 
solid lines). The finite trap depth results in atom loss for 〈Ez〉 above 
10Erec (Methods and Supplementary Information provide more 
experimental and theoretical details) and the axial oscillation 
period introduces an additional timescale to the QKR. Restricting 
attention to the delocalization data with 〈Ez〉 below 10Erec and evolu-
tion time below the axial period, our fit results for α lie in the range 
of 0.36–0.80. This observed sub-diffusivity is intermediate between 
classical chaotic behaviour and single-particle quantum mechanics 
and signals the fundamentally distinct dynamics of a driven quan-
tum many-body system. Our α values are somewhat larger than 
the predictions of 0.3–0.4 elsewhere24 and more consistent with the 
0.4–0.8 range predicted in another study6. Furthermore, we do not 
observe any obvious trend of α with K or gn1D, which is also con-
sistent with the numerical findings discussed elsewhere6. However, 
we do clearly observe a trend for the onset time of delocalization, 
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Fig. 1 | experimentally realizing the interacting 1D QKr system.  
a, experimental schematic showing beCs in 1D tubes with periodic kicking 
pulses applied along the axial (z) direction. b, Average transverse energy 
〈E⊥〉 for various s⊥ values for no kick (circles) and 100 kicks with sz = 80 
and (tp, T) = (2, 105) μs (diamonds). The solid line indicates the calculated 
energy for the transverse ground state and the dashed line indicates that 
for 10% occupation of the first transverse excited state. The error bars 
show 1 standard error of the mean (s.e.m.; not visible when smaller than the 
marker size). c–h, Time-of-flight atom absorption images after 0 (c, e and 
g) and 100 (d, f and h) kicks for s⊥ = 0 (3D case) and s⊥ = 35 and 106. For 
d, f and h, sz = 80 and (tp, T) = (2, 105) μs. The imaging axis is along the x 
direction and each image spans the momentum range 10ℏkL × 10ℏkL.
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which decreases with an increase in either K or gn1D (Methods  
and Supplementary Information provide more experimental and 
theoretical details).

We carry out numerical mean-field simulations of the dynamics 
(Fig. 3a,c, solid lines), starting from the TF ground state obtained 
by the imaginary time evolution of the GP equation (Methods and 
Supplementary Information provide more experimental and theo-
retical details). We find that for a given interaction strength gn1D, the 
system enters a dynamically delocalized phase with mean energy 
increasing with pulse number when K is larger than a critical value 
Kc. As gn1D increases, Kc decreases, implying that dynamical delocal-
ization is easier for stronger interactions. The variation in Kc marks 
the boundary (Fig. 3e, solid line) between the localized and delo-
calized phases in the K–gn1D parameter space. We see reasonable 
agreement between theory and experiment in the system time evo-
lution for points deep in the delocalization and localization regimes. 
However, notable deviations between the two exist for points near 
the phase boundary.

The delocalization physics may be understood more intuitively  
in momentum space, where the non-interacting QKR can be  
mapped to a one-dimensional lattice with onsite disorders3. In 
momentum space, the real-space contact interaction introduces 
onsite nonlinear terms as well as infinite long-range nonlinear 
cross-hopping terms to the disordered lattice, which are respon-
sible for dynamical delocalization (Methods and Supplementary 
Information provide more experimental and theoretical details).  
The observed failure of the mean-field approach near the 
phase boundary is, therefore, unsurprising since the dynamics  
near Kc are very sensitive to the competition between disor-
der and interaction-induced infinite long-range coupling in the 
momentum-space lattice. We also note that the finite momentum 
width of the initial state and interaction-induced scattering between 
the different momenta may lead to density peaks away from the 
recoil momenta (2jkL with integer j), which can happen at a small 
kick number for large K (Fig. 2).

Initially, our system is a true TF condensate with negligible 
fluctuations. As the kick number increases, the delocalization of 
the interacting system is accompanied by a rapid proliferation of 
non-condensate particles. The mean-field GP approach is valid only 
when quantum depletion is low, that is, the non-condensate fraction 
is much smaller than the condensed fraction. Going beyond the 
mean field, we examine the excitation properties by employing the 
HFB5,33 (Methods and Supplementary Information provide more 
experimental and theoretical details) approximation to calculate the 
evolution of the non-condensate particle number ⟨ψ̂†ψ̂⟩, where ψ̂  
represents the quantum fluctuation beyond the condensate Φ(θ, τ). 
The dashed line in Fig. 3e represents the boundary between the sta-
ble and unstable regimes, where the unstable regime is evident as an 
exponential increase in the non-condensate particles with np. The 
two-phase boundaries (Fig. 3e, solid and dashed lines) are close to 
each other, suggesting that the dynamical delocalization is accom-
panied by BEC instability.

