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Abstract

Explicit asymptotic bias formulae are given for dynamic panel regression estimators as the cross

section sample size N !1. The results extend earlier work by Nickell [1981. Biases in dynamic

models with fixed effects. Econometrica 49, 1417–1426] and later authors in several directions that

are relevant for practical work, including models with unit roots, deterministic trends, predetermined

and exogenous regressors, and errors that may be cross sectionally dependent. The asymptotic bias is

found to be so large when incidental linear trends are fitted and the time series sample size is small

that it changes the sign of the autoregressive coefficient. Another finding of interest is that, when

there is cross section error dependence, the probability limit of the dynamic panel regression

estimator is a random variable rather than a constant, which helps to explain the substantial

variability observed in dynamic panel estimates when there is cross section dependence even in

situations where N is very large. Some proposals for bias correction are suggested and finite sample

performance is analyzed in simulations.
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1. Introduction

In an influential paper, Nickell (1981) showed that in dynamic panel regressions the well
known finite sample autoregressive bias (Orcutt, 1948; Kendall, 1954) in time series models
persists asymptotically in large panels as the cross section sample size dimension N !1.
Nickell gave analytic formulae for this bias and found that its magnitude was considerable
in many cases relevant to applied research. In consequence, bias reduction procedures have
been proposed for practical implementation with a variety of dynamic panel estimators
(e.g. Kiviet, 1995; Hahn and Kuersteiner, 2002). The literature is reviewed in Arellano and
Honoré (2000), Baltagi (2001) and Arellano (2003).

The present paper extends this work in several directions that are relevant for empirical
applications. The cases studied here include dynamic panel models with a unit root,
deterministic linear trends, exogenous regressors, and errors that may be cross sectionally
dependent. Many, and sometimes all, of these elements appear in applied work with
dynamic panels. The main contribution of the paper is to provide new bias/inconsistency
formulae for dynamic panel regressions in these cases, focusing on pooled least squares
regression estimates. It is, of course, well known that instrumental variable and GMM
procedures provide consistent estimates of dynamic coefficients in cases where pooled least
squares is inconsistent (see Baltagi, 2001; Hsiao, 2003; Arellano, 2003, for recent
overviews). However, these procedures are also known to suffer bias (Hahn et al., 2001)
and, more significantly, weak instrumentation problems (Kruiniger, 2000; Hahn et al.,
2001) when the dynamic coefficient is close to unity, as it often is in practical work. They
can therefore be an unsatisfactory alternative in such cases, even when the time series
sample size T is large, because of high variance (Phillips and Sul, 2003) and slow
convergence (Moon and Phillips, 2004) problems. Hahn et al. (2001) have suggested a long
difference estimator to alleviate some of these difficulties, but that estimator is not
investigated here.

Two results of particular interest in the present paper are the size of the bias in models
where incidental trends are extracted and the impact of cross section error dependence on
the bias. In the first case, analytic formulae reveal that the inconsistency as the cross
section sample size N !1 can be huge when the time series sample size (T) is small and
incidental trends are extracted in panel regression. For instance, our results show that
when To8, the inconsistency in the estimate of a panel unit root is large enough to change
the sign of the coefficient from positive to negative. Simulations confirm that this
enormous asymptotic bias also manifests in finite (NÞ samples.

A second result of interest is the impact of heterogeneity and cross section error
dependence on the bias. While mild heterogeneity has no asymptotic effect, cross section
dependence has a major impact on the inconsistency of dynamic panel regression. Under
cross section dependence, it is shown that the probability limit of the dynamic panel
regression estimator is a random variable rather than a constant (as it is in the cross section
independent case). The randomness of this limit as N !1 helps to explain the substantial
variability of dynamic panel estimates that is known to occur under cross section
dependence even when N is very large (e.g., Phillips and Sul, 2003).

The remainder of the paper is organized as follows. Section 2 describes the panel models
that are studied in the paper. Section 3 provides bias formulae for various cases under
cross section independence and relates these to the existing literature. Section 4 considers
the impact of cross section dependence on dynamic panel regression bias, looking at both
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stationary and unit root panels. Section 5 considers some bias reduction methods for both
the cross section independent and dependent cases, and reports the results of some
simulations. Section 6 provides empirical examples and concluding remarks. The appendix
contains derivations of the main results (Section 7).

2. Models

The panel regression models considered here fall into the following categories:
M1: (Fixed effects)

yit ¼ ai þ ryit�1 þ eit; r 2 ð�1; 1Þ;

yit ¼ ai þ y0
it; y0

it ¼ ry0
it�1 þ eit; r ¼ 1:

(

M2: (Incidental linear trends)

yit ¼ ai þ bitþ ryit�1 þ eit; r 2 ð�1; 1Þ;

yit ¼ ai þ bitþ y0
it; y0

it ¼ ry0
it�1 þ eit; r ¼ 1:

(

M3: (Exogenous regressors)

~yit ¼ r ~yit�1 þ
~Z
0

itbþ ~eit; r 2 ð�1; 1�.

In each case, the index i (i ¼ 1; . . . ;NÞ stands for the ith cross sectional unit and t

(t ¼ 1; . . . ;TÞ indexes time series observations. The variables Zit are exogenous. The affix
notation on ~wt signifies that the series wt has been detrended or demeaned and this will be
clear from the context. Models M1 and M2 allow for both stationary (jrjo1) and
nonstationary (r ¼ 1) cases. In M3, we allow for unit root and stationary yit but do not
consider here cases where Zit may have nonstationary elements (i.e., the possibly
cointegrated regression case). In the unit root cases, the initialization of y0

it is taken to be
y0

i0 ¼ Opð1Þ and uncorrelated with feitgtX1.
The cases of cross section independence and cross section dependence for the panel

regression errors will be considered separately in Sections 3 and 4. We take first the case
where the errors eit in the above models are independent across i. The following section
derives explicit formulae for the asymptotic bias of the least squares estimates of r and b in
that case, giving the inconsistency plimN!1 ðr̂� rÞ for each model where r̂ is the panel
least squares estimate of r. Section 4 studies the inconsistency of these estimates when
there is cross section dependence.

3. Models with cross section independence

This section includes three subsections, one for each model, and deals separately with
the stationary and panel unit root cases. Before proceeding, one important difference in
autoregressive bias between the time series AR(1) and panel AR(1) should be mentioned:
there is negligible bias when the fixed effect is known (or zero) in the panel AR(1) model
for large N. It is well known that the bias in an autogression with known mean arises from
the asymmetry of the distribution of the least squares estimator r̂ and is a finite sample (T)
phenomenon. A similar phenomenon occurs in panel autoregressions with finite T and
finite N when the mean is known. However, in panel autogressions with a known mean, the
averaging across section eventually removes the asymmetry of the distribution as N !1.



ARTICLE IN PRESS
P.C.B. Phillips, D. Sul / Journal of Econometrics 137 (2007) 162–188 165
Hence, for large N the distribution of r̂ is close to symmetric about r and bias is negligible.
Only when N is small is the bias important in the known fixed effect case.

On the other hand, when the fixed effect is estimated or when there are incidental trends to
be removed, autoregressive bias can be large and it persists even as N !1. As Orcutt (1948)
pointed out, the removal of a mean or trend from the data in an autoregression produces an
additional source of bias arising from the correlation of the error and the lagged dependent
variable. In a panel model with incidental fixed effects and/or trends, this additional source of
bias is not diminished as N !1, as is well understood from Neyman and Scott (1948) and
Nickell (1981). Interestingly, that inconsistency persists even as T !1 when r ¼ 1þ c=T

and the parameter being estimated is local to unity (Moon and Phillips, 1999, 2000, 2004).

3.1. Fixed effects model M1

We first consider the stationary case where jrjo1, under cross section error
independence for eit and where the initial conditions are in the infinite past. The following
explicit error condition is convenient.

Assumption A1 (Error condition). The eit have zero mean, finite 2þ 2n moments for some
n40, are independent over i and t with Eðe2itÞ ¼ s2i for all t, and limN!1 ð1=NÞ

PN
i¼1 s

2
i ¼ s2.

Nickell (1981) assumed iidð0;s2Þ errors eit but this is easily relaxed to allow for mild
heterogeneity under regularity conditions of the type given in A1. The bias for the pooled
least squares estimate of r in large cross section (N) asymptotics follows in the same way as
Nickell (1981) and turns out to have the same form when there are heterogeneous errors.
The calculations are straightforward and are not repeated here. Here we simply provide the
final formulae for Nickell bias1

plim
N!1

ðr̂� rÞ ¼ �Aðr;TÞBðr;TÞ�1:¼Gðr;TÞ (1)

where ‘‘:¼’’ stands for definitional equality, and Aðr;TÞ ¼ ½Tð1� rÞ��1½T � ð1� rT Þ

ð1� rÞ�1�, Bðr;TÞ¼½ðT�1Þð1� r2Þ�1�½1�2r½ð1� rÞðT � 1Þ��1ð1� ð1� rT Þ½Tð1� rÞ��1Þ�.
For large T , the inconsistency is given by the simple expression, Gðr;TÞ ¼ �ð1þ rÞT�1 þ
OðT�2Þ for ro1 and Gð1;TÞ ¼ 3=T þOðT�2Þ for r ¼ 1.

