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Abstract. The autologistic model describes binary correlated data; its spatial version describes
georeferenced binary data exhibiting spatial dependence. The conventional specification of a spatial
autologistic model involves difficult-to-nearly-impossible computations to ensure that appropriate sets
of probabilities sum to 1. Work summarized here accounts for spatial autocorrelation by including
latent map pattern components as covariates in a model specification. These components derive from
the surface zonation scheme used to aggregate attribute data, to construct a geographic weights
matrix, and to evaluate geographic variability. The illustrative data analysis is based upon field plot
observations for the pathogen Phytophthora capsici that causes disease in pepper plants. Results are
compared with pseudolikelihood and Markov chain Monte Carlo estimation techniques, both for the
empirical example and for two simulation experiments associated with it. The principal finding is that
synthetic map pattern variables, which are eigenvectors computed for a geographic weights matrix,
furnish an alternative, successful way of capturing spatial dependency effects in the mean response
term of a logistic regression model, avoiding altogether the need to use other than traditional standard
techniques to estimate model parameters.

1 Introduction

Statistical techniques for analyzing correlated binary variables are not as plentiful as
those for analyzing correlated continuous data. One exception is two-groups discrimi-
nant function analysis (DFA) using a 0/1 indicator variable as the response variable,
because it can be rewritten as a standard regression problem. Another is autologistic
regression. When binary spatial data are of interest—such as the spatial distribution of
wildlife, the spatial pattern of a disease, or the geographic distribution of plant
species—the first model that should come to mind for describing these data and their
latent spatial autocorrelation is one whose specification captures spatial dependencies.
This is exactly what appears in an autologistic specification.

Many practical questions are associated with how spatial dependency is incorporated
into an autologistic specification. How is spatial autocorrelation quantified and
portrayed? How does spatial autocorrelation impact the assessment of covariates
included in an autologistic specification? How are standard errors (that is, statistical
efficiency) and model description or prediction enhanced by accounting for spatial
autocorrelation? And what improved understanding of a georeferenced binary variable
is furnished by an autologistic specification? In addition, several serious technical
questions are associated with an autologistic specification. Foremost, how can compli-
cations be handled that arise from an autologistic model’s intractable normalizing
factor (for one possible solution to this problem, see Pettitt et al, 2003); this normal-
izing factor ensures that the resulting probability mass function sums to 1. Initially
this complication was circumvented by employing a specific pseudolikelihood estima-
tion (PLE) procedure, which tends to be less efficient than maximum likelihood
estimation because it still assumes independence (Besag, 1975). More recently this
particular complication has been avoided through the use of Markov chain Monte Carlo
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(MCMC) maximum likelihood estimation procedures (for example, Gumpertz et al, 1997;
Huffer and Wu, 1998), which allows efficiency to be regained at the expense of numerical
intensity.

This paper departs from more conventional autologistic modeling efforts by focus-
ing on specification of a mean response that forces the automodel spatial dependency
parameter value to 0. It introduces the eigenvector filtering approach for spatial
autologistic models by extending the spatial filtering concept promoted by Getis
(1995), Griffith (2000a), and Getis and Griffith (2001). The eigenvector filtering
approach is a nonparametric technique that removes the inherent spatial autocorrela-
tion from generalized linear regression models by treating it as a missing variables
(that is, first-order) effect. The aim of nonparametric spatial filtering is to control for
spatial autocorrelation with a set of spatial proxy variables rather than to identify a
global spatial autocorrelation parameter for a spatial process. As such, it utilizes the
misspecification interpretation of spatial autocorrelation, which assumes that spatial
autocorrelation is induced by missing exogenous variables, which themselves are
spatially autocorrelated; spatial autocorrelation latent in the X covariates accounts
for spatial autocorrelation in the dependent variable Y, effectively transferring spatial
autocorrelation effects from Y, and hence the residuals, to the Xs. In doing so,
spatial filtering enables standard software to be used to estimate generalized linear
models, which rely on stochastically independent observations, with georeferenced data
whether or not the X covariates are known and measured. Each eigenvector of a spatial
filter, derivable from a geographic weights matrix, exhibits a distinctive spatial pattern
and has associated with it a given spatial autocorrelation level. The eigenvector spatial
filtering approach adds a minimally sufficient set of eigenvectors as proxy variables to
a set of linear predictors, and in doing so eliminates spatial autocorrelation among the
observations by inducing mutual independence. This methodology is much easier to
implement than MCMC, and produces parameter estimates that are more efficient
than those calculated with the maximum pseudolikelihood method. Furthermore,
results permit a more detailed interpretation of spatial autocorrelation effects by
allowing explicit visualization and decomposition of an initially hidden autocorrelation
pattern in georeferenced binary data.

Griffith et al (1998) furnish one illuminating application of spatial filtering in the
context of autologistic modeling. This present paper provides a comparison of results
from this form of spatial filtering with those from MCMC and maximum pseudolikeli-
hood in order to demonstrate the feasibility of spatial filtering methodology, enabling
spatial scientists to obtain a better evaluation of findings such as those reported in
Griffith et al (1998).

2 A brief history of the autologistic model

One of the first versions of the two-dimensional autologistic model was derived in 1941
from work by Ising, who developed its one-dimensional counterpart in 1925 and after
whom the Ising model is named (McCoy and Wu, 1973). The Ising model is a simple
model of magnetism, and one of the pillars of statistical mechanics. Each site on a two-
dimensional lattice can take on one of two possible values (for example, 0 or 1), with the
geographic distribution of site values displaying strong positive first-order spatial auto-
correlation. The phrase autologistic model began being widely used in the spatial
statistics literature following Besag (1972), who went on to introduce a range of
possible autoprobability models (Besag, 1974). Besag characterizes this model, in its
purely spatial form, as being “analogous to a classical logistic model ... except that here
the explanatory variables are themselves observations on the process” (1974, page 201).
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Bartlett immediately began using this terminology (for example, 1975; 1978), directly
linking it to the Ising model in his discussions.