We find that the interaction-driven delocalization is a general 
feature of our system (Methods and Supplementary Information 
provide more experimental and theoretical details) as we observe 
it for various values of kick period T ranging from 20 to 125 μs. 
Furthermore, apart from using transverse confinement, we have 
also controlled the interaction strength by varying the number of 
atoms loaded into the tubes and observed similar interaction-driven 
delocalization.

Our results experimentally realize the interacting QKR, a 
long-sought quantum-mechanical paradigm system. The com-
bined experimental and theoretical study of many-body localized 
and delocalized phases in momentum space spotlight the emer-
gence of many-body quantum chaos (that is, many-body effects on 
a quantum system where the corresponding classical system may 
exhibit chaos) and constitute the first study of the effects of interac-
tions on dynamical localization, an area where current theoretical 
results are in conflict5–7. Direct extensions of these studies include 
further characterizations of the boundary between localized and 
delocalized phases where we observe the mean-field theory to fail, 
of the onset time of delocalization and of the sub-diffusive delo-
calization exponent6,24. It will also be interesting to extend the 
current implementation carried out with γ = 1/(lcn̄1D)2 ≪ 1 into 
the γ ≫ 1 Tonks–Girardeau regime34,35, where beyond-mean-field 
theories predict many-body dynamical localization with momen-
tum profile distinct from their spatially localized counterpart7,26,27. 
Our technique of tight confinement to tune interactions in the syn-
thetic momentum space can also be extended towards studies of the 
momentum-space Josephson effect36, interaction-driven transport 
in higher synthetic dimensions37,38 and topological phases with 
interactions in coupled momentum-space lattices39.

During the course of this work, we became aware of related 
results from another experimental group40. Although this other 
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Fig. 2 | Momentum and energy evolution for dynamically localized and 
delocalized rotors. a,b, Sequences of absorption images for localized (a) 
and delocalized (b) cases with ꝁ = 5.26, K = 5.3 and (tp, T) = (2, 105) μs. 
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data as those in c (e) and d (f), shown on a logarithmic scale. g, evolution 
of the axial kinetic energy corresponding to a and b. The solid line is a 
power-law fit to the delocalized data, returning an exponent value of 0.36. 
The error bars show 1 s.e.m. (not visible when smaller than the marker size). 
The gneff1D = 3.9 data are obtained in the 3D system.
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work also realizes an interacting QKR using atomic BECs subjected 
to a series of pulsed optical standing waves, it is implemented in a 
substantially different parameter regime and utilizes complemen-
tary experimental techniques40. It uses 7Li atoms—about 25 times 
lighter than the 174Yb atoms used in the present work—leading to 
an order-of-magnitude faster kicked-rotor timescales. Secondly, 
atomic interactions are tuned using a magnetic Feshbach reso-
nance40, in contrast to the tuning through density variation used 
in the present work. Finally, all the experiments in that study40 are 
performed using a 3D condensate rather than the 1D system used 
in the present work. Despite these differences, both experiments 
demonstrate interaction-induced dynamical delocalization, with a 
sub-diffusive temporal evolution of energy. Taken together, these 
results establish a new testbed for investigating interaction-driven 
transport phenomena and many-body quantum chaos.
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Methods
Experimental setup. The experiments discussed in this work were performed 
in an apparatus discussed in earlier work41–43 and augmented with a set of three 
mutually orthogonal and independently controlled optical lattices. We prepare a 
BEC containing 1.5 × 105 atoms of 174Yb atoms in a crossed ODT42 with trapping 
frequencies {ω0x, ω0y, ω0z} = 2π × {145, 16, 53} Hz, chemical potential h × 1.1 kHz 
and the corresponding TF radii of {2.4, 22, 6.6} μm. The BEC is then transferred 
into a two-dimensional optical lattice formed by two pairs of counterpropagating 
laser beams where the atoms reside in a set of 1D tubes (Fig. 1a). The lattice and 
kick optical potentials are derived from a home-built external cavity diode laser 
operated at a wavelength of λ = 1,073 nm, and amplified by a 50 W amplifier 
(Nufern NUA-1064-PD-0050-D0). The total laser power for the lattice beams is 
distributed between three paths—two for the two-dimensional transverse optical 
lattice and one for the axial kicking lattice. To suppress optical interference 
between the different paths from affecting the atoms, for each pair of paths, we 
maintain orthogonal linear polarizations and use acousto-optic modulators to 
establish frequency separation greater than 40 MHz. The laser beams forming 
the two-dimensional transverse lattice are intensity stabilized at the 2% level. We 
calibrate the depth of our lattices using single-pulse Kapitza–Dirac diffraction, a 
procedure that also provides an experimental measurement of our lattice-beam 
waists to be {wx, wy, wz} = {121, 101, 99} μm, which are much larger than the BEC size.