3.2. Incidental linear trend model M2

In this case there are heterogenous linear trends and constants as fixed effects. The
pooled least squares estimate of r has the form r̂ ¼ C

y
NT=DNT , where

C
y
NT ¼

XN

i¼1

XT

t¼1

ðyit � yi�Þðyit�1 � yi��1Þ

"

�

PT
t¼1½ðt� t̄Þðyit � yi�Þ�

PT
t¼1½ðt� t̄Þðyit�1 � yi��1Þ�PT

t¼1ðt� t̄Þ2

#
,

1For T ¼ 3. there is a typographical error in Nickell (1981), the correct formula being

plim
N!1

ðr̂� rÞ ¼ �
ð1þ rÞð2þ rÞ

2ðrþ 3Þ
T ¼ 3.
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and

DNT ¼
XN

i¼1

XT

t¼1

yit�1 � yi��1 �

PT
t¼1½ðt� t̄Þðyit�1 � yi��1Þ�PT

t¼1ðt� t̄Þ2
ðt� t̄Þ

" #2
.

Setting CNT ¼ C
y
NT � rDNT ; the inconsistency as N !1 with T fixed is

plim
N!1

ðr̂� rÞ ¼
plimN!1ð1=NÞCNT

plimN!1 ð1=NÞDNT

,

whose exact form and asymptotic (large T) representation are given in the following result.

Proposition 1 (Linear trend fixed effects with jrjo1). As N !1, for model M2 under

Assumption A1, the inconsistency of the pooled least squares estimate for ro1 is given by

plim
N!1

ðr̂� rÞ ¼ �
Cðr;TÞ
Dðr;TÞ

:¼Hðr;TÞ, (2)

where

Cðr;TÞ ¼
1

T � 1

2

1� r
ðT � 1Þ �

2

1� r
C1

� �
, ð3Þ

Dðr;TÞ ¼
T � 2

1� r2
1�

1

T � 2

4r
1� r

D1

� �
ð4Þ

and expressions for C1 and D1 are given in (40) and (41) in the Appendix. For large T , the

inconsistency has the following expansion

Hðr;TÞ ¼ 2
1þ r

T
½1þOðT�1Þ�. (5)

Later calculations will extend these formulae to the case where the errors are cross
section dependent. From the expansions (5) and (1) for Hðr;TÞ and Gðr;TÞ, it is apparent
that the bias in the case of incidental trends is approximately twice that of the simple fixed
effects model M1. For small T , the magnitude of the bias in the trend model M2 is slightly
larger than twice that of the fixed effects model M1. By direct calculation, the exact bias
formula for some cases of small T are

Hðr;TÞ ¼

1

2

4þ 3r� r2

3� r
for T ¼ 3;

1

2

5þ 6r� r3

5� r2
for T ¼ 4:

8>>><
>>>:

(6)

Applying the fifth derivative version of l’Hôpital’s rule directly to Hðr;TÞ in (2) with
respect to r we obtain the limit behavior for the unit root case, viz., limr!1 Hðr;TÞ ¼
7:5=ðT þ 2Þ. Thus, when yit is a panel unit root process, the inconsistency for the pooled
OLS estimator under model M2 is given by

plim
N!1

ðr̂� 1Þ ¼ �
7:5

T þ 2
, (7)

a result that was earlier obtained by Harris and Tzavalis (1999). When r ¼ 1 the bias for
model M2 is more than twice that in model M1 for all T43.
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Fig. 1. Sample data before detrending (T ¼ 3;N ¼ 1000;r ¼ 0:9; r̂ ¼ 0:90Þ.
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Fig. 2. Sample data after detrending (T ¼ 3, N ¼ 1000; r ¼ 0:9, r̄ ¼ plimN!1 r̂ ¼ �0:502, r̂ ¼ �0:53).
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Perhaps the most striking feature of the autoregressive bias in model M2 is that when T

is small, the pooled least squares estimate of r is often negative even when the true
autoregressive coefficient r is (near) unity. To illustrate the dramatic nature of these bias
effects we show the results of detrending on a short time series panel. Fig. 1 shows a sample
plot of data generated by the true panel relation between yit and yit�1 for which ai ¼ bi ¼ 0
in M2 and with r ¼ 0:9 and T ¼ 3. This sample plot shows a clear positive relationship
between yit and yit�1 (the fitted r̂ ¼ 0:907). After detrending the data by removing
incidental trends, the sample plot of the new data is shown in Fig. 2, where the relationship
between yit and yit�1 is now seen to be clearly negative (the fitted r̂ ¼ �0:529). The
autoregressive bias in this case is so large that it distorts the correlation into the opposite
direction: strongly positive autocorrelation (r ¼ 0:9) becomes strong negative autocorrela-
tion (r̄ ¼ plimN!1 r̂ ¼ 0:9� 1:402 ¼ �0:502) in the detrended sample data. The reason
for this distortion is clear. When T is small and there is positive autoregressive behavior in
the panel yit, incidental trend extraction (for each iÞ can have such a powerful effect on the
configuration of the data that the detrended observations ~yit behave as if they were actually
negatively autocorrelated.
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3.3. Exogenous regressor model M3

In many panel model applications, such as the original study by Balestra and Nerlove
(1966) on the demand for natural gas, exogenous variables are included in addition to
lagged dependent regressors in the specification. Another example that is important in
ongoing practical work is the panel analysis of growth convergence, where specific
covariates contributing to economic growth are included as well as dynamic effects. The
effect of the presence of such variables can be analyzed in the context of models like M3.
Stacking cross section data first and then time series observations, model M3 can be

written as

~yt ¼ r ~yt�1 þ
~Z
0

tbþ ~et and ~y ¼ r ~y�1 þ ~Zbþ ~e; say, (8)

where the tilde affix on ~w signifies that the series w has been demeaned or detrended.

Setting Q ~Z ¼ I � ~Zð ~Z
0 ~ZÞ�1 ~Z

0
, we have

plim
N!1

ðr̂� rÞ ¼ plim
N!1

1

N
~y0�1Q ~Z ~y�1

� ��1
plim
N!1

1

N
~y0�1Q ~Z~e

� �
, (9)

and

plim
N!1

ðb̂� bÞ ¼ � plim
N!1

ð ~Z
0 ~ZÞ�1ð ~Z

0
~y�1Þ

� �
plim
N!1

ðr̂� rÞ. (10)

Calculations similar to those in the preceding section then lead to the following result on
the inconsistency of these estimates.

Proposition 2 (Exogenous variables, fixed and trend effects). As N !1, for model M3

under Assumption A1 and with jrjo1, the inconsistency of the pooled least squares estimate

of r is given in the fixed effects case by

plim
N!1

ðr̂� rÞ ¼ �
s2Aðr;TÞ

s2Bðr;TÞ þ b0½plimN!1 ð1=NÞ ~Z
0

r;�1Q ~Z
~Zr;�1�b

, (11)

and in the incidental trends case by

plim
N!1

ðr̂� rÞ ¼ �
s2Cðr;TÞ

s2Dðr;TÞ þ b0½plimN!1 ð1=NÞ ~Z
0

r;�1Q ~Z
~Zr;�1�b

, (12)

where ~Zr;�1 ¼ ð ~Z
0

r;0; . . . ; ~Z
0

r;T�1Þ
0 with ~Zr;t ¼ ð ~Z

1

r;t; . . . ; ~Z
N

r;tÞ
0 and ~Z

i

r;t ¼
P1

j¼0 r
j ~Zit�j. The

inconsistency of the pooled estimate of b is

plim
N!1

ðb̂� bÞ ¼ � plim
N!1

ð ~Z
0 ~ZÞ�1 ~Z

0 ~Zr;�1b
� �

plim
N!1

ðr̂� rÞ. (13)

These formulae continue to apply in the unit root case r ¼ 1 upon replacement of Aðr;TÞ,
Bðr;TÞ, Cðr;TÞ, and Dðr;TÞ with AðTÞ, BðTÞ, CðTÞ, and DðTÞ, respectively, which are

defined in (43) and (46), and ~Zr;�1 by ~Z1;�1 ¼ ð ~Z
0

1;0; . . . ; ~Z
0

1;T�1Þ
0 where ~Z1;t ¼ ð ~Z

1

1;t; . . . ; ~Z
N

1;tÞ
0

and ~Z
i

1;t ¼
Pt�1

j¼0
~Zit�j.