One of the earlier applications of the autologistic model in the geographic literature
appears in Haining (1985), where spatial price competition is defined in terms of
autologistic-model-generated probabilities, which in turn are used to generate regional
price distributions. In more recent years an increasing number of other researchers
have estimated autologistic models, sometimes addressing issues associated with using
this class of model. For example, Meier et al (1993) apply a linear landscape version of
the model to transect sampling to investigate the population size of St. Croix ground
lizards; le Cessie and van Houwelingen (1994) discuss modeling correlated binary
outcomes in a way that preserves the logistic property of the marginal response
probabilities; Augustin et al (1996) use the Gibbs sampler and explicitly model spatial
autocorrelation intrinsic in presence —absence species data; Wu and Huffer (1997) use
an autologistic regression model for binary georeferenced data to describe the distribu-
tion of plant species; Dubin (1995; 1997) specifies a logit diffusion model for the
probability of adoption; Hoeting et al (1999) apply an autologistic model with cova-
riates to interpolate sparsely sampled georeferenced data over a region in order to
construct maps of the likelihood of presence—absence of particular plant species;
and Brownstein et al (2003) employ an autologistic model to analyze the spatial
distribution of the black-legged tick, in order to assess human risk for Lyme disease
in much of the United States. Regardless of order of spatial dependency specified,
number of covariates included, or phenomenon studied, each of these studies analyzes
spatially autocorrelated dichotomous variables.

Classical maximum likelihood estimation techniques cannot be used to estimate auto-
logistic model parameters. Therefore, in addition to outlining the autologistic model,
Besag (for example, 1974) describes two procedures for estimating its parameters that
he labels pseudolikelihood and coding. His maximum pseudolikelihood method treats
areal unit values as though they are conditionally independent, and is equivalent to
maximum likelihood estimation when they are independent. A pseudolikelihood is
specified as the product of conditional probability density functions for each areal
unit, given neighboring areal units. For logistic regression, then, each areal unit value
is regressed on a function of its surrounding areal unit values. This estimation proce-
dure involves a trade-off between simplicity and statistical efficiency; efficiency is lost
when dependent values are assumed to be independent. Meanwhile, Besag’s coding
scheme divides a set of areal units into (ideally two) subsets free of, for example, areal
unit adjacencies for a first-order dependency structure. This allows the first-order
Markov assumption to imply that values of each areal unit in a given subset are
mutually independent. Then each value in one subset can be regressed on a function
of its corresponding neighboring values in the other subset, with this estimation
repeated by switching regressors and regressands. The resulting spatial autoregressive
parameter estimates then can be averaged, as long as they are comparable. Preferring
two subsets makes implementing this coding scheme practical for regular lattice
data, and cumbersome for irregular lattice data. Regardless, this coding procedure
essentially is equivalent to the first step in MCMC estimation of parameters for an
autologistic model. Bartolucci and Besag (2002) propose a recursive algorithm as a
more useful alternative to estimate the joint distribution of georeferenced binary values.
But this new algorithm can be as numerically intensive as MCMC estimation. In contrast,
Heagerty and Lele (1998) propose a computationally simple method for estimation and
prediction using georeferenced binary data—whose spatial autocorrelation is described
with a geostatistical semivariogram model—that is based upon pairwise likelihood con-
tributions. And Albert and McShane (1995) propose a generalized estimating equations
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approach, again employing geostatistical semivariogram models to parameterize spatial
dependency.

3 Logistic regression

Logistic regression (see Hosmer and Lemeshow, 2000) assumes independent Bernoulli
outcomes, denoted by Y, = 0 or 1, taken at locations i = 1, 2, ..., n, where these
binary values can be described by a set of explanatory variables denoted by X, a
1 x (K + 1) vector of K covariate values, and a 1 (for the intercept term), for location i.
The probability of a 1 being realized for these data is given by

exp(X.f)
I +exp(X.f)°

where B is the (K—+1)x 1 vector of nonredundant parameters, and where
P(Y;, = 0|X;) = 1 —P(Y; = 1]X;). Equation (1) has been employed in geographic
studies of dichotomous phenomenon (for example, Clark and Hosking, 1986;
Wrigley, 1985). Its simplest form is for a constant probability across areal units:
P(Y; = 1|1X;) = P(Y; = 1|o) = expa/(1 +expa), for some constant o (using
popular bivariate regression notation, which in multiple regression notation is denoted
by f,), where P(Y; = llo) -0 as a— —oo, P(Y; = 1|la) - 0.5 as «— 0, and
P(Y; = l|o) — 1 as a — oc.

P(Y, = 11X;) = 1)

3.1 Autologistic regression

Suppose the n x n 0/1 binary geographic connectivity or weights matrix C represents the
geographic arrangement of data values. Accordingly, c; = 1 if two locations i/ and j are
neighbors, and ¢; = 0 otherwise (note: ¢; = 0); matrix C contains n?0/1 values.
Pairwise-only spatial dependence often is assumed when specifying such automodels in
terms of matrix C (for an example employing more than pairwise cliques see Tjelmeland
and Besag, 1998). Retaining this assumption, for a spatial autoregressive situation, the
problem becomes one of estimating the parameters of the following probability function:

eXp (“i +p Z CiiV; )

P(Y, = |z, CY) = ©)

1 +exp (oc,- +PZCUJ’/)

J=1

where Y; denotes a random variable and y;, denotes an observed realization of the
random variable, o, is the parameter capturing large-scale variation (and hence could
be specified in terms of vector X;), p is the spatial autocorrelation parameter, and C; is
the row vector of ¢; values for location i. Matrix C must be symmetric for identifia-
bility reasons (Besag, 1974), and often is, but need not be, binary. The pure spatial
autoregressive form of equation (2) is the extension of equation (1) for which «; is the
constant o:

exp (oc—f—ch,,y,)
j=1

1 +exp <oc+ch,,y,~>

Jj=1

P(Y, = llo. CY) =

In this situation, spatial autocorrelation may be measured with the join-count statistics
(Cliff and Ord, 1981), denoted by BB if two ones are geographically nearby (that is,
c; = 1), BW if a one and a zero are geographically nearby, and WW if two zeros are
geographically nearby. These join-count statistics can be converted to z-scores by
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subtracting their respective means and dividing the resulting differences by their
respective standard deviations, parameters that are established under a null hypothesis
of zero spatial autocorrelation (see Cliff and Ord, 1981, pages 36 —41).

