Divide & Conquer strikes back: maximum-subarray
in linear time

Ovidiu Daescu and Shane St. Luce
Department of Computer Science
University of Texas at Dallas

I. ABSTRACT

Given an array of n numbers, the maximum-subarray prob-
lem can be solved in linear time by a simple incremental
algorithm that scans the input array from left to right. On the
other hand, the divide & conquer solution for this problem
has super-linear running time. In this short note we present
a modification of the divide & conquer algorithm that takes
only linear time and thus is optimal.

II. INTRODUCTION

Given an array A of n real numbers, the maximum-subarray
problem asks to find a nonempty, contiguous subarray of A
whose values have the largest sum [1]. The problem can be
solved in O(n) time with a simple, incremental (dynamic
programming) algorithm, that scans A from left to right
(Kadane’s algorithm [2]; see also Pb. 4.1-5 in [1]). Since there
is an obvious Q(n) lower bound, this algorithm is optimal.

The well known divide & conquer approach to solve the
maximum-subarray problem involves splitting the array in half
by the median index and making recursive calls on each of the
two subarrays to find the maximum subarray on the left half
and the maximum subarray on the right half. The combine
step searches for the maximum subarray that begins in the
left half of the array and ends in the right half. An overall
maximum is then reported as the maximum of the three (left,
right, and cross). Since the combine step requires a scan from
the middle index of A to the left and to the right, a linear term
to the recurrence solution is added due to this step, resulting
in a final recurrence of

T(n) =2T(n/2) + cn

with time complexity of ©(nlogn). See [1] for a detailed
description. Thus, the known divide & conquer algorithm is
not optimal, which is a bit surprising, considering that divide
& conquer usually outperforms dynamic programming.

A Linear Time Solution: We present a faster divide &
conquer algorithm that matches the O(n) time of its dynamic
programming counterpart and thus is optimal. To this end, we
change the combine phase of the divide and conquer algorithm
to a series of comparisons by returning additional information
about the ends of the subarrays. Doing so reduces the time
complexity of the combine step to ©(1), and ©(n) for the
overall algorithm.

III. A LINEAR TIME DIVIDE & CONQUER SOLUTION

We start by noticing that in order to reduce the running
time of the divide & conquer algorithm introduced earlier we
should be able to perform the combine phase in sub-linear
time. Our solution actually reduces the time complexity of
the combine phase to ©(1). To do so, we return additional
information about the (sum of the) numbers in the recursive
calls that can help compute the maximum subarray crossing
the middle index in constant time. Specifically, if u is the
current node and v and w are the left and right children of v,
we compute the maximum contiguous subarray at u that starts
in v and ends in w in ©(1) time.

Max Crossing Subarray
A
r \

\ J \ J
h 4 h 4

Left Max Subarray Right Max Subarray

Fig. 1. Maximum Subarray Problem

The standard divide & conquer algorithm is given in Algo-
rithm 1 with the combine phase detailed in Algorithm 2. A
visual representation of the three subarrays can be viewed in
Figure 1.

Two observations are important to make about the maximum
crossing subarray. First, the maximum crossing subarray can
be divided into two parts, the portion before the middle index
and the portion after the middle index. Thus, these two parts
of the subarray are located in the left and right subarrays,
respectively. This is also evident from the two for loops in
Algorithm 2 and visualized in Figure 2.

Second, the portion of the maximum crossing subarray in
the left subarray of A is the maximum subarray ending at the
middle index, and the portion in the right subarray of A is the
maximum subarray beginning at the middle index. We refer
to each of these maximum subarrays as the prefix and suffix
of their corresponding halves of the array, as seen in Figure
3.

Algorithm 1 Divide-Conquer-Combine Algorithm

1: function FINDMAXSUBARRAY(A, low, high)
2: if low = high then

3 return (low, high, A[low])

4 else

5: mid < L%J

6: L < FINDMAXSUBARRAY (A, low, mid)
7 R + FINDMAXSUBARRAY (A, mid + 1, high)
8 C < FMCS(A, low, mid, high)

9: if L.maxSum >= R.maxSum and

10: L.mazxSum >= C.maxSum then
11: return L

12: else if R.maxSum >= L.maxSum and
13: R.maxSum >= C.maxSum then
14: return R

15: else

16: return C'

17: end if

18: end if

19: end function

Algorithm 2 Find Maximum Crossing Subarray

1: function FMCS(A, low, mid, high)
leftSum + —oo

3 sum < 0

4 for i < mid downto low do

5: sum + sum + Ali]

6: if sum > leftSum then
7

8

9

leftSum + sum
mazxLeft < i

: end if
10: end for
11: rightSum < —oo
12: sum < 0
13: for j < mid +1 to high do
14: sum < sum + A[j]
15: if sum > rightSum then
16: rightSum <+ sum
17: mazRight < j
18: end if
19: end for
20: mazxSum <+ leftSum + rightSum
21: return (maxLeft, maxRight,
maxSum)