Note that when b ¼ 0, the inconsistency (11) and (12) is the same as in the case of
models M1 and M2 with no exogenous variables. When ba0, the inconsistency is clearly
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smaller in absolute value than when there are no exogenous variables. Note that this is the
opposite conclusion to that reached in Nickell (1981, p. 1424).2 Nickell argued that the
denominator in (9) is smaller than it is in the case of no exogenous variables because of the
effect of the projection operator Q ~Z which reduces the magnitude of the sum of squares in
the sense that ~y0�1Q ~Z ~y�1p ~y0�1 ~y�1. While this is certainly correct, the argument neglects the
fact that when exogenous variables are present in the model they also affect the variability
of the data ~yt. In particular, when jrjo1 we have

~yit ¼
X1
j¼0

rj ~Zit�jbþ
X1
j¼0

rj ~eit�j:¼ ~Zritbþ ~y0
it; say (14)

and using the stacked notation ~y ¼ ~Zrbþ ~y0 and its lagged variant, we find that

plim
N!1

1

N
~y0�1Q ~Z ~y�1 ¼ b0 plim

N!1

1

N
~Z
0

r;�1Q ~Z
~Zr;�1

� �
bþ plim

N!1

1

N
~y00
�1 ~y

0
�1

¼ b0 plim
N!1

1

N
~Z
0

r;�1Q ~Z
~Zr;�1

� �
bþ s2Bðr;TÞ. ð15Þ

It is clear from (15) that we have the reverse inequality ~y0�1Q ~Z ~y�1X ~y00
�1 ~y

0
�1, the left side

being the denominator for the case where exogenous variables are present in the model and
the right side being the denominator for the case where there are no exogenous variables.
Similar effects apply in the case of models with incidental trends. In short, the presence of
exogenous variables reduces the extent of the inconsistency of r̂ whenever these variables
have a material effect on data variability, i.e. when ba0.

An exception occurs in the case where the model has the following components form
instead of (14):

~yit ¼
~Zitbþ ~y0

it. (16)

In this case, the fitted regression model M3 is replaced by

~yit ¼ r ~yit�1 þ
~Zitb1 þ ~Zit�1b2 þ ~eit with b1 ¼ b and b2 ¼ �rb (17)

and then ~y ¼ r ~y�1 þ ~Zgþ ~e with ~Z comprising a stacked version of ð ~Zit; ~Zit�1Þ. It is
apparent that instead of (15) we now have plimN!1 ð1=NÞ ~y0�1Q ~Z ~y�1 ¼ s2Bðr;TÞ and the
Proposition continues to hold but without the second term in the denominator in (11) and
(12). In this case, the inconsistency of r̂ is unchanged by the presence of exogenous
variables and the inconsistency of b is given by

plim
N!1

b̂1 � b1
b̂2 � b2

 !
¼

0

�b plim
N!1

ðr̂� rÞ
� �0

@
1
A (18)

in place of (13).

4. Models with cross section dependence

Bai and Ng (2002), Forni et al. (2000), Moon and Phillips (2004), and Phillips and Sul
(2003) provide some recent investigations of panel models with cross section dependence.
2Sevestre and Trognon (1985) also found that the presence of exogenous variables attenuates the bias.



ARTICLE IN PRESS
P.C.B. Phillips, D. Sul / Journal of Econometrics 137 (2007) 162–188170
In all these studies, the parametric form of dependence is based on a factor analytic
structure. Broadly speaking, two types of factor models have been employed, the
distinction resting on whether a dynamic structure is explicit or not. FHLR, Moon and
Perron (2004), and Phillips and Sul (2003) all use a factor structure where the dynamics are
explicit in the system. The following model is a prototypical first order panel dynamic
system

yit ¼ ai þ riyit�1 þ uit; uit ¼
XK

s¼1

disyst þ eit, (19)

where the errors uit depend on K factors fyst : s ¼ 1; . . . ;Kg with factor loadings
fdis : s ¼ 1; . . . ;Kg, and eit is assumed to be iidð0;s2i Þ. In this prototypical system, yst and
eit are assumed to be independent of each other and each is assumed to be iid. Also, yst is
taken to be cross sectionally independent of yqt.
The second type of model (e.g., Bai and Ng, 2002) uses a direct factor structure for the

data of the form

yit ¼
XK

s¼1

lisFst þmit. (20)

In (20) there are again K factors and factor loadings fF st; lis : s ¼ 1; . . . ;Kg, F st may be
correlated with Fqt and may have its own time series structure, and the residual mit is
assumed to be cross sectionally independent. When the dynamic factor model (19) has a
homogeneous autoregressive coefficient (ri ¼ r), it can be viewed as a restricted version of
the direct model (20) in which a common dynamic factor can be drawn from each of the
individual factors and the error.
The impact of common factors on dynamic panel regression analysis can be illustrated in

the simple case of a single factor with no fixed effects. Suppose ai ¼ 0 and ri ¼ r in (19) for
all i. Then, the data is generated according to yit ¼ ryit�1 þ diyt þ eit; which we can write in
a convenient component form as

yit ¼ y0
it þ diF t; y0

it ¼ ry0
it�1 þ eit; F t ¼ rF t�1 þ yt. (21)

Let limN!1 ð1=NÞ
PN

i¼1 d
2
i ¼ m2

d be finite. Then, straightforward calculations reveal that
the probability limit of the pooled least squares estimate as N !1 is

plim
N!1

ðr̂� rÞ ¼
plimN!1 ð1=NÞ

PN
i¼1

PT
t¼1 yit�1uit

plimN!1 ð1=NÞ
PN

i¼1

PT
t¼1 y2

it�1

¼
m2

dð
PT

t¼1 Ft�1ytÞ

Tðs2=1� r2Þ þm2
d

PT
t¼1 F 2

t�1

.

(22)

Thus, even with no fixed effects, r̂ is inconsistent and the inconsistency depends on the
degree of cross section dependence and the variance ratio s2=m2

d: Importantly for fixed T ,
the bias is random and depends on the process Ft and factor yt. Obviously for large T and
temporally independent common shocks T�1

PT
t¼1 F t�1yt ¼ opð1Þ, so that in this case the

bias will be small.
While K is fixed and generally taken to be very small (typically K ¼ 1 or 2) in most

macro empirical studies, in microeconometric work it is often reasonable to think of the
number of factors that influence behavior as being potentially large and possible infinite.
For instance, in studies of earnings there are many observable factors in panel data sets
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such as the PSID and equally many unobservables. Also, there are often common factors
for personal income data, such as region, family, male/female ratio, race composition,
education and age composition, to mention just a few; and the number of these factors
may increase as we collect more cross section observations. The number of factors may
further vary across i and change over time.

Thus, we may, in principle at least, consider cases where K !1 as N !1 or where
K ¼ 1, in which there are an infinite number of unobserved factors. In such cases, the
component

PK
s¼1 disyst in (19) can be replaced by an infinite sum

P1
s¼1 disyst, which may be

interpreted as a spatial linear process and on whose coefficients dis some restrictions (and
ordering) must be imposed to ensure convergence. Another approach is to normalize the
coefficients dis by some function of the factor count index K and require the normalized
coefficient disK to be small enough in mean and variance as K !1 to assure existence of
suitable limits of the sample moments of the data. Some recent microeconometric work
utilizing this approach is Altonji et al. (2002). In their work, disK ¼ K�1=2dis and the dis and
ys are taken to be covariance stationary and ergodic zero mean random variates over s for
some given ordering and to satisfy a central limit theorem. If this approach were used
above, (21) would be replaced by

yit ¼ y0
it þ

XK

s¼1

disK F st; y0
it ¼ ry0

it�1 þ eit; Fst ¼ rFst�1 þ yst. (23)

Without going into details over regularity conditions, we can compare this case with result
(22). By independence over i, we would have

lim
N!1

1

N

XN

i¼1

disdip ¼ EðdisdipÞ ¼ mðp� sÞ; say,

and by ergodicity

lim
K!1

1

K

XK�h

s¼1

Fst�1ysþh;t ¼ EðFst�1ysþh;tÞ ¼ gzyðhÞ

for each h. If xst ¼ F st�1ysþh;t � gzyðhÞ and K�1=2
PK�h

s¼1 xst ¼ Op 1ð Þ, then, taking sequential
limits as N !1; followed by K !1, we would have

lim
K!1

plim
N!1

1

N

XN

i¼1

XT

t¼1

yit�1uit

¼ lim
K!1

1

K

XK

s;p¼1

mðp� sÞ
XT

t¼1

F st�1ypt

¼
XT

t¼1

lim
K!1

XK�1
h¼�Kþ1

mðhÞ
1

K

XK�hIfh40g

s¼1�hIfho0g

ðgzyðhÞ þ xstÞ

¼
XT

t¼1

lim
K!1

1

K

XK�1
h¼�Kþ1

mðhÞgzyðhÞ þOp
1ffiffiffiffi
K
p

� �( )
¼ 0, ð24Þ

provided
P1

h¼�1 mðhÞgzyðhÞ is finite. Under this set-up, the dynamic panel estimation bias is
zero in contrast to (22). Of course, this type of argument depends on the appropriateness of
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the weak dependence conditions, which in turn depends on the existence of some spatial
ordering of the factors, and the normalization disK ¼ K�1=2dis or weighting that is involved
as more factors are added. Therefore, the circumstances under which (24) is more
appropriate than (22) are complex and involve many other considerations that deserve
further investigation.
In contrast, aggregate data may reasonably be thought of as having relatively fewer

common factors because in the aggregation process, the effect of the micro
common factors is averaged out. Moreover, with aggregate data, N is often considered
to be fixed, as in the number of countries in cross country studies, whereas T continues to
increase.
The analysis that follows is based on dynamic panel models of the type (19), where the

time series structure is built explicitly into the system behavior of yit. This facilitates
comparisons with the cross section independent case of Nickell (1981) and corresponds
with many models used in the empirical literature such as the original study by Balestra
and Nerlove (1966). We consider first the case where there are no exogenous variables.

