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Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can support
novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here by mapping
the momentum space to the parameter space of a three-level system in a trapped ion, we experimentally
explore the transitions between different types of TDPs driven by spin-tensor-momentum couplings. We
observe the phase transitions between TDPs with different topological charges by measuring the Berry flux
on a loop surrounding the gap-closing lines, and the jump of the Berry flux gives the jump of the
topological charge (up to a 2π factor) across the transitions. For the Berry flux measurement, we employ a
new method by examining the geometric rotations of both spin vectors and tensors, which lead to a
generalized solid angle equal to the Berry flux. The controllability of a multilevel ion offers a versatile
platform to study high-spin physics, and our Letter paves the way to explore novel topological phenomena
therein.
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Introduction.—Topological states of matter, including
topological insulators, and semimetals, have attracted
increasing interest in the past decades [1–3]. Recent studies
on topological semimetals led to the observation of Weyl
[4–8] and Dirac [9,10] fermions in solid-state materials,
which possess twofold or fourfold degenerate points and
support relativistic spin-1=2 quasiparticles. The recent
remarkable discovery of triply degenerate points (TDPs)
[11–23] in fermionic systems provides an avenue for
exploring new types of quasiparticles possessing integer
spins while preserving Fermi statistics that have no counter-
parts in quantum field theory. The TDPs (i.e., threefold
band degeneracies in spin-1 systems) behave like magnetic
monopoles in momentum space whose topological charges
C are determined by the Berry flux emanating from the
degenerate points. Unlike the spin-1=2 particles, a full
characterization of higher spins (≥ 1) naturally involves
both the spin vectors F̂ and high-rank spin tensors such as
N̂ij ¼ fF̂i; F̂jg=2 − δijF̂

2=3 with fi; jg ¼ fx; y; zg. These
spin vectors and tensors are equivalent to the so-called
Gell-Mann matrices, forming a basis of the SU(3) algebra.
Therefore, an important question is to explore the roles
played by spin tensors in driving the phase transition and
characterizing the topologies of the TDPs.

Previous studies have predicted that spin-tensor momen-
tum couplings can induce transitions between TDPs with
different monopole charges C [17–20]. On the other hand,
the Berry flux and monopole charge cannot be solely
determined by the solid angle of spin vector and its
covering number on the Bloch sphere as in the spin-1=2
case. In fact, the spin-1 vector can go inside the Bloch
sphere, and the spin tensors must also be taken into account
to obtain the Berry flux [24–27].
Experimentally, TDPs with topological charge C ¼ 2

have been observed in various systems, including solid-
state topological semimetal molybdenum phosphide [21]
and phononic crystal [22], as well as in the synthetic
parameter space of a superconducting qutrit [23]. In
contrast to condensed matter systems where the realization
of required spin-momentum coupling and the measurement
of topological properties would be challenging, synthetic
quantum systems (e.g., cold atom [28,29], superconducting
qubit [30–33], nitrogen-vacancy center [34–37], trapped
ion [38] systems, etc.) with versatile control offer powerful
tools for the quantum simulation of topological phenomena
in parameter space. To date, the topological transitions
between TDPs with different monopole charges and the
crucial roles played by the spin tensors have not been
demonstrated experimentally.
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In this Letter, by mapping the momentum space to the
parameter space of a trapped ion, we experimentally
explore the topological transitions between different types
of TDPs and demonstrate the important roles played by the
spin tensors, where the Berry flux is measured through the
generalized solid angle traced out by the trajectories of both
spin vectors and tensors. We simulate a momentum-space
Hamiltonian