The proposition promoted in this paper is that by including variables in matrix
X—the n x (K+ 1) concatenation of the n X, vectors—that account for the spatial
autocorrelation observed in the associated geographic distribution of binary values, the
explicit autoregressive term in equation (2) can be dispensed with. In other words,
spatial dependence effects are shifted from a small-scale variation term to the mean
response term, resulting in p being forced to 0. This perspective contends that spatial
autocorrelation appears in residuals because variables are missing from the mean
response specification (for example, the geographic distribution of soil types or mois-
ture content for agricultural yields). This shift can occur by introducing appropriate
synthetic variables into matrix X that serve as surrogates for spatially autocorrelated
missing variables. These synthetic variables are the eigenvectors of the following
modified version of binary matrix C:

(=5 )e-5) ®
n n

where I is the identity matrix,  is an n x 1 vector of ones, T denotes the operation of
matrix transpose, and # is the number of areal units. This particular matrix expression
appears in the numerator of the widely used Moran coefficient (MC) index of spatial
autocorrelation. Tiefelsdorf and Boots (1995) show that all of the eigenvalues of matrix
expression (3) relate to specific MC values. One appealing property of equation (3) is
that matrix C is constant for a given surface partitioning and adjacency definition,
rendering the same set of eigenvectors for all attributes geographically distributed
across the given surface partitioning (that is, zonation scheme).

In extending the findings of Tiefelsdorf and Boots (1995), and linking them to
principal components analysis (PCA) (Griffith, 1984), the eigenvectors of expression
(3) may be interpreted in the context of latent map pattern as follows. The first
eigenvector, E,, of expression (3) is the set of numerical values that has the largest
MC achievable by any possible set of numerical values, for the arrangement of loca-
tions given geographic connectivity matrix C. The second eigenvector is the set of
numerical values that has the largest achievable MC by any set of numerical values
that is uncorrelated with E,. This sequential construction of eigenvectors continues
through E,, which is the set of numerical values that has the largest negative MC
achievable by any set of numerical values that is uncorrelated with the preceding
(n — 1) eigenvectors.

Hence these n eigenvectors describe the full range of all possible mutually ortho-
gonal map patterns, and may be interpreted as synthetic map variables that represent
specific natures (that is, positive or negative) and degrees (for example, negligible,
weak, moderate, strong) of potential spatial autocorrelation. This perspective also is
alluded to by Switzer (2000), who is more concerned with efficient sampling issues,
and Boots and Tiefelsdorf (2000), who discuss the construction of linear combina-
tions of these eigenvectors in order to obtain any prespecified level of spatial
autocorrelation. In the presence of positive spatial autocorrelation, then, an analysis
can employ those eigenvectors depicting map patterns exhibiting consequential levels
of positive spatial autocorrelation; operationally speaking, attention initially can be
restricted to eigenvectors having MC/MC,,eme > 0.25, where MC,,eme denotes either
the maximum (MC,,,) or the minimum (MC,;,) possible value of MC, because
MC/MC,ypeme = 0.25 refers to situations in which 5%—10% of the information
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content™—measured in terms of the pseudo-R*-value accompanying an autonormal
model (see Griffith, 2003)—tends to be redundant because of the presence of nonzero
spatial autocorrelation. If the autocorrelation detected with indices (for example, BB,
BW, MC) is positive, then only eigenvectors for which MC/MC,,, = 0.25 initially
would be considered; if the autocorrelation detected with indices is negative, then only
eigenvectors for which MC/|MC,;,| < 0.25 (or, equivalently, MC/MC,;, = 0.25)
initially would be considered. If overcorrection for spatial autocorrelation occurs,
then this threshold value of 0.25 needs to be increased.

Restricting the set of eigenvectors over which a stepwise selection search is
performed is sensible for several reasons. First, if a homogeneous process underlies a
set of georeferenced data, then the nature of spatial autocorrelation components should
not vary. A Moran scatterplot may help assess the feasibility of this characterization.
Second, if a parsimonious set of eigenvectors is to be selected, then eigenvectors depicting
near-zero spatial autocorrelation should be avoided, because they fail to capture any
geographic information. Third, as n increases, the number of eigenfunctions increases,
and hence the numerical intensity involved in executing a stepwise regression also
increases. This issue is of paramount importance when dealing with remotely sensed
data, where the number of eigenfunctions is in the hundred thousands, millions, or billions.
Finally, selection experience with positive spatial autocorrelation analyses suggests that
virtually all prominent eigenvectors are contained in the set of eigenfunctions whose
eigenvalues constitute the top quartile.

Given the foregoing MC decomposition result, the research problem becomes one
of determining whether or not expression (2) can be replaced by

exp(x + E; f)
1 +exp(a+E«f)’

where K denotes some subset of the n eigenvectors that has been chosen by supervised
selection criteria (that is, E; x is an n x K matrix whose columns are the K selected
eigenvectors), dispensing with the p> ¢, y,(j = 1,...,n) term by shifting spatial
dependence effects to the large-scale variation term represented by E; . f, forcing p to
0, and letting «; be the constant « (that is, no covariates other than eigenvectors are
included in the specification). A link between equations (2) and (4) may be gleaned
from the following algebraic manipulations:

P(Y = I|CY) = P(Y = I|EAE"Y) = P(Y = I[EJ),

P(Y, = 1[E«) = )

where A is a diagonal matrix of eigenvalues whose order is the same as the corresponding
eigenvectors in matrix E, and d is a vector of coefficients. A straightforward extension
of equation (4) would be to include covariates in its specification; the version selected
for study here avoids dealing with covariates in order to focus solely on the eigenvector
spatial filter. The parameters o and f of equation (4) can be estimated with the method
of maximum likelihood.