Loading and characterizing the 1D gas. To transfer the BEC from the ODT to 
1D confinement, the transverse lattice is ramped up exponentially in 100 ms with 
an exponential time constant of 20 ms. To assess the adiabaticity of this process, 
we performed tests in which the forward (loading) ramp is immediately followed 
by a reverse ramp back to the ODT after which we compare the final BEC fraction 
with the initial value. Starting from an essentially pure BEC, we obtain about 70% 
BEC fraction after the forward and reverse ramps, suggesting that the BEC fraction 
is about 85% in the two-dimensional lattice. We believe this number to be a lower 
bound because the recovered BEC fraction is probably also limited by the lack of 
coherence between the tubes, as tunnelling is strongly suppressed beyond s⊥ ≃ 20.

The atoms are loaded into about 570 horizontal tubes, as determined by the 
initial TF radii in the 3D trap. We measure an initial (tube-averaged) axial size of 
27 μm for s⊥ = 106. The peak density of the central tubes is about n̄1D = 24 µm–1. 
Once the BEC is loaded into the two-dimensional lattice, we exponentially ramp 
down the ODT in 50 ms with a time constant of 10 ms, before pulsing on the kick 
laser along the axial direction of the tubes. To obtain the momentum distribution, 
we diabetically turn off all the optical potentials and take an absorption image of 
the atoms after a long time of flight set to a value between 15 and 43 ms.

The observed growth rate of the axial momentum distribution in the absence 
of kicking pulses determines the background heating rate in the system. For 
s⊥ = 106, we measure a kinetic-energy growth rate of 6Erec s–1. All the QKR 
experiments reported in this work occur within 100 ms, a timescale during which 
this background heating is negligible. The calculated photon-scattering rate from 
the transverse lattice is <0.1 s–1 for s⊥ = 106, suggesting that the observed residual 
heating is from technical noise.

Kicking-pulse implementation. The kick pulses are generated by triggering a 
function generator (Stanford Research Systems DS345) to produce a desired sequence 
of voltage pulses, which, in turn, controls the radio-frequency switch driving the 
acousto-optic modulator for the kicking-lattice laser beam. By integrating over the 
observed axial momentum distribution of the atoms in the time-of-flight absorption 
image, we calculate the kinetic energy delivered to the system by the kicks.

Nonlinear Anderson model in the momentum-space lattice. The QKR is a Floquet 
system with wavefunction Φ(θ, τ) = e−iϵτϕ(θ, τ), where ϕ(θ, τ) = ϕ(θ, τ + 1) 
is the periodic part and ϵ is the quasienergy. The δ-kick leads to 

, where ϕ+(θ) and ϕ–(θ) are the wavefunctions 
immediately after and before the kick, respectively. In the momentum-space lattice, 
the free evolution between kicks is described as

 

(3)

where ϕj(τ) is the jth Fourier component of the wavefunction ϕ(θ, τ) (that is, at 
momentum site j) and M = ZkL/2π (Z is the system size). The first term on the 
right-hand side corresponds to the single-particle evolution, which leads to 
momentum-space dynamical localization in the non-interacting QKR. The second 
and third terms correspond to diagonal (onsite attraction) and off-diagonal 
(infinite long-range hopping) interactions, respectively.

If only the diagonal interaction is considered, the free evolution yields 
ϕ−,j = ϕ+,j exp(i[ϵ − ꝁj2/2 − g(2Natom − ∣ϕ+,j∣2)/4πMꝁ]) and the nonlinear Anderson 
model becomes

Vjϕ̄j +
∑

j′ ̸=0

Kj′ ϕ̄j+j′ = ωϕ̄j , (4)

which has the same form as that for the non-interacting QKR, except that the  
onsite disorder is nonlinear with Vj = tan[ϵ/2 − ꝁj2/4 − gNatom/4πMꝁ  
+g|

∑
j′ ϕ̄j+j′ (Kj′ + δj,j′ )|

2/8πMꝁ]. Here ϕ̄j = (ϕ−,j + ϕ+,j)/2, hopping rates 

Kj = 1√
4Mπ

∫
dθeijθ tan [  cos(θ)] and energy ω = −K0. In the presence of 

infinite long-range hopping in the momentum space, the dynamics are much more 
complex, without an explicit relation between ϕ− and ϕ+. Such infinite long-range 
hopping destroys the quantum interference in the momentum space, leading to 
dynamical delocalization.
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