H ¼ k · F̂þ αkzN̂zz þ βkxN̂xz; ð1Þ

which describes the pseudospin-1 particles with a TDP at
k ¼ 0 carrying topological charges depending on the
spin-tensor-momentum coupling strengths ðα; βÞ [39].
We effectively tune ðα; βÞ and observe the transitions of
the TDPs from C ¼ 2 to C ¼ 1, 0 by measuring the spin
vectors and tensors. At the transitions, we observe sudden
jumps of both the spin vectors (represented by arrows) and
tensors (represented by ellipsoids) at the corresponding
gap-closing momenta. For the transition from C ¼ 2 to
C ¼ 0, the jump of topological charge is observed by
measuring the Berry flux on a small loop surrounding gap-
closing momenta. We adiabatically drive the system along
the small loop and detect the generalized solid angle traced
out by both the spin vector arrow and tensor ellipsoid,
leading to a geometric phase equal to the Berry flux.
Crucially, the Berry flux contains contributions from both
spin vectors and tensors.
Model and experimental setup.—We consider a three-

band spin-1 system with Hamiltonian given by Eq. (1). The
momentum space can be parametrized by the spherical
coordinates k ¼ k0ðsin θ cosϕ; sin θ sinϕ; cos θÞ, and the
TDP appears at k0 ¼ 0 where all three bands degenerate at
zero energy. The bands open gaps for k0 > 0 with mono-
pole charge C ¼ ð1=2πÞ H Ωk · dS given by the total Berry
flux on the sphere S surrounding the TDP [see Fig. 1(a)],
whereΩk ¼ ∇k ×Ak andAk ¼ hΨðkÞji∇kjΨðkÞi are the
Berry curvature and connection respectively, and jΨðkÞi is
the eigenstate for the lowest band. The band gaps
close along certain lines (i.e., gap-closing points kc are
fθc;ϕc; ∀ k0g) as we change (α, β) across the phase
transitions where the topological charge of the TDP
changes.
A spin-1 quantum state is determined by the mean values

of both spin vectors hF̂ii and tensors hN̂iji, which are
geometrically represented by an arrow and an ellipsoid
[24–27], respectively. The ellipsoid’s orientation and size
[see Fig. 1(b)] are determined by the eigenvectors and
eigenvalues of the tensor matrix Tij ¼ hN̂iji − hF̂iihF̂ji þ
2δij=3 [39]. The Berry flux γ ¼ R

Ωk · dSL ¼ H
L Ak · dk

through an area SL surrounded by a loop L [red lines in
Fig. 1(a)] can be measured by the geometric rotations of
both the arrow and ellipsoid for the lowest band, where
γ ¼ γF þ γT with

γF ≡
I

L
F cos θFdϕF and γT ≡

I

L
FdϕT ð2Þ

the generalized solid angles for the spin vector and tensor
[27,39], respectively. The monopole charge (i.e., total
Berry flux through S) can be obtained by sampling SL
that covers S. Topological phase transition is characterized
by an abrupt change of the total Berry flux. Here F is the
length of the spin-vector arrow hF̂i; ðθF;ϕFÞ are the
spherical angles of the spin-vector arrow, ϕT is the relative
rotation angle of the spin-tensor ellipsoid with respect to
the spin-vector arrow [see Fig. 1(b)]. Therefore, the
monopole charges and topological phase transitions can
be characterized by the rotations of the spin-vector arrows
and spin-tensor ellipsoids which can be directly detected in
experiments. Notice that the Euler angles ðϕT; θF;ϕFÞ
depend on the reference spin axis which is set as z direction
here.
To simulate such a spin-1 system we map the momentum

space to the parameter space of a trapped ion, whose three
coupled internal states form a pseudospin-1 system. We
trap a single 9Beþ ion in a linear Paul trap [40] with ambient
magnetic field of 13.46 mT [see Fig. 1(c)]. Three states,
denoted as jψ1i; jψ2i; jψ3i respectively, in the ground
manifold 2s 2S1=2 are utilized (see the Supplemental
Material [39] for detailed definitions), which form the