3.2 Eigenvector selection criteria

One difficulty associated with equation (4) is that n eigenvectors are extracted from
expression (3). One of these eigenvectors is proportional to the vector I, which is
associated with the constant parameter o (the intercept of a model), leaving (n — 1)
eigenvectors as candidates for describing latent spatial autocorrelation. Restricting
attention to only those eigenvectors describing positive spatial autocorrelation, when

@ Common variance of at least 5% is a standard rule-of-thumb threshold value employed in
applied statistics to identify substantively meaningful relationships (for example, see Griffith and
Amrhein, 1997, page 95).
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latent spatial autocorrelation is positive, further reduces the candidate set. The symmetry
of expression (3) ensures that the eigenvectors are orthogonal; the projection matrix
(I — 11" /n) ensures that they are uncorrelated.® Unfortunately, these properties are
lost to some degree in logistic regression analysis because of the weighting involved in
parameter estimation (see the appendix); collinearity among the weighted eigenvectors
causes some difficulty in estimation. The degree of this collinearity can be indexed by
the square root of the ratio of the largest and smallest eigenvalues extracted from a
correlation matrix (known in the statistics literature as the condition number). This
value is 1 for the orthogonal case. For the numerical example presented in section 4, this
index increases to roughly 2.1, indicating increased but not harmful multicollinearity
(see Griffith and Amrhein, 1997, page 98).

Nevertheless, supervised stepwise selection of eigenvectors is a useful and effective
approach to identifying the subset of eigenvectors that best describes latent spatial
autocorrelation in a particular georeferenced binary variable. This procedure begins
with only the intercept included in the logistic regression specification. Then, at each
step an eigenvector is considered for addition to the model specification. The one
that produces the greatest reduction in the log-likelihood function y’-test statistic
is selected, but only if it produces at least a prespecified minimum reduction; this is
the criterion used to establish statistical importance of an eigenvector. At each step all
eigenvectors previously entered into the model specification are reassessed, with the
possibility of removal of vectors added at an earlier step. The forward—backward
stepwise procedure terminates automatically when some prespecified threshold values
are encountered for entry and removal of all candidate eigenvectors. The final inclusion
criterion may be determined by the MC value of the residuals or the join-count
statistics for misclassified rounded off values of ¥—with a maximum likelihood crite-
rion, 0 < Y < 0.5 becomes 0, and 0.5 < Y < 1 becomes 1—which should indicate an
absence of spatial autocorrelation. The MC may be used because the predicted prob-
ability, Y, is a continuous measure in the interval [0, 1], and its sampling distribution
for the (Y — }A’) residuals can be constructed using permutations across the set of areal
units. If substantive covariates belong in a model specification, they can be forced to be
retained during the stepwise selection of eigenvectors; eigenvectors are synthetic and
capture correlated map patterns, whereas substantive covariates have conceptual or
theoretical meaning as well as latent spatial autocorrelation.

Supervision of this selection procedure involves monitoring reduction in the residual
spatial autocorrelation. At each step the BB and BW z-scores (say zgg and zgy ) for
misclassified areal units (residuals) need to be calculated. Equation (4) produces a value
between 0 and 1 (the estimated probability), that when rounded off gives a binary
prediction, ?, for the values of variable Y. The correlation coefficient, ¢, can be
calculated with these two measures. BB and BW statistics then can be calculated for
the absolute value of the difference between these two values, |f’ — Y|; a 0 indicates a
correct prediction whereas a 1 indicates an incorrect prediction. The stepwise procedure
should be terminated when |zpg| and |zgzy | suggest the presence of negligible or trace
spatial autocorrelation. Of note is that this evaluation is approximate, as the sampling

@ This situation differs from PCA in that here eigenvectors themselves are used as synthetic variables,
rather than as coefficients for constructing linear combinations of a set of original variables. Thus, the
numerator of a product moment correlation coefficient is

E{E, — (1"E, /m)(1"Ek/n) = 0 — (I"E; [n)I"E, [n)
because the eigenvectors are orthogonal. Hence this numerator equals 0 only if ITE, /n = 0; in
other words, the sum of the elements of eigenvector E, must be zero. This result is guaranteed

by the presence of a single eigenfunction for which A =0 and E = (1/n"/*)1, which also accounts
for the intercept term in equation (4).
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distribution of spatial autocorrelation in logistic regression residuals remains to be
formalized.

Employing this second criterion of monitoring the residual spatial autocorrelation
is advisable because otherwise the y? criterion may allow too many eigenvectors to be
added to the logistic equation, resulting in an overcorrection for nonzero spatial
autocorrelation latent in variable Y.

4 Numerical results
The spatial filtering procedure is evaluated here both with real data and with simulated
data in order to illustrate its general applicability.

The pathogen Phytophthora capsici causes disease in pepper plants. Data for the
incidence of this disease—recorded as a 0 if a plant is healthy and a 1 if a plant is
infected—in a North Carolina pepper field divided into a 20 x 20 grid of quadrats
is reported in Graham (1994) and portrayed in figure 1(a). The neighborhood structure
employed here has ¢; = 1 if two quadrats have a nonzero-length common boundary, and
¢; = 0 otherwise (that is, the rook’s move chess analogy). Statistics for these data include
143 quadrats with diseased plants, join-count statistics of BB = 181 and BW = 185, and
189 candidate eigenvectors associated with positive spatial autocorrelation extracted
from expression (3)—using the C matrix for this geographic landscape—depicting map
patterns portraying positive spatial autocorrelation.

Two sets of simulated data (following Guyon, 1995, page 212) were generated based
upon this empirical dataset. The first of these two datasets comprises 1000 simulated
maps constructured with the logistic regression equation (4) specified with K = 19
selected eigenvectors; the coefficients employed for this equation appear in table 1
(over):

pr = 1—1/{1 +exp[—1.5521 + 20.9094E, ; — 14.0700E, ; + 19.9043E, ,
— 28.5770E;,, — 12.2360E, , — 17.0488E, ,
—12.9671E,,, + 8.5895E,; , + 21.6357E,q , + 20.7751E,,
— 16.2489E, , + 15.0228E,, , — 12.2855E, , — 6.7825Ej, ,

— 11.3520E;; , + 14.8709E,, , 4+ 10.2964E,5 , — 9.4756E,; ; + 8.3727E,5 |}
i =12, ..,400. ©)

