Spontaneously generated helicity is the Landé $g$ factor. These levels were coupled by a pair of orthogonally polarized Raman laser beams with angular frequencies $\omega_L$ and $\omega_L + \Delta \omega$ and a relative phase, as shown in Fig. 1. The lasers’ frequency difference $\Delta \omega$ was set near $\omega_F$, naturally defining an experimentally tunable detuning $\delta_0 = \Delta \omega - \omega_Z$.

In our experiment, we selected as our two-level system, $| m_F = 0, -1 \rangle \equiv | \uparrow, \downarrow \rangle$ hyperfine states of the $5S_{1/2}, f = 1$ manifold of $^{87}$Rb [5]. The Raman laser field coupled spin states $| \downarrow, q_x = k_x - k_L \rangle$ to $| \uparrow, q_x = k_x + k_L \rangle$ differing in momentum by $2k_L$, where $q_x = k_x \pm k_L$ denotes the quasimomentum. The recoil momentum $k_L = 2\pi \sin(\theta/2)/\lambda$ and energy $E_L = \hbar^2 k_L^2 / 2m$ set the relevant momentum and energy scales for Raman lasers intersecting at an angle $\theta$; here, $\lambda$ is the laser wavelength, and $m$ is the atomic mass. In this experiment, $\theta = \pi/2$, as shown in Fig. 1 [12].

In the frame rotating at angular frequency $\Delta \omega$ and after making the rotating wave approximation, the Hamiltonian combining both the kinetic and Raman coupling contributions is [5]

$$\hat{H} = \left( \frac{\hbar^2 q_x^2}{2m} + E_L \right) \hat{1} + \hbar \Omega / 2 \hat{\sigma}_x + \frac{\hbar \delta_0}{2} \hat{\sigma}_z + \alpha_0 q_x \hat{\sigma}_x,$$

where $\Omega \propto E_A E_B$ is the Raman coupling strength, $\hat{\sigma}_{x,y,z}$ are the Pauli matrices, and $E_{A,B}$ are the complex-valued optical electric field strengths [Fig. 1(a)]. The last term describes SOC—an equal sum of Rashba and Dresselhaus SOC—with strength $\alpha_0 = 2E_A / k_L \propto k_L$. The resulting energy bands of the laser dressed atomic system $E_L(q_x)$ are obtained by diagonalizing $\hat{H}$ as a function of the quasimomentum $q_x$. We focused on the atoms in the lowest energy band, where they experienced the energy-momentum dispersion relation given by $E_L(q_x)$.

The SOC strength $\alpha_0 \propto \sin(\theta/2)$ depends only on the momentum difference between the Raman laser beams and...
Our experiments started with nearly pure $^{87}$Rb BECs in a crossed dipole trap, with frequencies $(f_x, f_y, f_z) = (32, 37, 100)$ Hz. Prior to dressing the atoms with the Raman lasers, we prepared these BECs either in the spin state $|\downarrow\rangle$, $|\uparrow\rangle$ or an equal superposition thereof. The $B = 2.142$ mT bias field Zeeman split the $|\uparrow\rangle$ and $|\downarrow\rangle$ states by $\omega_z/2\pi \approx 15$ kHz, detuning the unwanted $|m_f = +1\rangle$ state by $36E_L$ from resonance.

We optically dressed the atoms with a pair of $\lambda = 790.1$ nm Raman lasers propagating along $e_x \pm e_y$ (Fig. 1) and controlled $\delta_0$ by making small changes to $B$. The Raman coupling strength $h\Omega$ was experimentally controlled by the intensity of the lasers, and we inverted the sign of $\Omega$ by shifting the beams’ relative phase by $\pi$ [11]. Each Raman beam (labeled $A$ and $B$, respectively) was ramped from zero to its final intensity in 100 ms following a linear envelope; however, the intensity of Raman laser $B$ was additionally modulated sinusoidally [Fig. 1(b)]. The atoms were then held for 50 ms, after which all potentials were turned off. The atomic ensemble expanded for a 34.45 ms time of flight (TOF) before absorption imaging. Using a magnetic field gradient during part of the TOF, we separated the spin components along $e_y$.

We determined the SOC strength from direct measurements of atomic momentum distributions as shown in Fig. 2. We first studied systems driven at $\omega/2\pi = 10$ kHz and 20 kHz and found momentum distributions in excellent agreement with the expected behavior; i.e., the atoms adiabatically followed degenerate ground states of the driven Raman Hamiltonian located at $q_{x,0} = \pm(\alpha/\alpha_0)k_L$ as we tuned $\Omega_R/\omega$. Figure 3(a) constitutes the main result of our work and demonstrates experimental control on the SOC strength $\alpha(\Omega_R/\omega)$ for systems driven at $\omega/2\pi = 10$ kHz. As $\Omega_R/\omega$ increased, we observed the Bessel-function behavior of $\alpha$.