FIG. 1. Berry flux distribution, state geometric presentation,
and experimental setup. (a) Berry flux distribution on momentum
sphere with α ¼ 0; β ¼ −1. Green dots are the gap-closing
points kc surrounded by red loops. (b) Spin tensor ellipsoid at
momentum represented by the blue cross on one of the loops in
(a). The longitudinal (transverse) direction of the ellipsoid is
given by the spin-vector arrow in blue (short-axis arrow in green).
Azimuthal angle ϕT of the tensor ellipsoid is given by the relative
angle between the green arrow and axis −x0, where x0 is the
rotated axis x with Euler angles ð0; θF;ϕFÞ. (c) Illustration of the
experimental setup, energy levels, and transitions. A three-level
trapped 9Beþ ion is driven by radio frequency and microwave
fields.
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eigenstates of F̂z in a spin-1 system, as shown in Fig. 1(c).
Resonant transition frequencies between states jψ ii and
jψ ji are denoted as ωij, where ω12 ¼ 2π × 118.966 MHz
and ω23 ¼ 2π × 991.570 MHz. To drive these transitions,
we apply impedance matched antennas [40] connected to
power-amplified signal sources to induce radio frequency
(RF) and microwave fields to the ion, respectively, where
the former is sourced by an arbitrary wave generator
(AWG) and the latter is sourced by a separate AWG,
frequency-mixed with a high frequency microwave source
of approximately 1 GHz. Such a configuration combining
the RF and microwave transitions enables us to directly
drive each transition within the ground state manifold
satisfying the selection rules, and thus would be readily
scalable to include more levels, particularly for demon-
strations where tailored connectivity is required [41]. By
programming the AWGs with the desired waveform, we
apply time-dependent drives with Rabi rate Ωij, detuning
δij, and phase ϕij, as depicted in Fig. 1. Thus in a rotating
wave approximation, we obtain the desired Hamiltonian
[Eq. (1)] with δ12 ¼ ðαþ 1Þkz ¼ k0ðαþ 1Þ cos θ, δ23¼
ðα−1Þkz¼ k0ðα−1Þcosθ, Ω12eiϕ12 ¼ ð1þ β=2Þkx− iky ¼
ðk0 sinθ=

ffiffiffi
2

p Þe−iϕþ βðk0 sinθ=2
ffiffiffi
2

p Þcosϕ and Ω23eiϕ23 ¼
ð1− β=2Þkx − iky ¼ ðk0 sinθ=

ffiffiffi
2

p Þe−iϕ − βðk0 sinθ=2
ffiffiffi
2

p Þ×
cosϕ. Here, k0 only modifies the magnitudes of the energy
bands without affecting the eigenstates; therefore, we focus
our discussions on a sphere with fixed k0.
The experiment begins with a series of controlled

313 nm laser beam pulses [Fig. 1(c)] to Doppler cool
the ion motion and initialize it to jψ2i to further couple to
the other states. We then apply a sequence of resonant RF
and microwave pulses to prepare the ion to the ground state
of the Hamiltonian for given parameters fα; β; θ;ϕg, where
the amplitudes and durations of the control pulses can be
calculated via diagonalizing the Hamiltonian. To measure
the Berry flux within a loop, we subsequently apply an
adiabatic ramp of the parameters ðθ;ϕÞ along the loop of
interest on the sphere with fixed α and β. We stop the
evolution at various points on the loop, and measure the
observables hF̂ii, hN̂iji [39].
Observation of the topological phase transitions.—We

first set β ¼ 0 and consider the transition from C ¼ 2 to
C ¼ 1 by increasing α. The first (second) band gap closes at
the north (south) pole θc ¼ 0 (θ0c ¼ π) on the momentum
sphere respectively, as α changes across αc ¼ 1. We
measure the corresponding spin vectors hF̂ii and tensors
hN̂iji of the ground state at θ ¼ 0 for different α. As
depicted in Fig. 2, the measured value of hF̂zi for α < 1 is
approximately equal to −1 but dramatically jumps to
approximately 0 when α > 1 (hF̂xi and hF̂yi are always
approximately equal to 0), indicating a phase transition. As
also depicted in Fig. 2, we observe a dramatic change of
ellipsoid around the phase transition α ¼ 1. Moreover, we
observe the spin vortex at the north pole for α > 1 [39],

which also signals the transition of the monopole
charge [18]. To illustrate the jump of monopole charge,
we examine latitude loops on the momentum sphere since
the Hamiltonian has cylindrical symmetry with respect to
the z axis, leading to γF ¼ −2π · hF̂zi [39]. The tensor has
no contribution to the Berry flux where ϕT is always 0 in
the case of β ¼ 0. From Fig. 2, we observe hF̂zi approxi-
mately changes by 1 at the north pole θ ¼ 0, matching with
the expected 2π change of the Berry flux, and thus the
monopole charge C ¼ hF̂zijθ¼π

