What to do when negative weights are allowed on $G = (V, E)$?

If there is a negative weight cycle reachable from s, shortest path weights are not well defined.

Bellman-Ford Algorithm

- Solves SSSP when negative edge weights are allowed
- Indicates if there is a negative weight cycle from source s:
 - no solution
 - else, produces shortest paths
- Uses relaxation: decreases $d[v]$ for each $v \in V$, until $d[v] = \delta(s, v)$

Bellman-Ford (G, w, s)

1. Initialize - Single-Source (G, s)
2. for $i = 1$ to $|V| - 1$ do
 1. for each edge $(u,v) \in E$ do
 1. Relax (u,v,w)
 2. for each edge $(u,v) \in E$ do
 1. if $d[v] > d[u] + w(u,v)$ then return FALSE
3. return TRUE

(CS 626) - Fall '02
Bellman-Ford time: $O(VE)$

- Correctness given by path relaxation property.
Order of edges:

$s, r, t, y, r, x, x, y, r, y, y, r, s$