We compared our data to the simulated dynamics of the BEC governed by the time-dependent Gross-Pitaevskii equation (TDGPE)

$$i\hbar\frac{\partial \Psi}{\partial t} = [H(t) + V(r) + H_I] \Psi,$$

where $\Psi = (\Psi_\downarrow, \Psi_\uparrow)^T$ is a two-component wave function, $H(t)$ is the coupling Hamiltonian of Eq. (1), $V(r)$ corresponds to a harmonic confining potential, and $H_I$ describes atomic density-density interactions. We numerically simulated BECs with $N = 10^5$ atoms and obtained the $t = 0$ initial state (before modulation) using imaginary time evolution with either the BEC initially polarized as $|\downarrow\rangle$ at $q_{x,0} = -1$ ($h\delta_0 = -0.5E_L$) or as a balanced spin superposition at $q_{x,0} = 0$ ($h\delta_0 = 0$). We then explicitly time evolved with the TDGPE [16] including the full time-dependent Raman coupling $\Omega(t) = \Omega_0 + \Omega_1 \cos(\omega t)$, where $h\Omega_0 = 0.3E_L$ is the small constant offset, and $\Omega_1$ is slowly ramped on as in the experimental procedure [17].
Raman coupling offset simulations show that this reflection is present when the spin superposition and the single-spin data. Our without changing sign [Fig.3(a)]; this was the case for both nonzero, as described below.

When $\Omega/\omega = 0$, the spin states are maximally separated by $\Delta k_x = 2k_L$. (Middle) When $\Omega/\omega = 2$, the quasimomentum separation is practically zero. (Bottom) When $\Omega/\omega = 4$, the spin states again separate in quasimomentum. (b) The continuous (dashed) lines correspond to the optical depth integrated along $e_r$, for $|\downarrow\rangle$ ($|\uparrow\rangle$).

Figure 3(b) displays the calculated density distributions $|\psi(q_x)\rangle^2 = \int|\psi(q_x, q_y, q_z)\rangle^2 dq_y dq_z$ as a function of time for both the balanced spin superposition and the spin polarized initial states. We determined the final quasimomentum by finding the center of small dipole oscillations which occur around the band minimum. In both cases, oscillations of the BEC’s quasimomentum around the local band minimum (for $t > 100$ ms) result from imperfect adiabaticity during the ramp-up process of the Raman lasers. In the experiment, we found that the system relaxed very rapidly to the local band minimum giving the measured quasimomentum shown in Fig. 3(a).

Furthermore, we experimentally observed that as $J_0(\Omega R/\omega)$ became negative, the individual spins did not pass through $q_s = 0$ as might be expected but rather “reflected” and continued following the Bessel envelope without changing sign [Fig. 3(a)]; this was the case for both the spin superposition and the single-spin data. Our simulations show that this reflection is present when the Raman coupling offset $\hbar\Omega_0$ and detuning $\hbar\delta_0$ are small but nonzero, as described below.

For the initial balanced spin superposition, the states $|\downarrow\rangle, q_x = -1$ and $|\uparrow\rangle, q_x = 1$ move close to each other under fast modulation [Fig. 3(b)]. As time evolves, each state develops a dressed state partner: this additional state is quasimomentum around the local band minimum (for $t > 100$ ms) result from imperfect adiabaticity during the ramp-up process of the Raman lasers. In the experiment, we found that the system relaxed very rapidly to the local band minimum giving the measured quasimomentum shown in Fig. 3(a).

Furthermore, we experimentally observed that as $J_0(\Omega R/\omega)$ became negative, the individual spins did not pass through $q_s = 0$ as might be expected but rather “reflected” and continued following the Bessel envelope without changing sign [Fig. 3(a)]; this was the case for both the spin superposition and the single-spin data. Our simulations show that this reflection is present when the Raman coupling offset $\hbar\Omega_0$ and detuning $\hbar\delta_0$ are small but nonzero, as described below.
side. Figure 3(bii) shows the time evolution of the single spin with an additional small Raman coupling offset $\hbar \Omega_0 \sim 0.3 E_L$ [17].

Physically, when these terms are small, the atoms undergo a Majorana spin flip as $J_0(\Omega_R/\omega)$ changes sign but are able to adiabatically follow when they are nonzero. Because $\alpha, \delta \propto J_0(\Omega_R/\omega)$ change sign simultaneously, the $q_x$’s for the local minima in $E_\pm(q_x)$ associated with each spin state do not change sign, so the local minima reflect from $q_x = 0$. This argument can also be understood by considering the red curves in Fig. 1(c) showing a progression of effective SOC dispersion relations with nonzero $\Omega_0$ and $\delta$; it is evident that atoms which start in the lower (left) minimum will stay in that minimum even after the minima have merged and separated once more.