θ¼0 changes by 1.
In general, both the vectors and tensors should contribute

to the Berry flux for a spin-1 model. To show this, we
examine the topological phase transition from C ¼ 2 to
C ¼ 0 and set α ¼ 0, β ≠ 0 for a different spin-tensor-
momentum coupling. We notice that at the vicinity of the
phase transition, the sudden change of the monopole
charge must be given by the sudden change of the Berry
flux near the nonanalytical point (i.e., the gap-closing
point). Therefore, measuring the Berry flux near the gap-
closing point can be used to probe the topological phase
transition directly. The first (second) band gap closes at
ðθc;ϕcÞ ¼ ð3π=4; 0Þ and ð3π=4; πÞ [ðθ0c;ϕ0

cÞ ¼ ðπ=4; 0Þ
and ðπ=4; πÞ] on the momentum sphere across the phase
transition point βc ¼ −2. We observe jumps of both spin
vectors and tensors at the transition [39].
To measure the change of monople charge, we consider

small loops [solid lines in Fig. 1(a)] on the momentum
sphere surrounding the gap-closing point. After the ground
state preparation of the initial Hamiltonian, we evolve the

FIG. 2. Phase transition characterized by the jump of spin
vector and tensor. Error bars correspond to 1 standard deviation.
Insets: tensor ellipsoids and their projection on the x, y, and
z plane at α ¼ 0.95 (left with C ¼ 2) and α ¼ 1.05 (right with
C ¼ 1), with β ¼ 0. The red circles and lines are the projections
of the theoretical tensor ellipsoids. The experimental imperfec-
tion leads to a finite axis length of the ellipsoid along the
z direction ∼0.3, corresponding to a bias of 0.32 ∼ 10% in
measuring N̂ij.
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state by subsequently applying an adiabatic ramp of the
parameters along the loop L: θ ¼ ð3π=4Þ − ð3=4Þr cos τ
and ϕ ¼ π −

ffiffiffi
3

p
r sin τ with a nearly uniform gap, where

we ramp τ from 0 to 2π with a constant rate. By
programming separate channels of the AWG and setting
τ ¼ 2πt=T, we generate the desired time-dependent
Hamiltonian along the loop [39], with T the maximum
ramp time of 1 ms. We choose r ¼ 0.2, and the ramp rate is
separately checked via a numerical simulation to ensure a
required level of adiabaticity and coherence [39]. We
observe a number of hF̂ii, hN̂iji at various τ (see Fig. 3
for β ¼ −1.9 as an example) by measuring the eigenstate
populations of these observables, from which we obtain the
spin-vector length F, the Euler angles ϕT; θF;ϕF. Finally,
we arrive at the Berry phase γ ¼ γF þ γT . By repeatedly
measuring the Berry flux over a selection of β, we observe
the Berry flux changes from 0 at jβ þ 2j ≫ 0 to approx-
imately �π at jβ þ 2j ¼ 0, with a sharp transition by 2π at
β ¼ −2 [see Fig. 4(a)]. Similarly, one could apply meas-
urement of the Berry flux on the loop around
θc ¼ 3π=4;ϕc ¼ 0, and the Berry flux should also change
by 2π. Thus, the monople charge must change by 2 across
the phase transition at βc ¼ −2, i.e., C changes from 2 to 0.
Ideally, we should consider an infinitely small loop r ≈ 0

to obtain a sharp transition exactly at β ¼ −2; however,
such an evolution requires an infinitely slow ramp rate and
measurement resolution, thus rendering it not feasible in
practice. Nevertheless, a finite size loop with r ¼ 0.2 is
good enough to show the phase transition. For a finite but