4.1. Fixed effects

As in (19), the model extends M1 to accommodate cross section dependent errors as
follows.
Model M1-CSD: (Fixed effects)

yit ¼ ai þ ryit�1 þ uit; r 2 ð�1; 1Þ;

yit ¼ a0
i þ y0

it; y0
it ¼ ry0

it�1 þ uit; r ¼ 1:

(

We deal first with the stationary case. In the unit root case, the initialization y0
i0 is taken to

be Opð1Þ.

Assumption A2 (Cross section dependence). The uit have the factor component structure

uit ¼
XK

s¼1

dsiyst þ eit ¼ d0iyt þ eit, (25)

where the eit satisfy A1, the factors yt are iidð0;SyÞ over t and the factor loadings di are
nonrandom parameters satisfying limN!1 ð1=NÞ

PN
i¼1 did

0
i ¼Md. When K ¼ 1, we set

Sy ¼ s2y and Md ¼ m2
d.

Under A2, we can develop an asymptotic theory for the pooled least squares estimate, r̂;
of the common dynamic coefficient r. It is convenient to use a sequential asymptotic
argument with N !1 followed by T !1. This approach produces a result for the bias
or inconsistency of r̂ as N !1 and the expression can conveniently be written in an
asymptotic format that is valid as T !1. This extends the earlier results (1) and (5) to the
case of cross section dependence. The main result follows.

Proposition 3 (Fixed Effects with r
		 		o1). In model M1-CSD with errors uit having the

factor structure (25) and satisfying assumption A2, the pooled least squares estimate r̂ is

inconsistent as N !1 and

plim
N!1

ðr̂� rÞ ¼ �½s2Aðr;TÞ þ cAT �½s
2Bðr;TÞ þ cBT �

�1, (26)
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where Aðr;TÞ and Bðr;TÞ are defined in Section 3.1,

cAT ¼ �trace
XT

t¼1

ðFyt�1 � F̄ y;�1Þðyt � ȳÞ0Md

( )
; F̄y;�1 ¼ T�1

XT

t¼1

F yt�1 (27)

cBT ¼ trace
XT

t¼1

ðFyt�1 � F̄ y;�1ÞðF yt�1 � F̄y;�1Þ
0Md

( )
, (28)

and F yt ¼
P1

j¼0 r
jyt�j . In the single factor (K ¼ 1Þ case, the inconsistency (26) has the

following asymptotic representation as T !1

plim
N!1

ðr̂� rÞ ¼ �
1þ r

T
�

2r
T

Zþ ZðgyT � EgyT Þ þ opðT
�1Þ, (29)

where Z ¼ s2ym2
dðs

2 þ s2ym
2
dÞ
�1 and gyT ¼ ½

PT
t¼1 ðF yt�1 � F̄y�1Þðyt � ȳÞ�½

PT
t¼1 ðFyt�1 �

F̄y�1Þ
2
��1 is the centred least squares estimate of the slope coefficient in a regression of F yt

on Fyt�1 and a constant, and where EðgyT Þ ¼ �ð1þ 3rÞ=T þ oðT�1Þ.

Remark 1. It is apparent from the form of (26) and (29) that the inconsistency of the panel
estimate r̂ as N !1 is random, as distinct from the nonrandom expression that we
normally get for bias or inconsistency, such as that given by (1) in the cross section
independent case. Note, of course, that when the factor loadings dsi ¼ 0 for all i and s; we
have Md ¼ 0 and then (26) reduces to Gðr;TÞ ¼ �Aðr;TÞ=Bðr;TÞ; and the second term on
the right side of (29) is zero. So, in this case, the results reduce to those that apply in the
cross section independent case. When dsia0 and Mda0; then the components cAT and
cBT in (26) are nonzero random variables with positive variance. Likewise, the third term
of (29) is nonzero. So the immediate contribution of cross section dependence is to
introduce variability into the inconsistency of r̂ and additional bias.

Remark 2. In the single factor model (K ¼ 1), the inconsistency expression (29) involves
the regression coefficient error gyT of F yt, and (29) can be written as

plim
N!1

ðr̂� rÞ ¼ �
1þ r

T
� Z

2r
T
þ ðEgyT � gyT Þ

� �
þ opðT

�1Þ.

The second term in this expansion of the inconsistency involves the factor Z which is less
than unity and whose magnitude decreases as s2 increases. Hence, as the importance of the
error component eit grows (i.e. as s2 ¼ limN!1 ð1=NÞ

PN
i¼1 s

2
i increases), then the relative

importance of the random component in the inconsistency (arising from the presence of
cross section dependence) diminishes.

Remark 3. Next consider the case where there is a large number of factors. To simplify,
assume that the factors ykt are iidð0;s2yÞ over both k and t and with finite fourth moments;
that Md ¼ diagðm2

1;m
2
2; . . . ;m

2
K Þ is diagonal, supk m4

ko1, and that K�1
PK

k¼1 m2
k ! m240

as K !1. Then, setting xkT ¼
PT

t¼1 ðFykt�1 � F̄yk ;�1Þykt and noting that xkT is iid over k
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with mean EðxkT Þ ¼ s2yAðr;TÞ and finite variance, we find that

K�1cAT ¼ � K�1
XK

k¼1

m2
k

XT

t¼1

ðF ykt�1 � F̄yk ;�1Þðykt � ȳkÞ

( )
¼ �K�1

XK

k¼1

m2
kxkT

¼ � K�1
XK

k¼1

m2
kEðxkT Þ � K�1

XK

k¼1

m2
kfxkT � EðxkT Þg

¼ m2s2yAðr;TÞ þ op 1ð Þ as K !1.

In a similar way,

K�1cBT ¼ K�1
XK

k¼1

m2
k

XT

t¼1

ðFykt�1 � F̄yk ;�1Þ
2

( )
¼ m2s2yBðr;TÞ þ opð1Þ as K !1.

It follows that

lim
K!1

plim
N!1

ðr̂� rÞ ¼ �
Aðr;TÞ
Bðr;TÞ

¼ Gðr;TÞ. (30)

Thus, when there are a large number of independent factors, the dynamic panel bias of the
cross section dependent case becomes less random and as K !1 it converges to the bias
of the cross section independent case. Fig. 3 illustrates this effect by showing the bias
distribution for various values of K, against that of the cross section independent case. This
result appears to be relevant for micro panel data situations where large numbers of
independent factors are involved. Of course, in such models some observable common
factors (such as region or environmental effects) will be explicitly included in the
specification of the model, so that the impact of unobserved common factors is reduced.

Remark 4. In the unit root case ðr ¼ 1Þ, the same limit theory applies. In particular, (26)
holds and

plim
N!1

ðr̂� 1Þ ¼ �½s2Að1;TÞ þ cAT �½s
2Bð1;TÞ þ cBT �

�1,
0

0.1
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Fig. 3. Random bias under cross section dependence: T ¼ 5; r ¼ 0:5, dis � iid Nð0; 1Þ, yst � iid Nð0; 1Þ, and

eit � iid Nð0; 1Þ.
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with Að1;TÞ ¼ ðT � 1Þ=2 and Bð1;TÞ ¼ ðT � 1ÞðT þ 1Þ=6. When K ¼ 1; we then get the
expansion

plim
N!1

ðr̂� 1Þ ¼ �
3

T
� Z

3

T
þ gyT

� �
þ opðT

�1Þ

in place of (29).

4.2. Incidental trends

We take M2 and allow for errors uit that satisfy Assumption A2:
Model M2-CSD (Incidental trends)

yit ¼ ai þ bitþ ryit�1 þ uit; r 2 ð�1; 1Þ;

yit ¼ ai þ bitþ y0
it; y0

it ¼ ry0
it�1 þ uit; r ¼ 1:

(

It will be convenient to define the following notation to represent the residual from linear
detrending the variable wt:

wt
t ¼ wt � aw

T � bw
T t,

where

aw
T ¼

2ð2T þ 1Þ

TðT � 1Þ

XT

t¼1

wt

 !
�

6

TðT � 1Þ

XT

t¼1

twt,

bw
T ¼

12

TðT2 � 1Þ

XT

t¼1

twt �
6

TðT � 1Þ

XT

t¼1

wt.

Derivations similar to those of Proposition 3 provide the following analogue of (26)
and (29).