In other words, by substituting the coefficients contained in table 1 into equation (4), a
probability—given by equation (5)—can be calculated for each of the 400 quadrats into
which the agricultural field was divided. Each of these probabilities represents the
(population) chance of a 1 being randomly selected for the associated quadrat. Next,
for each of the 1000 simulation replications, 400 independent random selections were
made from a Bernoulli distribution using these 400 probabilities. This sampling was
implemented with the IMSL RNBIN routine (Visual Numerics Inc., San Ramon, CA),
which generates pseudorandom numbers from a binomial distribution. For agricultural
field plot i for a given simulated map, a pseudorandom number was generated for a
single Bernoulli trial having probability p;, given by equation (5). The seed selected to
initiate routine RNBIN was calculated using the computer system clock. Independent
selections can be made here because spatial autocorrelation is contained solely in the
pattern of the probabilities, induced through the linear combination of eigenvectors
substituted into equation (4). This procedure produced 1000 spatially autocorrelated
binary maps.
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The second dataset also comprises 1000 simulated maps, constructed using the
logistic regression equation (2) and the MCMC® maximum likelihood parameter

estimates appearing in table 2 (over):

Figure 1. (a) Distribution of disease (solid black squares) across field plots. (b) Probability of
pi.r

disease, which is directly proportional to the size of a solid black square, rendered by conven-
tional logistic regression (pseudolikelihood estimation). (c) Probability of disease, which is
directly proportional to the size of a solid black square, rendered by MCMC —maximum like-

lihood estimation logistic regression. (d) Probability of disease, which is directly proportional to
3 MCMC convergence was monitored with convergence of the relative frequency of ones and of

the BB join-count statistic.

the size of a solid black
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Table 1. Spatially filtered logistic regression parameter estimation results based on a parsimonious
set of eigenvectors selected from a restricted set (MC/MC,,, > 0.5) by simultaneously maximizing
the y? criterion and minimizing residual spatial autocorrelation.

Term Empirical data Simulated maps (r = 1000) MCMC maps (r = 1000)
coefficient SE average SE SW average SE SW
coefficient coefficient

intercept  —1.5521  0.2514 —1.7410  0.2999 0.989*** —(.7433 0.4867 0.995%**

E, 20.9094  3.6373 23.3828  4.4885 0.990*** —0.5603 9.0389 0.998

E, —14.0700  3.4006 —15.7441 3.9273 0.998 0.1738 8.9761 0.999

E, 19.9043  3.6634  21.9133 4.2612 0.984***  8.6942 8.1449 0.999

E; —28.5770  4.2431 —32.0469 53117 0.988***  0.4857 7.5655 0.996%***
E, —12.2360  4.3588 —13.6315 49120 0.991***  0.1047 7.1625 0.996**
E; —17.0488  3.6469 —19.0721 4.1735 0.991*** —0.0718 6.5995 0.997*
E, —12.9671 3.8687 —14.2414 4.7221 0.994*** —2.2549 6.3701 0.998
E; 8.5895  3.2588 9.5346  3.7312 0.994***  6.2305 5.6361 0.998
E; 21.6357  4.0994 242504 4.9459 0.985*%** —0.2351 5.5465 0.999
E, 20.7751 3.8546  23.1638  4.5999 0.985***  0.0458 5.4090 0.998
E; —16.2489  3.9902 —18.0229 4.7846 0.992*** —0.0880 5.0405 0.998
E,, 15.0228  3.4241 16.8955  3.9003 0.996*** —0.1487 4.7311 0.999
E, —12.2855  3.7770 —13.9481 4.4221 0.995*** —0.0970 4.4601 0.998
E;, —6.7825  3.0978 —7.6449 3.5205 0.998 4.5137 4.5934 0.997
E;; —11.3520  3.7003 —12.7405 4.2060 0.997* —0.1558 4.2629  0.995%**
E, 14.8709  3.3158 16.3687  3.7776  0.996** 0.0084 3.7087 0.998
E, 10.2964  3.3470 11.2270  3.8618 0.994*** —0.1318 3.7425 0.998
E, —9.4756 33411 —10.5502  3.9203 0.995*** —0.1423 3.4684 0.999
E 8.3727  3.4017 9.0807  3.8655 0.993*** —0.2311 3.4644 0.998

Note: signs are unimportant, as properties of eigenvectors do not change when multiplied by
—1. Results here relate to those appearing for the MC threshold value of 0.51669, but with the
marginal eigenvector (for which MC = 0.55977) manually removed after stepwise selection.
r denotes the number of replications in a simulation. MC—Moran coefficient. MCMC—Markov
chain Monte Carlo. SE—standard error. SW—Shapiro — Wilk test statistic.

* kxR respectively, denote a significant difference from 1 at the 0.10, 0.05, and 0.01 level.

Table 2. Autologistic parameter estimates for the diseased pepper data.

Parameter ~ Maximum pseudolikelihood MCMC -maximum likelihood

estimate standard error simulated  asymptotic
standard error

conventional MCMC simulation

(r = 100)
o ~2.6657  0.2814 0.2417 —2.8242  0.1950
P 13297 0.1391 0.1485 14214 0.1056

Note: r denotes the number of replications in a simulation. MCMC—Markov chain Monte Carlo.

for iteration 7, yielding a conditional probability for each of the 400 quadrats into
which the agricultural field was divided. The initial map (r = 0) was constructed with
a sample of zeroes and ones drawn using the IMSL RNBIN routine and probabilities
Pio =p =05 =1,2,..,400). For each iteration and each agricultural field plot i,
a pseudorandom number was generated for a single Bernoulli trial having probability
pi .- The seed selected to initiate routine RNBIN was calculated by using the computer
system clock. Each iterative pass over the map was done randomly, with the order
of field plot iterative (that is, 7) updates being determined by IMSL routine IPER.
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Iterations were performed until the Markov chain converged. In other words, each of
these maps was constructed by using a Gibbs sampler, with the chain running for 1000
iterations; each of the final iteration results constitutes a single simulated binary map.