small loop, the Berry flux is also small unless there is a
nonanalytical gap-closing point within the loop, so we can
restrict the Berry flux to ½−π; π�, and the jump between �π
gives the critical point. Such a jump for r ¼ 0.2 can be seen
around β ¼ −1.98 in the numerical simulation, away from
which, the Berry flux changes smoothly, as shown in
Fig. 4(a).
We plot and observe relative rotations of the tensor

ellipsoid with respect to the spin vector along the loop L
with β ¼ −2.2, as illustrated in Fig. 4(b), and the direction
of tensor ellipsoids are more sensitive to experimental
noises when the two transverse axes have similar length.
We find ϕT undergoes a sinelike oscillation along the loop
while F undergoes a cosinelike oscillation. Such rotation
gives a nontrivial spin-tensor contribution

H
L FdϕT ≃

0.18π for the Berry flux around the phase transition. For
the phase transition with β ≠ 0, both the spin vectors and

FIG. 3. Measured spin tensors at different position τ along the
loop L with α ¼ 0; β ¼ −1.9. Blue circles and red triangles are
hN̂xyi and hN̂zzi respectively (more data can be found in the
Supplemental Material [39]). In the inset, green squares, yellow
circles, and purple triangles show the populations Pi¼f1;2;3g
respectively for the eigenstates of N̂zz. Error bars correspond
to 1 standard deviation. Solid lines represent the corresponding
numerical simulations.

FIG. 4. Berry flux and trajectory of corresponding ellipsoids.
(a) Berry flux γ through the loop L versus β. Blue circles, red
triangles, and yellow squares are the experimental data of γ, γF,
and γT respectively with r ¼ 0.2; the solid lines are the
corresponding numerical simulations in the adiabatic limit.
Purple and green dashed lines are the numerical simulations of
γ and γT with r ¼ 0.01 respectively. Error bars correspond to 1
standard deviation. (b) Measurements of the tensor ellip-
soids along the adiabatic loop at β ¼ −2.2, with τ ¼
f0; 0.19; 0.48; 0.95; 1.05; 1.71; 1.81; 1.90gπ starting from the
top left along the direction indicated by black arrows. The red
solid (green dashed) lines represent the direction of the short axis
of the ellipsoid from experimental data (numerical simulations),
showing the evolution of ϕT and the rotation with respect to hF̂i.
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tensors contribute to the Berry flux, independent from the
choice of reference axis defining the Euler angles. Though
different choices (with quantum states related by gauge
transformations) will modify ðϕT; θF;ϕFÞ and thereby γF
and γT , γ remains invariant. For systems with certain
symmetries (e.g., the cylindrical symmetry), it is possible
to eliminate γT by proper choice of the reference axis [39].
By now we have demonstrated the topological phase
transition by measuring the sudden change of the Berry
flux. To visualize the monopole at k0 ¼ 0, we can measure
the total Berry flux on the sphere S based on generalized
solid angles.Alternatively, a distribution of spin polarization
hF̂i on the sphere can also be used to visualize a monopole,
as demonstrated in the Supplemental Material [39].
Conclusion.—In summary, we experimentally explore

the momentum-space spin-1 Hamiltonian and observe the
tensor-driven transitions between different types of TDPs
with a trapped ion. By examining the vector arrow and
tensor ellipsoid properties around the gap-closing points,
we experimentally observe the transitions between different
monopole charges of the TDP. Our Letter demonstrates the
feasibility of measuring Berry flux of high-spin systems
based on the generalized solid angle traced out by the spin
moments (vectors and tensors) which can apply to general
three-band systems, paving the way for exploring topo-
logical phenomena directly from the geometric rotations of
the spin moments in such systems. Moreover, our study can
be generalized to explore topological phenomena such as
triply degenerate points with larger monopole charges and
higher-order dispersions [19,20,42] as well as higher-fold
degenerate points [43], since we have full control of the
detunings, couplings of the three levels and our setup may
be readily scaled to more levels based on our experimental
techniques for 9Beþ ion, which can be extended to more
ions with multiple levels therein [44–46].
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