Proposition 4 (Incidental Trends with jrjo1). In model M2-CSD with errors uit having the

factor structure (25) and satisfying assumption A2, the pooled least squares estimate r̂ is

inconsistent as N !1 and

plim
N!1

ðr̂� rÞ ¼ �½s2Cðr;TÞ þ cCT �½s
2Dðr;TÞ þ cDT �

�1, (31)

where Cðr;TÞ and Dðr;TÞ are defined in (3) and (4),

cCT ¼ �trace
XT

t¼1

F t
yt�1y

t0
t Md

( )
; cDT ¼ trace

XT

t¼1

F t
yt�1F

t0
yt�1

( )
, (32)

and where Fyt ¼
P1

j¼0 r
jyt�j and ~F

t
yt ¼ Fyt � aF y

T � bFy
T t is detrended F yt so is ytt . In the

single factor (K ¼ 1) case, the inconsistency (31) has the following asymptotic representation

as T !1

plim
N!1

ðr̂� rÞ ¼ �2
1þ r

T
� Z

2r
T
þ ðEhyT � hyT Þ

� �
þ opðT

�1Þ, (33)

where hyT ¼ cCT=cDT ¼
PT

t¼1 F t
yt�1y

t
t=
PT

t¼1ðF
t
yt�1Þ

2 is the centred least squares estimate of

the slope coefficient in a regression of F t
yt on F t

yt�1, and where EðhyT Þ ¼ �2ð1þ 2rÞ=
T þ oðT�1Þ.
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The unit root case for model M2-CSD is handled in a similar way. As in the M1-
CSD.model, direct calculation is needed because it is no longer possible to extract the unit
root case by taking the limit as r! 1, in view of the randomness of the limit functions (32)
and (33). The inconsistency of r̂ for the case of unit root is given by

plim
N!1

ðr̂� 1Þ ¼ �
7:5

T
� Z

3

T
þ hyT

� �
þ opðT

�1Þ
5. Bias reduction and simulations

5.1. Cross section independence

Under cross section independence, bias correction is straightforward especially when N

is moderately large, regardless of the value of T . First, consider the bias correction strategy
when there are no exogeneous variables. An (asymptotically) unbiased estimator can be
obtained through inversion of the mean function, i.e.,

r̂MUE ¼ m�1ðr̂Þ,

where m�1 is the inverse of the function G þ r for the fixed effects case and H þ r for the
case of a model with incidental trends. This estimator can be obtained by direct numerical
calculation and can be called a ‘‘mean unbiased estimator’’. End corrections can be
implemented at unity, so that in effect

r̂MUE ¼ 1 if
r̂X1� 3=T fixed effects case;

r̂X1� 7:5=T linear trend case:

(

When there are exogenous regressors, bias correction is still fairly straightforward. To
fix ideas, consider the case of only two exogenous regressors which affect yit in levels and in
quasi-differences as in.

yit ¼ ai þ ryit�1 þ g1wit þ g2wit�1 þ bzit þ eit; g2 ¼ �g1r. (34)

Here wit may be regarded as affecting yit in levels (i.e. after removing the autoregressive
transformation) while zit affects yit in the quasi-difference form yit � ryit�1. We assume
that the variable zit is totally exogenous in the sense that it is uncorrelated with both
(wis; eisÞ for all t and s.3 As discussed earlier (cf. (18)), the estimate ĝ1 does not suffer from
asymptotic bias, while the biases of b̂ and r̂ depend on the true values of b and r. To
separate the bias of r̂ from b, we run a regression of yit on fyit�1;wit;wit�1g with fixed
effects, i.e.,

yit ¼ b̂i þ r̂�zyit�1 þ ĝ1wit þ ĝ2wit�1 þ ûit.

The bias of the estimator r̂�z is given by the functions G þ r and H þ r for fixed effects
and for linear trends, respectively. Since plimN!1 r̂�z ¼ mðr;TÞ, asymptotically mean
3The latent model underlying (34) is given by yit ¼ g1wit þ uit, uit ¼ ruit�1 þ eit, and eit ¼ bzit þ eit. The

assumption of exogeneity for wit implies that Ewituis ¼ 0 for all t and s; while the assumption of total exogeneity

for zit means that Eziteis ¼ 0 and Ezitwis ¼ 0 for all t and s.
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unbiased estimators can be defined as

r̂MUE ¼ m�1ðr̂�zÞ; ĝ2;MUE ¼ ĝ2 þ ĝ1ðr̂�z � r̂MUEÞ,

using (18). A bias corrected estimator of b can be obtained by running the following
regression

yit � r̂MUEyit�1 � ĝ1wit � ĝ2;MUEwit�1 ¼ bi þ bzit þ eit.

The panel least squares estimator in this regression is asymptotically mean unbiased since
the asymptotic bias of r̂ and ĝ2 has been removed.

5.2. Cross section dependence

We distinguish two general types of panel data. For micro panel data such as the PSID,
the number of factors as well as the number of cross sectional units will often be large while
the number of time periods is small. As shown earlier, when the factors are independent
and the number of factors K is large, the randomness in the bias arising from cross section
dependence is attenuated and the bias is similar to that which applies under cross section
independence. In such cases, common time effects or time dummies is usually
recommended and this helps to reduce the efficiency loss arising from cross section
dependence (Phillips and Sul, 2003).

In contrast, for aggregated panels like regional income and consumption data, the time
dimension may be reasonably long but there may only be one or two common factors. As
we have seen, in such cases the bias is random and depends on the unknown common
factors, and pooled OLS has high variability as well as bias. The practical issue is to reduce
bias and variability in estimation. One approach is to construct a feasible generalized least
squares (FGLS) estimator, which can be accomplished either by using the iterative method
of moments procedure in Phillips and Sul (2003) or by using the sample covariance matrix
of the residuals ûit ¼ ~yit � r̂lMUE ~yit�1 where ‘�’ stands for demeaned or detrended yit and
r̂lMUE is defined below.

The properties of FGLS depend on the first stage estimator and if this estimator is
inconsistent (like panel OLS), then so is FGLS. The mean unbiased estimator (based on
the bias formula that applies under cross section independence) is also inconsistent under
cross section dependence. Its bias for the case of fixed effects and a single common factor
has asymptotic expansion given by

plim
N!1

ðr̂MUE � rÞ ¼ �
2r
T
þ ðEgyT � gyT Þ

� �
Zþ opðT

�1Þ (35)

which is small for large T. The use of common time effects or time dummies in the
regression can be shown to reduce this bias. That is, if the regression model is augmented as

yit ¼ ai þ lt þ ryit�1 þ uit,

and estimated by pooled OLS with a mean correction based on the cross section
independent case (giving the estimate r̂lMUEÞ, then the asymptotic bias of r̂lMUE has the
following expansion

plim
N!1

ðr̂lMUE � rÞ ¼ �
2r
T
þ ðEgyT � gyT Þ

� �
ðm2

d � d̄
2
Þs2y

s2 þ ðm2
d � d̄

2
Þs2y
þ opðT

�1Þ,
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where d̄ ¼ limN!1N�1
PN

i¼1 di. Since

Z�
ðm2

d � d̄
2
Þs2y

s2 þ ðm2
d � d̄

2
Þs2y
¼

d̄
2
s2s2y

ðs2 þm2
ds

2
yÞðs

2 þ ðm2
d � d̄

2
Þs2yÞ

X0,

with equality holding when d̄ ¼ 0, the mean corrected estimator with common time effects
reduces bias and variation.
An alternative option is to attempt to eliminate the factor loading coefficients di in the

regression. One approach that has recently been considered in the literature is to project
out the factor yt by including cross sectional averages of yit and yit�1 in the regression
(Pesaran, 2002). This can be accomplished by rewriting the model M1 in the following
augmented regression form

yit ¼ aþi þ ryit�1 þ c1i

1

N

XN

i¼1

yit

 !
þ c2i

1

N

XN

i¼1

yit�1

 !
þ eit,

c1i ¼
di

d̄
; c2i ¼ �r

di

d̄
; aþi ¼ ai �

di

d̄
ðāþ ē:tÞ. ð36Þ

Multiple factors can be treated in a similar way. Let the cross section observations be classified
into groups fAk : k ¼ 1; . . . ;Kg with counts Nk ¼ #fi 2 Akg in each group and suppose

Nk=N ! rka0 for all k as N !1. Further, let d̄Ak
¼ N�1k

P
i2Ak

di, define DK ¼ ½d̄A1
; . . . ;

d̄AK
� and assume DK is of full rank K . Set ȳAkt ¼ N�1k

P
i2Ak

yit, ȳKt ¼ ðȳA1t; . . . ; ȳAK tÞ
0, āAk

¼

N�1k

P
i2Ak

ai, āK ¼ ðāA1
; . . . ; āAK

Þ
0, ēAkt ¼ N�1k

P
i2Ak

eit, and ēKt ¼ ðēA1t; . . . ; ēAK tÞ
0. Then,

ȳAkt ¼ āAk
þ rȳAkt�1 þ d̄

0

Ak
yt þ ēAkt; yt ¼ D�1K ðȳKt � āK � rȳKt�1 � ēKtÞ.