4.1 Parameter estimation results

Maximum pseudolikelihood estimates—conventional generalized linear model parameter
estimates for equation (2)—were obtained using PROC LOGISTIC in SAS (SAS
Inc., Cary, NC). MCMC —maximum likelihood estimates were obtained using PROC
NLIN in SAS to estimate the score equation reported in Huffer and Wu (1998) and
the log-likelihood equation reported in Graham (1994). The initial state was a map
whose binary values were selected at random, each with a probability of 0.5, and whose
external edge quadrats were assumed to take on the value of 0. The maximum
pseudolikelihood estimates were used to generate a Markov chain by using a Gibbs
sampler. In other words, the parameter estimates & and p are obtained with the
pseudolikelihood method, which renders reasonable parameter but poor standard
error estimates, and then used to compute

eXp (5‘ +p Z Cij ijHTJrl)

Jj=1

Dir1 = i = 1, 2, e n,

1 4+ exp (& +p Z Cij Vi tatt1 >

Jj=1

for each iteration t + 1 where © — 7 + 1 denotes the transition updating from iteration
7 to 7 + 1. Once calculated, each probability, p; .,,, then is used to draw a random value
from a Bernoulli distribution, which becomes the map value for location i at iteration
7+ 1. The first probabilities are p,, (i = 1, 2, ..., n), which are calculated by using the
initial state map obtained with random sampling. Iteration t + 1 calculations begin by
using map values for iteration 7, and gradually change to using map values for iteration
7+ 1 as they increasingly replace the values for iteration 7. Repeated application of
these n marginal probability calculations, randomly permuting the set of locational
indices {1, 2, ..., n} at each iteration, produces the joint distribution for the n locations.
The warm-up—burn-in portion of the chain was 5000 iterations, after which every fifth
map was selected, yielding a total of 1000 maps in the chain, and during each iteration all
400 quadrats were visited in a new random order. With regard to the speed of convergence
of the chain (that is, its mixing rate), deterministic sweepings (that is, updates across a
map) appear to be more efficient than random sweepings when strong spatial autocorrela-
tion prevails, whereas the converse holds when weak spatial autocorrelation is present
(Peskun, 1973). Random permutations can be viewed as a compromise between these two
possibilities. The two estimation functions were used in order to check that a single set
of estimates was obtained. The maximum pseudolikelihood and MCMC —maximum
likelihood estimates of the pair of parameters contained in equation (2), where the loca-
tional mean is a constant (that is, «; = o), appear in table 2. The conventional standard
errors are those reported by SAS for PROC LOGISTIC, the MCMC simulation-based
standard errors are those given by the variation of pseudolikelihood estimates for 100
MCMC simulations generated with the empirical pseudolikelihood parameter estimates,
and the asymptotic standard errors are based upon the Fisher information matrix
presented in Huffer and Wu (1998).

@ Setting beginning probabilities to the empirical value of 143/400 has no noticeable effect on the
outcome, because the Markov chain loses its memory of initial conditions as it converges on a
steady state.
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A spatial filtering analysis can follow two approaches here. The first is to execute a
stepwise selection of eigenvectors from the entire set of eigenvectors associated with
positive spatial autocorrelation. The second is to execute a stepwise selection while
restricting attention to those eigenvectors depicting prominent levels of positive spatial
autocorrelation. This first approach—which is the first threshold of the second
approach—ultimately resulted in the selection of 36 eigenvectors (see table 4 below
for details of the explicit selection results). Results from this approach include: 32
misclassified quadrats, ¢ = 0.82644, zz; = 5.1 and zzw = —0.7. This BB join-count
statistic suggests some overcorrection for effects of the latent spatial autocorrelation; a
fewer number of eigenvectors produces a zgzp value that is closer to 0 (see table 4). Based
upon achieving the minimum residual zg value with the fewest eigenvectors, the second
approach resulted in restricting attention to those eigenvectors whose associated MC
exceeds half of the maximum possible MC value, or iMC,,,, = 1.02337/2 = 0.51169
(which is equivalent to MC/MC,___ = 0.5). This result suggests that the threshold value
of MC,,,,/4 (which is equivalent to MC/MC_, = 0.25) proposed in section 3.1 may be
too liberal. Stepwise results produced by these two approaches respectively appear in
tables 3 and 4. Eigenvectors are denoted by E,, where k is the rank order number, with
k = 1 denoting that eigenvector having the largest MC value, through £ = 189 denoting

Table 3. Stepwise filtered logistic regression results when candidate eigenvectors are all those
associated with positive spatial autocorrelation.

Ordered, Moran Likelihood ¢ Number of Zgp Zpw
selected coefficient  ratio y? misclassified
eigenvector quadrats

0 143 13.0 —43
E; 0.99463 33.65 0.25954 126 11.1 -3.6
E, 1.02337 63.91 0.44286 98 89 27
E, 0.88875 84.17 0.36083 111 94 =29
E; 0.95530 101.09 0.44976 97 8.1 —2.4
E, 0.84859 116.11 0.50464 88 62 —1.6
E, 0.71272 131.01 0.49910 89 72 —1.9
E, 1.00317 146.13 0.50041 89 6.6 —1.7
E, 0.90625 163.63 0.47304 94 9.1 -2.5
E,, 0.78971 178.13 0.52826 85 62 —1.6
E, 0.69522 189.17 0.59014 74 58 —0.1
E, 1.02337 197.82 0.62084 69 45 -1.0
E, 0.94925 207.25 0.65310 63 34 —-07
E,, 0.66648 217.53 0.65310 63 50 —1.0
E 0.88875 228.27 0.68106 58 3.0 —0.1
E, 0.28882 238.27 0.72637 50 38. 0.6
E, 0.04905 246.48 0.69731 55 39 —-0.6
E., 0.19228 253.49 0.70836 53 38. 0.6
E g 0.02874 259.87 0.73153 49 23 =02
E, 0.66648 266.94 0.74072 47 3.1 —0.4
E, 0.82068 273.21 0.74152 47 34 06
E; 0.78360 278.78 0.74657 46 43  -0.8
E,; 0.76609 284.49 0.75225 45 3.1 —0.4
E, 0.97713 290.52 0.75754 44 30 —-04
E;, 0.91335 298.43 0.75257 45 3.1 —0.4
(and E;; removed) (and reduced

to 296.21)

The remaining sequential additions are: E,, Eg,, Es, Eg, Eqi, E\g, Esy, E\5, Eg, Ejp, (and
E,; removed), E;,, E5, (and E;, reentered), E,, (and E,,, E,, E;, removed), Ey, E,y (and E;,
reentered).
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Table 4. Stepwise filtered logistic regression results for eigenvector subsets selected using a z>
maximization criterion, a 0.15 stepwise entry level of significance, and a 0.10 stepwise removal
level of significance.