In the experiment, $\Omega(t)$ was determined by the intensity and relative phase of two Raman lasers as controlled by acousto-optic modulators (AOMs); it is likely that a small dc contribution to the AOM’s drive gave $\Omega(t)$ a small nonzero average at the 5% level. In the strong driving region, $\hbar \Omega_R > \hbar \omega \approx 10 E_L$, this corresponds to a $\hbar \Omega_0 \sim 0.5 E_L$ offset. Furthermore, in our experiment, small detunings $\hbar |\delta_0| \sim 0.1 E_L$ were generally present.

In addition, Fig. 2 shows that the system is heated in the presence of the drive. Figure 4(a) parametrizes this effect in terms of the temperature of the driven system as a function of driving frequency at fixed $\Omega_R/\omega = 2.9$. The heating was most pronounced in the range $2 \, \text{kHz} < \omega/2\pi < 7 \, \text{kHz}$ and reached a plateau for $\omega/2\pi > 10 \, \text{kHz}$. Because our atoms are continuously evaporating from the shallow optical dipole trap, this heating drives rapid atom loss, as plotted in Fig. 4(b) for $\Omega_R/\omega = 4.5$ and $\omega/2\pi = 10 \, \text{kHz}$. This unwanted heating is present as dephasing in our zero-temperature GPE model and described in terms of the BEC’s stability under driving.

Stability depends on the modulation frequency: for very large $\omega$, the time-dependent terms average out (rotating wave approximation), and the dynamics of the BEC follow a stable effective modulation; for very small $\omega$, the SOC strength barely changes and the system is also stable. In the intermediate regime, we use Floquet theory to describe the strong instability of the modulated BEC [17]. Figure 4(c) shows the Floquet band structure of a minimal model spanned by the basis $\{|\downarrow, n=0|,|\uparrow, n=+1|,|\uparrow, n=-1|\}$, where $|\sigma, n\rangle$ denotes the state with spin $\sigma$ and Floquet sideband index $n$. We consider a BEC in the initial state $|\downarrow, q_x = -1\rangle$ green point in [Fig. 4(c)]. At a critical driving frequency $\hbar \omega \sim 4 E_L \sim \hbar \times 7.36 \, \text{kHz}$, a gap opens and the BEC is suddenly split into two bands. The component in the lower band is not stable because of its associated negative effective mass and since strong nonlinear interactions lead to complicated collective excitations. When $\hbar \omega \lesssim 4 E_L$, the majority of atoms populate the lower band and may experience an unstable point after a short time of dipole motion; therefore, the BEC is not stable and the heating is strongest at $\hbar \omega \sim \hbar \times 5 \, \text{kHz}$. For $\hbar \omega \ll 4 E_L$, the BEC is stable as it follows the lower band which now exhibits a local minimum. For $\hbar \omega \gg 4 E_L$, the BEC adiabatically follows the upper band minimum and is stable.

The unstable range of drive frequencies is larger for stronger interactions and vanishes for vanishing interactions where the simple effective quasieigenstates become exact. In the unstable region, the BEC is destroyed after a modulation time of just 10 ms to 50 ms, at which point the momentum space distribution is dominated by high momentum excitations, which would be interpreted as thermal excitations observed in the experiment. In general, the exact size of the unstable region depends on both $\Omega_R/\omega$ and interaction strength; thus, while the experimental data fall into the unstable region, the exact location of the boundary may be influenced by the constant atom number ($N = 10^5$) used in the numerical simulation. For this experiment, we avoided the larger $\omega$’s required to enter the stable regime because this also requires larger $\Omega_R$, leading to unwanted spontaneous-emission-driven heating (not included in our GPE calculation).
SOC is a critical ingredient in the generation and understanding of important condensed matter phenomena, and achieving real-time control of its coupling strength represents a step forward in the quest for novel quantum matter. Tunable SOC provides a powerful tool for investigating important open problems in quantum many-body physics, such as the properties of topological phases of matter. Here, we demonstrated a technique to control the coupling strength in a light-induced SOC system. Our technique relied on modulating the Raman laser field illuminating an ultracold-atom system. The measured SOC strength as a function of the dimensionless Raman coupling strength $\Omega_R/\omega$ was in good agreement with theory. This work showed that Raman modulation is a powerful way to control SOC in quantum gases, in analogy to modulated lattice experiments [15,18].

We appreciate enlightening conversations with G. Juzeliūnas, N. R. Cooper, and W. D. Phillips; additionally, we thank Dina Genkina for carefully reading our manuscript. This work was partially supported by the ARO with funding from DARPA’s OLE program and the Atomtronics-MURI and the NSF through the JQI Physics Frontier Center. K. J.-G. thanks CONACYT; L. J. L. thanks NSERC; M. C. B. thanks the NIST-ARRA program, and C. Q., M. G., and C. Z. are supported by ARO (Grant No. W911NF-12-1-0334), AFOSR (Grant No. FA9550-13-1-0045), and NSF-PHY (Grant No. 1249293).

ian.spielman@nist.gov

[12] For this effective two-level system, we redefine the detuning as $\delta = \delta' + \epsilon$ to account for the quadratic contribution to the Zeeman shift, $\epsilon$ [5].