In this case, the augmented regression has the form

yit ¼ aþi þ ryit�1 þ d0iD
�1
K ðȳKt � rȳKt�1Þ þ eit, (37)

with aþi ¼ ai � d0iD
�1
K āK � d0iD

�1
K ēKt ¼ ai �D�1K āK þ opð1Þ as N !1. Again, (37) may be

estimated in restricted or unrestricted form and the panel estimate of r may be adjusted for
bias just as in the cross section independent case.4

5.3. Monte Carlo studies

We consider two data generating processes (DGPs). The first DGP is for the case of
exogenous variables and is given by

yit ¼ ryit þ bzit þ eit,
4Pesaran (2002) calls the regression in (36) a ‘common correlated regression (CCR)’. Unfortunately, the bias of

the CCR estimator cannot be reduced in a simple way by utilizing a mean bias function. To see this, define

ȳt ¼ ð ~y
0
�t; ~y
0
�t�1Þ

0, My ¼ ytðy
0
tytÞ
�1y0t, and Qy ¼ I �My where ~y�t ¼ N�1

PN
i¼1 ðyit � T�1

PT
t¼1 yitÞ and ~y�t�1 ¼

N�1
PN

i¼1 ðyit�1 � T�1
PT

t¼1 yit�1Þ. The asymptotic bias of the common correlated estimator r̂CCR in (36) is given

by plimN!1ðr̂CCR � rÞ ¼ fplimN!1 ð1=NÞ
PN

i¼1 ~y
0
iQy ~yig

�1fplimN!1 ð1=NÞ
PN

i¼1 ~y
0
iQy~eig. Note that the numera-

tor term becomes �s2eAðr;TÞ, which is the same as in the case of exogenous regressors. However, the

denominator term contains an additional term. In particular, plimN!1 ð1=NÞ
PN

i¼1 ~y
0
iQy ~yi ¼ plimN!1 ð1=NÞPN

i¼1 ~y
0
i ~yi � plimN!1 ð1=NÞ

PN
i¼1 ~y

0
iMy ~yi ¼ s2eBðr;TÞ þ cBT � plimN!1ð1=NÞ

PN
i¼1 ~y

0
iMy ~yias2eBðr;TÞ, where

cBT was defined in (28). The numerator term is the same as that without cross section dependence. This is

because the cAT term vanishes by virtue of the inclusion of cross sectional averages of ȳt and ȳt�1 in (36). At the

same time, the inclusion of ȳt and ȳt�1 means that the denominator includes additional terms, thereby making

bias correction more difficult.
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Table 1

Finite sample performance of MUE with an exogenous variable: ðr ¼ 0:9;b ¼ 1Þ yit ¼ ai þ bitþ ryit�1 þ bzit þ eit

Sample Absolute bias �T MSE ratio

(A) (B) (C) (D) B/A D/C

Fixed effects

T ¼ 5;N ¼ 1000 1.293 0.000 0.585 0.001 0.009 0.021

T ¼ 10;N ¼ 500 1.277 0.001 0.496 0.004 0.019 0.092

T ¼ 25;N ¼ 200 1.195 0.007 0.312 0.006 0.056 0.585

T ¼ 50;N ¼ 100 1.107 0.008 0.180 0.012 0.150 0.942

T ¼ 100;N ¼ 50 1.047 0.026 0.096 0.024 0.420 0.996

Linear trend

T ¼ 5;N ¼ 1000 3.237 0.010 1.623 0.006 0.022 0.020

T ¼ 10;N ¼ 500 3.087 0.078 1.435 0.032 0.037 0.042

T ¼ 25;N ¼ 200 2.771 0.016 1.027 0.002 0.043 0.145

T ¼ 50;N ¼ 100 2.482 0.011 0.664 0.015 0.068 0.560

T ¼ 100;N ¼ 50 2.241 0.021 0.368 0.026 0.158 0.941

Errors are drawn as iid Nð0; 1Þ, the number of replications ¼ 10; 000. A ¼ r̂ (Pooled OLS), B ¼ r̂MUE (Mean

unbiased estimator), C ¼ b̂ (Pooled OLS), D ¼ b̂MUE (Mean unbiased estimator).
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fitting both fixed effects and incidental trends. We consider various values of r but report
the case of r ¼ 0:9, which is representative, to save the space.5 We set b ¼ 1, and generate
eit as iid Nð0; 1Þ. We consider four estimators: the least squares dummy variable (LSDV)
estimator r̂ (A); panel (asymptotically) mean unbiased estimator r̂MUE (B); LSDV
estimator b̂ (C); and the mean unbiased estimator b̂MUE (D).

Table 1 reports the finite sample performance of pooled least squares and mean unbiased
estimators as described in Section 5.1. The results in columns B and D of the Table show
that the bias of r̂MUE and b̂MUE is small in both cases and that these estimates provide a
clear improvement over panel least squares. Moreover, the mean squared error (MSE) of
the mean unbiased estimators are much smaller than those of the LSDV estimators,
especially when N4T .

The second DGP covers the case of cross section dependence given by

yit ¼ ryit�1 þ diyt þ eit.

We set di � U ½1; 4�, eit � iid Nð0; 1Þ and yt � iid Nð0; 1Þ. We consider six estimators: the
least squares dummy variable (LSDV) estimator r̂ (A); LSDV with common time effects r̂l

(B); panel feasible generalized mean unbiased estimator (FGMUE) based on the residual
covariance matrix calculated from r̂ (C); panel FGMUE based on the residual covariance
matrix calculated from r̂MUE (D); panel FGMUE based on the residual covariance matrix
calculated from r̂lMUE (E); and the mean unbiased estimator after eliminating the factor
loading coefficients through Pesaran’s correlated common method (F). The residual
covariance matrices for (C), (D) and (E) are estimated using iterative method of moments
(Phillips and Sul, 2003). We set T ¼ 25; 50; 100 and N ¼ 10; 25; 50; 100, which covers the
most typical data dimensions in empirical studies with macro panel data.
5Full Excel formatted tables are available requested upon authors.
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Table 2

Finite sample performance of various feasible generalized mean unbiased estimator under cross section

dependence ðr ¼ 0:9Þ

T N Bias �T MSE ratio �10

(A) (B) (C) (D) (E) (F) B/A C/A D/A E/A F/A

Fixed effects

25 10 �3.65 �2.63 �0.65 �0.30 �0.08 �1.57 3.71 1.05 0.91 0.81 2.45

25 25 �3.52 �2.69 �0.53 �0.15 0.03 �1.44 4.34 0.58 0.46 0.39 1.80

25 50 �3.49 �2.63 �0.49 �0.10 0.08 �1.40 4.16 0.38 0.27 0.21 1.55

25 100 �3.53 �2.64 �0.48 �0.09 0.10 �1.38 4.03 0.29 0.19 0.12 1.34

50 10 �3.64 �2.78 �0.45 �0.27 �0.19 �1.41 4.54 0.86 0.83 0.79 1.89

50 25 �3.58 �2.43 �0.34 �0.16 �0.06 �1.27 2.88 0.38 0.35 0.32 1.14

50 50 �3.51 �2.53 �0.29 �0.10 �0.01 �1.22 3.55 0.22 0.20 0.17 0.93

50 100 �3.51 �2.51 �0.27 �0.08 0.01 �1.18 3.42 0.13 0.11 0.09 0.78

100 10 �3.43 �2.51 �0.33 �0.25 �0.21 �1.30 3.84 0.94 0.93 0.92 1.73

100 25 �3.39 �2.45 �0.20 �0.11 �0.07 �1.14 3.45 0.37 0.36 0.35 0.87

100 50 �3.47 �2.40 �0.16 �0.07 �0.03 �1.08 3.06 0.19 0.18 0.18 0.61

100 100 �3.41 �2.40 �0.15 �0.06 �0.02 �1.06 3.13 0.10 0.10 0.09 0.50

Linear trend

25 10 �6.66 �5.60 �1.25 �0.35 �0.01 �2.15 5.76 1.14 0.89 0.80 1.95

25 25 �6.57 �5.68 �1.18 �0.09 0.25 �2.00 6.28 0.71 0.52 0.47 1.37

25 50 �6.58 �5.64 �1.15 0.01 0.37 �1.95 6.15 0.52 0.35 0.32 1.14

25 100 �6.58 �5.63 �1.17 0.00 0.38 �1.95 6.03 0.43 0.26 0.21 1.00

50 10 �6.43 �5.52 �0.70 �0.24 �0.11 �1.77 6.10 0.83 0.80 0.79 1.50

50 25 �6.40 �5.13 �0.62 �0.14 0.02 �1.63 4.71 0.37 0.33 0.32 0.86

50 50 �6.30 �5.24 �0.58 �0.10 0.04 �1.59 5.38 0.22 0.18 0.16 0.71

50 100 �6.32 �5.22 �0.56 �0.08 0.06 �1.56 5.23 0.14 0.10 0.08 0.59

100 10 �5.97 �4.95 �0.47 �0.28 �0.23 �1.52 5.22 0.73 0.71 0.71 1.28

100 25 �5.88 �4.85 �0.31 �0.11 �0.06 �1.33 4.95 0.30 0.29 0.28 0.65

100 50 �6.00 �4.83 �0.28 �0.08 �0.03 �1.28 4.63 0.15 0.14 0.14 0.45

100 100 �5.87 �4.78 �0.26 �0.06 0.00 �1.26 4.71 0.08 0.07 0.07 0.38

(A) ¼ LSDV; (B) ¼ LSDV with common time effect; (C) ¼ FGMUE based on residual variance of LSDV; (D) ¼

FGMUE based on residual variance of MUE with fixed effects; (E) ¼ FGMUE based on residual variance of

MUE with common time effects; (F) ¼ MUE with Pesaran’s correlated common estimator.
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Table 2 shows the results for the fixed effects and incidental trend cases, respectively.
The mean unbiased estimator (E) shows the best performance both in terms of absolute
bias and mean square error ratio. Table 2 also shows the importance of the first stage
estimator. As the more accurate first stage estimator is used for the calculation of the
residual variance, the second stage panel FGMUE becomes more efficient and produces
less bias. Pesaran’s estimator (F) is simple but its simplicity carries a cost in performance—
it is better than LSDV with common time effects but is inferior in comparison to other
FGLS estimators.