Moran Number of Number of (}) Number of  zgg  zpw 1(|zgg]
coefficient  candidate eigenvectors misclassified +lzgw )
threshold eigenvectors  selected quadrats
0.00 189 36 0.82644 32 5.1 -0.7 2.900
0.10 162

2 : 4 41 . . .4
010 o } 6 0.7765 0.9 003 0465
0.20 136 _
0.5 123 } 25 0.75550 45 2.0 0.2 1.100
0.30 115
0.35 103
0.40 0 26 0.75298 45 1.0 0.03 0.515
0.45 84
0.50 76 21 0.73622 48 1.5 -0.1 0.800
0.51669 = 74
IMC,,,/2? } 20 0.74152 47 0.9 0.04 0470
0.55 67
0.60 57

22 7321 4 . —0. 1.
000 . } 073219 49 33 05 900
0.70 42 21 0.63874 66 54  —1.2 3.300
0.75 36 11 0.58759 74 46 —1.1 2.850

Note: the optimal solution appears in bold.

a Results appearing in table 1 relate to the MC (Moran coefficient) threshold value of 0.51669,
but with the marginal eigenvector (for which MC = 0.55977) manually removed after stepwise
selection.

that eigenvector having the positive MC value closest to zero. The likelihood ratio
criterion (that is, a y -statistic given by —2 times the difference between the maximized
value of the log-likelihood function before and after a variable has been entered into a
logistic regression equation) is optimized by conventional stepwise logistic regression.
Nonmonotonicity of other sequential results appearing in table 3 (for example, step 3
inclusion of E}; ) suggests the need to formulate selection criteria other than maximization
of the log-likelihood function value.

Similar to the numerous stopping rules available for stepwise variable selection in
conventional multiple linear regression, other approaches could be adopted here. One
criterion might be to minimize the residual-based term 1(|zgg| + |zpw|). This criterion
would favor a MC threshold value of 0.10 in table 4, which was constructed by
sequentially reducing the candidate set of eigenvectors by incrementally increasing
the minimum eigenvector MC threshold value. Another criterion comparable to the
adjusted-R*-criterion of linear regression would be to minimize the quantity

(})2 number of eigenvectors — 1
n — number of eigenvectors + 1

(1-¢%).

A trade-off also could be made between the number of selected eigenvectors and the
number of misclassified areal units. Regardless, the second of the two approaches
implemented here seems preferable, because it seems to minimize the chance of
overcorrection for spatial autocorrelation.

The final filtered equation is based upon the set of common eigenvectors selected
by the two stepwise approaches. This logistic regression equation contains 19 eigen-
vectors, and renders the following statistics: 48 misclassified quadrats, ¢ = 0.73622,
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zgg = 2.5 and zgy = —0.3. Although slight but detectable spatial autocorrelation
remains, zgg and zpy are dramatically closer to 0 than are their corresponding unfil-
tered data values of 13.0 and —4.3; Gumpertz et al (1997) report a similar failure to
account for all spatial autocorrelation.

4.2 Pseudolikelihood simulation findings

Maximum pseudolikelihood estimation of parameters for each of the two simulated
spatial datasets produced interesting properties. Results for those data simulated using
the filtered logistic regression equation (4) include: the average number of ones is
142.7, which essentially is the same as the count of 143 ones for the empirical data;
a join-count statistic of BB = 194.8, which is greater than the observed value of 181 but
falls just within its 95% confidence interval—the accompanying Shapiro— Wilk (SW)
test statistic calculated for the simulated sampling distribution of BB indicates that
it conforms to a normal distribution; and, parameter estimate means of p = 1.1784
and & = —2.4660, with standard errors of 5, = 0.1038 and s; = 0.2171—all of these
values are noticeably less than their empirical counterparts (see table 2), and neither
simulated sampling distribution adequately conforms to a normal distribution (the
respective SW values are 0.994 and 0.989, both of which are highly significantly different
from 1). Inspection of quantile plots for the frequency distributions of the simulated
parameter estimates suggest that they basically are symmetric, with deviations occurring
in their tails.

Results for those data simulated by generating MCMC maps using the autologistic
regression equation (2) include: the average number of ones is 145.6, which is very close
to the count of 143 ones for the empirical data; a join-count statistic of BB = 185.7,
which essentially is the same as the observed value of 181; and maximum pseudolikeli-
hood estimated parameter estimate arithmetic averages of & = —2.8428 and
p = 1.4302, with standard errors of s; = 0.2793 and 5, = 0.1638 —these parameter
estimates are almost identical to the MCMC-maximum likelihood ones for the
empirical data, which were used to generate the Markov chains, and these standard
errors are very similar to those for the empirical maximum pseudolikelihood estimates
(see table 2). Again, neither simulated sampling distribution conforms to a normal
distribution (the respective SW values are 0.992 and 0.992, both of which are highly
significantly different from 1).

4.3 Spatial filtering simulation findings
Spatial filtering results appear in table 1. Eigenvector coefficient estimates computed
for maps generated with equation (4) are comparable with their empirical counterparts,
although in every case the coefficients calculated with the simulated maps are further
from O than are their empirical counterparts. In addition, the accompanying simula-
tion-based standard errors are greater than their empirical counterparts, with few
simulated sampling distributions adequately conforming to a normal distribution.
Eigenvector coefficient estimates computed for MCMC-generated maps from equa-
tion (2) fail to capture spatial autocorrelation effects here, although most of their
sampling distributions do conform to a normal curve. This finding is attributable to
the combinatorial nature of spatial autocorrelation: many map patterns can be asso-
ciated with a single global measure of spatial autocorrelation (for example, see Boots
and Tiefelsdorf, 2000). Given this feature of spatial autocorrelation, the 74 eigenvectors
identified in table 4 (for MC = 0.51669) describing prominent degrees of positive
spatial autocorrelation were used to account for autocorrelation in the MCMC simu-
lated maps. Results for these logistic regressions appear in table 5. These results differ
from those reported in table 1 because the restricted candidate set of eigenvectors
here is determined with a lower MC value. On average, 26 eigenvectors contribute to
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Table 5. Summary of individual spatial filtering results for 100 MCMC (Markov chain Monte
Carlo) generated maps.