22: end function

Max Crossing Subarray

A
I 4 N\
Left Subarray Right Subarray

Fig. 2. Maximum Crossing Subarray using Prefix and Suffix

Max Crossing Subarray

A
'4 \
Iax Left Prefix ax Left Suffix iax Right Prefix Iex Right Suffix

Fig. 3. Left and Right Prefixes and Suffixes

Algorithm 3 Alternate Algorithm
1: function FMS-COMPARE(A, low, high)

2: if low = high then

3: return (A[low], Allow], Allow], A[low))

4: else

5: mid « | lewthioh |

6: Left + FMS-COMPARE(A, low, mid)

7: Right + FMS-COMPARE(A, mid + 1, high)
8 return COMPARE(A, Le ft, Right)

9: end if

10: end function

11:

12: function COMPARE(A, L, R)

13: totalSum < L.totalSum + R.totalSum

14: mazPrefic + MAX(L.mazPrefiz,

15: L.totalSum + R.maxPrefix)

16: maxSuf fix + MAX(R.maxSuf fiz,

17: R.totalSum + L.mazxSuf fix)

18: maxSum < MAX(L.maxSum, R.maxSum,
19: L.maxSuf fix + R.maxPrefix)
20: return (totalSum, maxSum, maxPrefiz,
21: mazSuf fizr)

22: end function

Observation: For a node u in the recursion tree, with left child
v and right child w, the maximum crossing subarray is the
union of the maximum left suffix (from v) and the maximum
right prefix (from w).

Since each node u could be either a left or a right child of
its parent we need to compute both the prefix and suffix of u.

Let totalSum, maxSum, maxPrefix, and mazSufix
denote the sum of the entries for the current array, its
maximum-subarray, maximum-prefix, and maximum-suffix.
Assuming a subarray must have at least 1 element and
an array with only 1 element is considered the base
case, we can return the value of the single cell as
totalSum, maxSum, maxPrefix, maxSuf fix. Other-
wise, the totalSum, maxSum, maxPrefix, maxSuf fix
tuples from the left child and the right child of a node are
returned in L and R, respectively.

Lemma 1. For a node v in the recursion tree, with left child v
and right child w, the total sum, maximum subarray, maximum
prefix and maximum suffix of u can be found in constant time
from the totalSum, mazxSum, maxPrefix, mazSuf fix
tuples stored at v and w.

Proof. Let L and R store the totalSum, maxSum,
mazPrefix, maxSuf fix tuples returned from v and w,

respectively. Then totalSum at u is simply L.totalSum +
R.total Sum.

Suppose the maximum prefix of the array at u does not
cross the middle of the array. Then, the maximum prefix of
that array must be the same as the maximum prefix of the left
subarray, stored at v. If the maximum prefix indeed crosses the
middle, then it must include the entire left subarray as well as
the maximum prefix of the right subarray, stored at w. Then,
the maximum prefix of the array stored at v is the maximum
of L.maxPrefix and L.totalSum + R.maxPrefixz. See
Figure 4 for an illustration. Following similar arguments, the
maximum suffix at u is the maximum of R.mazSuf fix and
R.totalSum + L.maxSuf fix.

Lastly, the maxSum of the array at w is determined
by comparing L.maxSum and R.mazxSum with the max-
imum crossing sum, L.suf fiz + R.prefiz. Since the cal-
culation after the recursive calls involves a constant number
of comparisons and additions, the overall time to find the
totalSum, maxSum, maxPrefiz, maxSuf fix tuple at
u is constant. O

It follows from Lemma 1 that we achieve a constant time
for the combine step and ultimately a recurrence of

T(n)=2T(n/2)+d

for the overall algorithm, where d is a constant, which solves
for linear time. The resulting algorithm is given in Algo-
rithm 3. Note that the indexes of the maximum subarray are not
shown in Algorithm 3 for simplicity, but they can be returned
as well when making the final comparisons in the COMPARE
function.

Theorem 1. The maximum subarray problem can be solved
in O(n) time by divide & conquer.

Left.totalSum + Right.maxPrefix

A
' 4 \

LY_J

Left.maxPrefix

Fig. 4. Calculating the Prefix

IV. CONCLUSION

By recognizing that the maximum crossing subarray can be
computed in constant time from additional information com-
puted at the children in the recursion tree, we have designed
an optimal, divide & conquer algorithm for the maximum-
subarray problem, matching the time of the corresponding
dynamic programming algorithm.

Like merge-sort, the maximum-subarray algorithm we pre-
sented can be implemented bottom-up, and thus no actual
recursive calls are needed, making the divide & conquer
algorithm competitive in practice, against the dynamic pro-
gramming counterpart.

REFERENCES

[11 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2009.

[2] J. Bentley, “Programming pearls: algorithm design techniques,” Commun
ACM, pp. 865-871, 1984.