6. Empirical examples and concluding remarks

The results of the present paper focus on dynamic bias in pooled panel regression,
showing that the problem is particularly serious when trends are extracted and is pervasive
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in a range of cases that are relevant in applications. When cross section error dependence is
present, problems of bias are confounded with increases in dispersion, which manifests
itself even in the limit theory as N !1 through a random probability limit. When a large
number of unobserved factors are present, the dynamic panel bias of the cross section
dependent case becomes less random and under certain conditions on the weights as the
number of factors K !1, the bias converges to that of the cross section independent
case.

The specific nature of the panel can play an important role in the bias and the possibility
of bias correction. For micro panels, it is natural to assume that there are a number of
common factors in the panel. In this case, the biases in pooled panel regressions can be
corrected by utilizing mean unbiased functions in a straightforward way. In dynamic panel
regressions with such micro panels, the bias correction methods differ depending on the
way exogenous variables figure in the model. The original empirical study of the demand
for natural gas by Balestra and Nerlove (1966) illustrates this point. Balestra and Nerlove
fitted the following panel regression equation to estimate the demand for natural gas.

Git ¼ ai þ rGit�1 þ bpit þ g1DMit þ g2Mit�1 þ g3DY it þ g4Y it�1 þ uit,

where Git, pit, Mit, and Y it represent quantity demanded for gas, the relative price of gas,
population and per capita income at time t and for the ith unit, respectively. This model
fits the framework of model M3. The authors modelled the exogenous variables in such a
way that population and per capita income affected Git in levels but the relative price of
gas affected Git in first differences. As a result, the reported LSDV estimates of b are
biased but those of g1 and g3 are unbiased.

For macro panel data, modelling cross section dependence is important. As a second
illustration, we consider the study by Frankel and Rose (1996) who used a panel of 45
annual observations over 150 countries to examine the half-life of deviations from
purchasing power parity (PPP) by running the following panel regression equation6

qit ¼ ai þ rqit�1 þ uit, (38)

where qit is the logarithm of the real exchange rate. From the point estimate r̂ ¼ 0:88, they
calculated the half-life of the PPP deviation to be lnð0:5Þ= lnð0:88Þ ¼ 5:4 years. As
discussed, such estimates are biased and can be very inefficient in the presence of cross
section dependence. To illustrate the empirical effects of taking bias and cross section
dependence into account in estimation, we reestimated the half-life of the PPP deviation
from the same model (38) using an updated data set7 involving 51 annual observations
from 21 OECD countries. Table 3 displays the estimation results for all the estimates
discussed earlier in the paper. The LSDV point estimate gives a half-life for PPP deviations
of 3.4 years, whereas feasible generalized least squares estimates that adjust for bias and
make allowance for potential cross section dependence in long run PPP deviations are
more than twice as great. These empirical findings confirm that adjustments for dynamic
6See Frankel and Rose (1996, Table 3, p. 219). Similar results to those reported were obtained in an equation

with time-specific intercepts.
7Data for 21 countries over the period 1948–1998 was taken from the International Financial Statistics. The

series involved annual price indices for each country and real exchange rates calculated from the individual

national price indices and the end of the period spot exchange rates. The US dollar was chosen as the numeraire

currency.
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Table 3

Estimation of half-life of the PPP deviation

(A) (B) (C) (D) (E) (F)

Coefficient estimates 0.817 0.858 0.913 0.917 0.919 0.857

Half-life estimates 3.419 4.536 7.615 8.000 8.206 4.492

(A) ¼ LSDV; (B) ¼ LSDV with common time effect; (C) ¼ FGMUE based on residual variance of LSDV; (D) ¼

FGMUE based on residual variance of MUE with fixed effects; (E) ¼ FGMUE based on residual variance of

MUE with common time effects; (F) ¼ MUE with Pesaran’s correlated common estimator.
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panel bias and allowance for cross section dependence can have a major impact on
estimates of key parameters like the half-life of PPP deviations.
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Appendix A. Proofs of Propositions
Proof of Proposition 1. Write the model in components form as yit ¼ ai þ bitþ xit, where
xit ¼ rxit�1 þ eit for t ¼ 1; . . . ;T . Then the panel least squares estimate of r is r̂ ¼
Cx

NT=Dx
NT , where

Cx
NT ¼

XN

i¼1

XT

t¼1

ðxit � xi�Þðxit�1 � xi��1Þ

"

�

PT
t¼1½ðt� t̄Þðxit � xi�Þ�

PT
t¼1½ðt� t̄Þðxit�1 � xi��1Þ�PT

t¼1ðt� t̄Þ2

#
,

Dx
NT ¼

XN

i¼1

XT

t¼1

ðxit�1 � xi��1Þ
2
�
½
PT

t¼1ðt� t̄Þðxit�1 � xi��1Þ�
2PT

t¼1ðt� t̄Þ2

" #
,

using the sum notation wi� ¼ T�1
PT

t¼1 wit, wi��1 ¼ T�1
PT

t¼1 wit�1. Expanding the cross
product moments in these expressions and standardizing by N�1, probability limits are
taken as N !1 with T fixed. A typical term is evaluated in the following manner using a
law of large numbers for heterogeneous sequences. First note that

plim
N!1

1

N

XN

i¼1

xitxis ¼ lim
N!1

1

N

XN

i¼1

E½xitxis� ¼ lim
N!1

1

N

XN

i¼1

s2i
rjt�sj

1� r2
¼ s2

rjt�sj

1� r2
.
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Then we have

plim
N!1

1

N

XN

i¼1

XT

t¼1

xit

XT

s¼1

sxis

 !
¼

s2

1� r2
XT

t;s¼1

srjt�sj ¼ E
XT

t¼1

xt

XT

s¼1

sxs

( )
,

thereby writing the limit as a moment of a homogeneous (across iÞ process xt which follows
the stationary autoregression xt ¼ rxt�1 þ et where et is iid 0;s2


 �
.

Let CNT ¼ Cx
NT � rDx

NT . Using this approach, we find after some lengthy but routine
derivations using lemmas given in the Appendices of the original version of this paper
(Phillips and Sul, 2004) that the inconsistency as N !1 with T fixed has the form

plim
N!1

ðr̂� rÞ ¼
plimN!1 ð1=NÞCNT

plimN!1 ð1=NÞDNT

¼ �
Cðr;TÞ
Dðr;TÞ

, (39)

where Cðr;TÞ and Dðr;TÞ are given in (3) and (4) with

C1 ¼ 1�
1

T þ 1
1þ

1� r3

ð1� rÞ3
1

T

� �
þ

1

2
þ

1

T þ 1

1þ 2r
1� r

þ
1� r3

ð1� rÞ3
1

T

� �� �
rT , (40)

D1 ¼ 1�
1

T þ 1

2

1� r
1þ

1

T � 1

�

� 1�
1� r3

Tð1� rÞ3
ð1� rT Þ þ

3r
1� r

þ
T þ 3

2

� �
rT

� ��
: & ð41Þ

Proof of Proposition 2. From (9), plimN!1ðr̂� rÞ ¼ fplimN!1 ð1=NÞ ~y0�1Q ~Z ~y�1g
�1

fplimN!1 ð1=NÞ ~y0�1Q ~Z~eg, and by virtue of exogeneity

plim
N!1

1

N
~y0�1Q ~Z~e ¼ plim

N!1

1

N
~y0�1~e� plim

N!1

1

N
~y0�1 ~Zð ~Z

0 ~ZÞ�1 ~Z
0
~e

¼ plim
N!1

1

N
~y0�1~e ¼ �s

2Aðr;TÞ.

