Mathematical review

Functions

 $f:A\to B$, associates for each $a\in A$ exactly one $b\in B$: b=f(a).

- $f: R \to R, f(x) = x^2$
- $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R, f(x) = tan(x)$
- $f:[0,1] \times [0,1] \to [0,2], f(x,y) = x + y$

Exponents

- $\bullet \ x^a x^b = x^{a+b}$
- $\bullet (x^a)^b = x^{ab}$
- $\bullet \ \frac{x^a}{x^b} = x^{a-b}$
- $\bullet \ x^n + x^n \neq x^{2n}$

Logarithms

- $log_b(xy) = log_bx + log_by$
- $log_b(\frac{x}{y}) = log_b x log_b y$
- $log_b x^{\alpha} = \alpha log_b x$
- $log_b x = \frac{log_a x}{log_a b}, \ a, b, x > 0, b \neq 1$
- log1 = 0, log2 = 1
- $a = b^{log_b a}$
- $log_b \frac{1}{x} = -log_b x$
- $log_b a = \frac{1}{log_a b}$
- $\bullet \ a^{\log_b x} = x^{\log_b a}$

Series

$$\sum_{i=1}^{n} S(i) = S(1) + S(2) + \ldots + S(n)$$

Example 1: arithmetic progression

$$\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

Example 1':
$$S = 2 + 5 + 8 + \ldots + (3k - 1) = 3(1 + 2 + 3 + \ldots + k) - k$$

Example 2: geometric progression

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \ldots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

where $0 < a \neq 1$

- $\bullet \ \sum_{i=0}^{n} 2^i = 2^{n+1} 1$
- If 0 < a < 1 then $\sum_{i=0}^{n} a^i \le \frac{1}{1-a}$ and $\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$

Example 3: $\sum_{i=1}^{\infty} \frac{i}{2^i} = 2$

Example 4: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Example 4': $\sum_{i=1}^{n} i^k \simeq \frac{n^{k+1}}{[k+1]}, k \neq -1$

Example 4": k = -1: $\sum_{i=1}^{n} \frac{1}{i}$ (harmonic sum)

• $H_n = \sum_{i=1}^n \frac{1}{i} \simeq log_e n$ (harmonic numbers)

Example 6: $\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}, 0 < x < 1$

Example 7: **Telescoping** series: $\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0$

• $\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \sum_{i=1}^{n-1} (\frac{1}{i} - \frac{1}{i+1}) = 1 - \frac{1}{n}$

Proof techniques

• Forward proof (harder).

Example 1: geometric progression

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \ldots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

Multiplying by a and then subtracting we get:

$$(1-a)\sum_{i=0}^{n}a^{i}=1+(a-a)+\ldots+(a^{n}-a^{n})-a^{n+1}=1-a^{n+1}$$

Now divide by (1-a) to get final result.

Example 2: $S = \sum_{i=1}^{\infty} \frac{i}{2^i} = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots$

Multiply by 2 and subtract we obtain that $S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\ldots=2$

Example 3: $\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}$, 0 < x < 1

- Proof by differentiation.
- Counter-example: to disprove a claim C, give a valid example that contradicts it.

Example 1: $x^n + x^n = x^{2n}$ is FALSE: x=2, n=2 then $2^2 + 2^2 \neq 2^4$

Example 2: $F_0 = 1, F_1 = 1, F_{k+1} = F_k + F_{k-1}$: **Fibonacci numbers**. Prove that $F_k \le k^2$ is false: for k = 11 we have $F_{11} = 144 > 11^2$.

• Contradiction: suppose claim C is false and prove that this contradicts some known facts (initial assumptions for claim).

Example: To prove that there is an infinite number of primes assume that there is a largest prime P_k . Take $N = P_1 P_2 \dots P_k + 1$. Then $N > P_k$ and N is prime (every number is either prime or a product of primes) which contradicts the initial assumption that P_k is the largest prime.

- Induction: prove true for all integers $n \geq n_0$
 - 1. **Basis:** prove C is true for n_0
 - 2. Induction hypothesis: assume C is true for $n_0 \le i \le n$. Prove it true for n + 1.

3

Example 1:
$$S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Basis:
$$S(1) = \frac{1(1+1)}{2} = 1$$

Inductive proof:
$$S(n+1) = (n+1) + \frac{n(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Example 2: Prove that $F_k < (\frac{5}{3})^k$

Basis:
$$F_1 = 1 < \frac{5}{3}$$

Inductive proof:
$$F_{k+1} < (\frac{5}{3})^k + (\frac{5}{3})^{k-1} < (\frac{5}{3})^{k-1} \frac{5}{3} \frac{5}{3}$$

Example 3:
$$S_n = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

Basis:
$$S_1 = 1$$

Inductive proof:
$$S_{n+1} = (n+1)^2 + \frac{n(n+1)(2n+1)}{6} = (n+1)\frac{2n^2+7n+6}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

Algorithm description: Pseudo-Code

Pseudo-code is a structured description of an algorithm: not as formal as a programming language.

Example: find the maximum element of an array.

Algorithm Max(A, n):

- \bullet Input: an array A storing n integers
- Output: maximum element in A.

1:
$$\max = a[1]$$

2: for
$$i = 2$$
 to n do

3: if
$$max < A[i]$$
 then $max = A[i]$

Recurrences

When an algorithm contains a recursive call to itself, its running time can be often described as a recurrence.

- A **recurrence** is an equation or inequality that describes a function in terms of its value on smaller inputs.
- A function defined in terms of itself is called a recursive function.

Example 1:
$$f(x) = 2f(x-1) + x^2$$
, $f(0) = 0$.

Example 2:
$$T(n) = T(\frac{n}{2}) + n$$
, $T(1) = C$, for some constant C .

Note: avoid circular definitions.

Fundamental rules:

- 1. base case: can be solved without recursion.
- 2. making progress: the recursive call must make progress toward base.

Example: Merge-Sort (sort n numbers increasingly)

- A divide-and-conquer algorithm
- 1. divide the n numbers sequence in two subsequences of n/2 numbers each.
- 2. sort the two subsequences recursively.
- 3. merge the two sorted subsequences to produce the final answer.
- $T(n) = 2T(\frac{n}{2}) + cn$, T(1) = a, a, c constant: $T(n) = n \log n$.