Mathematical review

Functions

\[f : A \to B, \text{ associates for each } a \in A \text{ exactly one } b \in B: b = f(a). \]

- \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^2 \)
- \(f : (\frac{-\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}, f(x) = \tan(x) \)
- \(f : [0, 1] \times [0, 1] \to [0, 2], f(x, y) = x + y \)

Exponents

- \(x^a \cdot x^b = x^{a+b} \)
- \((x^a)^b = x^{ab} \)
- \(\frac{x^a}{x^b} = x^{a-b} \)
- \(x^n + x^n \neq x^{2n} \)

Logarithms

- \(\log_b(xy) = \log_b x + \log_b y \)
- \(\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y \)
- \(\log_b x^a = a \log_b x \)
- \(\log_b x = \frac{\log_c x}{\log_c b}, a, b, x > 0, b \neq 1 \)
- \(\log 1 = 0, \log 2 = 1 \)
- \(a = b^{\log_b a} \)
- \(\log_b \frac{1}{x} = -\log_b x \)
- \(\log_b a = \frac{1}{\log_b b} \)
- \(a^{\log_b c} = x^{\log_b a} \)

Series

\[\sum_{i=1}^{n} S(i) = S(1) + S(2) + \ldots + S(n) \]

Example 1: arithmetic progression

\[\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2} \]
Example 1: \(S = 2 + 5 + 8 + \ldots + (3k - 1) = 3(1 + 2 + 3 + \ldots + k) - k \)

Example 2: geometric progression

\[
\sum_{i=0}^{n} a^i = 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a}
\]

where \(0 < a \neq 1 \)

- \(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \)
- If \(0 < a < 1 \) then \(\sum_{i=0}^{n} a^i \leq \frac{1}{1-a} \) and \(\sum_{i=0}^{\infty} a^i = \frac{1}{1-a} \)

Example 3: \(\sum_{i=1}^{\infty} \frac{1}{i^2} = 2 \)

Example 4: \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)

Example 4': \(\sum_{i=1}^{n} i^k \sim \frac{n^{k+1}}{k+1}, k \neq -1 \)

Example 4": \(k = -1: \sum_{i=1}^{n} \frac{1}{i} \) (harmonic sum)

- \(H_n = \sum_{i=1}^{n} \frac{1}{i} \sim \log n \) (harmonic numbers)

Example 6: \(\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}, 0 < x < 1 \)

Example 7: Telescoping series: \(\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0 \)

- \(\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \sum_{i=1}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1} \right) = 1 - \frac{1}{n} \)
Proof techniques

- **Forward proof** (harder).

Example 1: **geometric progression**

\[
\sum_{i=0}^{n} a^i = 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a}
\]

Multiplying by \(a\) and then subtracting we get:

\[
(1 - a) \sum_{i=0}^{n} a^i = 1 + (a - a) + \ldots + (a^n - a^n) - a^{n+1} = 1 - a^{n+1}
\]

Now divide by \((1 - a)\) to get final result.

Example 2: \(S = \sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots\)

Multiply by 2 and subtract we obtain that \(S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 2\)

Example 3: \(\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}, 0 < x < 1\)

- Proof by differentiation.

- **Counter-example:** to disprove a claim \(C\), give a valid example that contradicts it.

Example 1: \(x^n + x^n = x^{2n}\) is FALSE: \(x=2, n=2\) then \(2^2 + 2^2 \neq 2^4\)

Example 2: \(F_0 = 1, F_1 = 1, F_{k+1} = F_k + F_{k-1}: \text{Fibonacci numbers}\). Prove that \(F_k \leq k^2\) is false: for \(k = 11\) we have \(F_{11} = 144 > 11^2\).

- **Contradiction:** suppose claim \(C\) is false and prove that this contradicts some known facts (initial assumptions for claim).

Example: To prove that there is an infinite number of primes assume that there is a largest prime \(P_k\). Take \(N = P_1 P_2 \ldots P_k + 1\). Then \(N > P_k\) and \(N\) is prime (every number is either prime or a product of primes) which contradicts the initial assumption that \(P_k\) is the largest prime.

- **Induction:** prove true for all integers \(n \geq n_0\)

1. **Basis:** prove \(C\) is true for \(n_0\)
2. **Induction hypothesis:** assume \(C\) is true for \(n_0 \leq i \leq n\). Prove it true for \(n + 1\).
Example 1: \[S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

Basis: \[S(1) = \frac{1(1+1)}{2} = 1 \]

Inductive proof: \[S(n+1) = (n+1) + \frac{n(n+1)}{2} = \frac{(n+1)(n+2)}{2} \]

Example 2: Prove that \[F_k < \left(\frac{5}{3}\right)^k \]

Basis: \[F_1 = 1 < \frac{5}{3} \]

Inductive proof: \[F_{k+1} < \left(\frac{5}{3}\right)^k + \left(\frac{5}{3}\right)^{k-1} < \left(\frac{5}{3}\right)^k \cdot \frac{5}{3} \]

Example 3: \[S_n = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

Basis: \[S_1 = 1 \]

Inductive proof: \[S_{n+1} = (n + 1)^2 + \frac{n(n+1)(2n+1)}{6} = (n+1) \cdot \frac{2n^2 + 7n + 6}{6} = \frac{(n+1)(n+2)(2n+3)}{6} \]

Algorithm description: Pseudo-Code

Pseudo-code is a structured description of an algorithm: not as formal as a programming language.

Example: find the maximum element of an array.

Algorithm **Max(A, n):**

- Input: an array \(A \) storing \(n \) integers
- Output: maximum element in \(A \).

1. \(\text{max} = a[1] \)
2. for \(i = 2 \) to \(n \) do
3. if \(\text{max} < A[i] \) then \(\text{max} = A[i] \)

Recurrences

When an algorithm contains a recursive call to itself, its running time can be often described as a recurrence.

- A **recurrence** is an equation or inequality that describes a function in terms of its value on smaller inputs.
- A function defined in terms of itself is called a **recursive function**.

Example 1: \(f(x) = 2f(x-1) + x^2, f(0) = 0 \).

Example 2: \(T(n) = T\left(\frac{n}{2}\right) + n, T(1) = C \), for some constant \(C \).

Note: avoid circular definitions.
Fundamental rules:

1. **base case:** can be solved without recursion.
2. **making progress:** the recursive call must make progress toward base.

Example: **Merge-Sort** (sort \(n \) numbers increasingly)

- A **divide-and-conquer** algorithm

 1. divide the \(n \) numbers sequence in two subsequences of \(n/2 \) numbers each.
 2. sort the two subsequences recursively.
 3. merge the two sorted subsequences to produce the final answer.

- \(T(n) = 2T(\frac{n}{2}) + cn \), \(T(1) = a \), \(a, c \) constant: \(T(n) = n \log n \).