Next, when jrjo1, we have ~yit ¼
P1

j¼0 r
j ~Zit�jbþ

P1
j¼0 r

j ~eit�j:¼ ~Zritbþ ~y0
it, and, using the

stacked notation ~y ¼ ~Zrbþ ~y0 and its lagged variant, we have as in (15)
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N!1

1

N
~y0�1Q ~Z ~y�1 ¼ b0 plim

N!1

1

N
~Z
0

r;�1Q ~Z
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� �
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It follows that

plim
N!1

ðr̂� rÞ ¼ �
s2Aðr;TÞ

s2Bðr;TÞ þ b0½plimN!1 ð1=NÞ ~Z
0

r;�1Q ~Z
~Zr;�1�b

, (42)

as given in (11). Results (12) and (13) follow in a similar way.
When r ¼ 1; we have

lim
r!1

Aðr;TÞ ¼ AðTÞ ¼
ðT � 1Þ

2
; lim

r!1
Bðr;TÞ ¼ BðTÞ ¼

ðT � 1ÞðT þ 1Þ

6
, (43)

so that (42) becomes

plim
N!1

ðr̂� rÞ ¼ �
s2AðTÞ

s2BðTÞ þ b0½plimN!1 ð1=NÞ ~Z
0

1;�1Q ~Z
~Z1;�1�b

, (44)
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in which ~Z1;�1 ¼ ð ~Z
0

1;0; . . . ; ~Z
0

1;T�1Þ
0 with ~Z1;t ¼ ð ~Z

1

1;t; . . . ; ~Z
N

t Þ
0 and ~Z

i

t ¼
Pt

j¼0
~Zit�j . The

corresponding result in the incidental trends case is

plim
N!1

ðr̂� rÞ ¼ �
s2CðTÞ

s2DðTÞ þ b0½plimN!1 ð1=NÞ ~Z
0

1;�1Q ~Z
~Z1;�1�b

, (45)

where

lim
r!1

Cðr;TÞ ¼ CðTÞ ¼
1

2
ðT � 2Þ; lim

r!1
Dðr;TÞ ¼ DðTÞ ¼

1

15
ðT2 � 4Þ. (46)

Formula (13) for the inconsistency of b̂ continues to apply in the unit root case upon
appropriate substitution of result (44) or (45). &

Proof of Proposition 3. It is convenient here to use sequential asymptotics with N !1

followed by T !1. Write the panel least squares estimate under cross sectional
dependence as

r̂� r ¼ AC
NT ½B

C
NT �
�1. (47)

In the one factor (K ¼ 1) case, the model is given by

yit ¼ ai þ xit; xit ¼ rxit�1 þ uit; uit ¼ diyt þ eit, (48)

and then

xit ¼ di

X1
j¼0

rjyt�j þ
X1
j¼0

rjeit�j:¼diF yt þ x�it; say. (49)

Since yit � 1=T
P
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P

xit, we have
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Using the fact that limN!1 1=N
PN

i¼1 d
2
i ¼ m2

d, (50) becomes
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Dealing with the denominator in a similar fashion, we get
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Combining the two results gives
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where gyT ¼
PT

t¼1 ðF yt�1 � F̄y�1Þðyt � ȳÞ=
PT

t¼1ðFyt�1 � F̄y�1Þ
2, which is the centred serial

correlation coefficient of F yt, viz., the centred least squares estimate of the slope coefficient
in a regression of Fyt on F yt�1 and a constant. The density of gyT is studied in Phillips
(1977) and Tanaka (1983). Its unconditional mean has a large T expansion given by

EðgyT Þ ¼ �
1þ 3r

T
þ oðT�1Þ.

Letting T !1 we have

1

T

XT

t¼1

ðF yt�1 � F̄y�1Þ
2
!pEðF 2

ytÞ ¼
s2y

1� r2
,

and

1

T

XT

t¼1
ðFyt�1 � F̄ y�1Þ

2
¼

s2y
1� r2

þOpðT
�1=2Þ.

Hence,

plim
N!1

1

N

XN

i¼1

d2i
XT

t¼1

ðFyt�1 � F̄ y�1Þ
2

" #
¼ T m2

d
s2y

1� r2
þOpðT

�1=2Þ

� �
as T !1.

(52)

Thus, taking limits as N !1 followed by an expansion as T !1, we have

plimN!1 ð1=NÞAC
NT

plimN!1 ð1=NÞBC
NT
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�1Þ.

In the multi-factor case, we have uit ¼ d0iyt þ eit in (48) where yt is iidð0;SyÞ and Sy is
K � K. Then, Fyt ¼

P1
j¼0 r

jyt�j ; and F iyt:¼d
0
iFyt ¼

P1
j¼0 r

jd0iyt�j is first order autoregres-
sive and satisfies F iyt ¼ rFiyt�1 þ yit where yit ¼ d0iyt is iid ð0; d0iSydiÞ. Proceeding as above,
we obtain

plim
N!1

1

N

XN

i¼1

XT

t¼1

ðyit�1 � yi��1Þðuit � ui�Þ

¼ �s2Aðr;TÞ þ trace
XT

t¼1

ðFyt�1 � F̄ y;�1ÞðHt � H̄Þ0Md

( )
,

where Md ¼ limN!1 1=N
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i¼1 did
0
i and Ht ¼ ðy1; . . . ; ykÞ. In a similar manner, we find the

following limit
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,

which gives the stated result. &
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Proof of Proposition 4. Define

xt
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form for the inconsistency
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The data are generated by the model yit ¼ ai þ bitþ ryit�1 þ uit; r 2 ð�1; 1Þ; which has the
alternate form
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rjuit�j.

Linear detrending the variable xit leads to the residual quantity xt
it ¼ xit � gxi

T � hxi

T t, where

gxi

T ¼
2ð2T þ 1Þ

TðT � 1Þ

XT

t¼1

xit

 !
�

6

TðT � 1Þ

XT

t¼1

txit,

hxi

T ¼
12

TðT2 � 1Þ

XT

t¼1

txit �
6

TðT � 1Þ

XT

t¼1

xit.

As in Eq. (49), the detrended series when K ¼ 1 can be decomposed as xt
it ¼ diF

t
yt þ xet

it .
First consider the probability limit of the denominator term, for which

plim
N!1

1

N
DC

NT ¼ s2Dðr;TÞ þ plim
N!1

1

N

XN

i¼1

d2i
XT

t¼1

ðF t
yt�1Þ

2

" #

¼ s2Dðr;TÞ þm2
d

XT

t¼1

ðF t
yt�1Þ

2. ð54Þ

Letting T !1, we have T�1
PT

t¼1 ðF
t
yt�1Þ

2
!pEðF2

yt�1Þ ¼ s2y=ð1� r2Þ, and then

plim
N!1

1

N

XN

i¼1

d2i
XT

t¼1

ðF t
yt�1Þ

2

" #
¼ T m2

d
s2y

1� r2
þ opð1Þ

� �
as T !1. (55)

Combining (55) with (54) yields

plim
N!1

1

N
DC

NT ¼
T

1� r2
fs2 þm2

ds
2
y þ opð1Þg as T !1. (56)

Turning to the numerator of (53), we have

plim
N!1

1

N
CC

NT ¼ plim
N!1

1

N

XN

i¼1

XT

t¼1

xet
it�1e

t
it þ plim

N!1

1

N

XN

i¼1

d2i
XT

t¼1

F t
yt�1y

t
t

" #
ð57Þ

¼ s2Cðr;TÞ þm2
dkyT , ð58Þ
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where kyT ¼
PT

t¼1 F t
yt�1y

t
t . Then, using (56) and (58), we have

plim
N!1

ðr̂� rÞ ¼ �
plimN!1CC

NT

plimN!1DC
NT

¼ �
s2Cðr;TÞ þm2

d

PT
t¼1 F t

yt�1y
t
t

s2Dðr;TÞ þm2
d

PT
t¼1 ðF

t
yt�1tÞ

2
, (59)

and the single factor (K ¼ 1Þ version of (32) follows. Extension to the multiple factor case
follows in a straightforward way.

Phillips and Sul (2001) provide an asymptotic expansion for the fitted autoregressive
coefficient in an autoregression with trend. From this work we have

EhyT ¼ E

PT
t¼1 F t

yt�1y
t
tPT

t¼1 ðF
t
yt�1Þ

2
¼ �

2þ 4r
T
þOðT�2Þ,

and then, expanding the probability limit (59) as T !1, we find

plimN!1 ð1=NÞCC
NT

plimN!1 ð1=NÞDC
NT

¼ �
s2Cðr;TÞT�1½s2y=1� r2 þ opð1Þ�

�1 þm2
dhyT

s2Dðr;TÞT�1½s2y=1� r2 þ opð1Þ�
�1 þm2

d

¼ �
2ð1þ r=TÞð1þ ðs2y=s

2Þm2
dÞ � 2ðð1þ rÞ=TÞ ðs2y=s

2Þm2
d þ ðs

2
y=s

2Þm2
dhyT

1þ ðs2y=s
2Þm2

d

þ opðT
�1Þ

¼ �2
1þ r

T
�

2r
T

s2ym
2
d

s2 þ s2ym
2
d

�
s2ym

2
d

s2 þ s2ym2
d

ðEhyT � hyT Þ þ opðT
�1Þ,

as given in (33).
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