Term for Number of ¢ Term for Number of ¢
which b was maps for which which b was maps for which
calculated |b/s,| > 2 calculated |b/s,| >2
intercept 28 0.792786 E;, 29 0.860387
E, 26 0.713942 E; 29 0.724235
E, 24 0.752116 E,, 31 0.734536
E, 30 0.811987 E,, 30 0.693760
E, 27 0.704758 E, 20 0.784933
E; 20 0.703752 E,, 16 0.756664
E, 47 0.733497 E,; 39 0.748211
E, 23 0.704521 E,, 24 0.779282
E, 21 0.774862 E, 33 0.702431
E, 17 0.719281 E, 13 0.686990
E, 23 0.732252 E, 23 0.708872
E, 23 0.780618 E, 19 0.790692
E, 20 0.745951 E, 14 0.769425
E,; 19 0.762103 E;, 38 0.788857
E, 21 0.754092 E;, 17 0.764384
E; 26 0.758813 E;, 21 0.860477
E 32 0.683522 E; 16 0.752492
E,, 27 0.706157 E,, 18 0.680707
E 21 0.796314 E; 27 0.763202
E, 30 0.794667 E 30 0.611233
E,, 26 0.735911 Eg, 23 0.655087
E,, 27 0.813860 Es 26 0.789154
E,, 26 0.749108 E,, 22 0.809770
E,; 29 0.768074 E, 26 0.804842
E, 20 0.652206 E, 28 0.717241
E,; 31 0.839641 E, 26 0.684714
E, 25 0.560267 E, 27 0.829588
E,, 31 0.627427 E, 25 0.764829
E, 24 0.706283 E; 22 0.763858
E,, 33 0.679712 E 35 0.660345
E,, 19 0.829540 E, 31 0.818690
E, 21 0.631433 E 18 0.782466
E,, 37 0.714919 E 27 0.828827
E;; 18 0.607428 E, 31 0.732010
E, 29 0.713226 E, 31 0.621491
E; 25 0.725714 E, 25 0.832277
E; 35 0.815517 E, 31 0.741804
E, 39 0.840654

describing latent spatial autocorrelation; the range is 13 to 47, with a standard error
of 6.4. The distribution of these counts conforms closely to a normal distribution
(SW = 0.978). On average, these descriptions render ¢ = 0.7512; the range is 0.5 to
0.99, with a standard error of 0.0657. The simulated sampling distribution of this
correlation coefficient deviates markedly from a normal distribution (SW = 0.996,
which is significantly different from 1 at the 0.01 level). Moreover, different subsets of
eigenvectors furnish a mean response description of latent spatial autocorrelation,
depending upon the specific map pattern of zeros and ones.
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5 Further assessment of the spatial filtering model specification

The predictive performance of the spatial filtering model specification also was evaluated
through cross-validation, whose tabular results appear in table 6, and whose graphical
results appear in figure 2. Both assessment tools suggest that probabilities generated by the
spatial filtering logistic regression model are very good; accompanying statistics include:
62 misclassified quadrats and ¢ = 0.65829.

An important feature differentiating the spatial filtering [that is, equation (4)] and
conventional autologistic [equation (2)] models is the number of parameters, which are
(K+1) and 2, respectively. The eigenfunctions of matrix expression (3) and matrix C
are nearly identical, once the principal eigenvalue has been replaced by 0 and its
corresponding eigenvector has been replaced by (1/n'?)1 (Griffith, 2000b). Meanwhile,
the autoregressive term associated with equation (2) can be rewritten as follows:

pCY = pEAE'Y = pEAIE'Y = pEA(E'E)"'E'Y = pEAb = Eb",

where EAET is the eigenfunction decomposition of matrix C, and the vector
(E'E) 'E'Y = b is the familiar vector of linear regression coefficients. In other words,
the two-parameter spatial autoregressive specification includes all of the eigenvector
coefficients, regardless of their distances from 0. The spatial filtering specification
simply explicitly removes those eigenvectors whose coefficients are unimportant.

This equivalency also relates to the amount of redundant information represented
by spatial autocorrelation. When p = 0, the effective sample size—the comparable
number of independent observations—is n. But, as p increases, the effective sample
size decreases to 1. The number of eigenvectors appearing in equation (4) potentially is
proportional to the accompanying reduction in effective sample size.

The role of the geographic neighbor structure also is of concern here. Popular first-
order definitions are the ‘rook’s’ case employed in this paper (see section 4), and the
‘queen’s’ case (c; = 1 if two locations share either a zero or a nonzero-length common
boundary, and ¢; = 0 otherwise). For a regular square tessellation forming a rectan-
gular region (for example, the field plots analyzed in this paper), the eigenvectors are

Table 6. Classification results produced by the different estimation procedures.

Estimation technique Pseudolikelihood MCMC- Spatial filter

maximum

likelihood estimated Cross-

model validation

Predicted presence (1) 0 1 0 1 0 1 0 1
or absence (0)
Actual absence: 0 241 16 209 48 237 20 231 26
Actual presence: 1 62 8l 26 117 28 115 36 107
Percentage 80.5 81.5 88.0 84.5
correctly classified
Residual Moran —0.274 —0.291 —0.023 —0.023
coefficient
Approximate zy,c score -7.5 -8.0 —0.5 na
Residual Geary ratio 1.299 1.317 1.048 1.050
Approximate zgg score 8.0 8.5 1.3 na

Note: z-scores are approximate, computed using 10000 random permutations of the residuals;
results from case to case were consistent with theory.

na denotes ‘not applicable’.

2 MCMC—Markov chain Monte Carlo.
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Cross-validation

1 1 1
0.0 0.5 1.0

Predicted

Figure 2. Scatterplot of the cross-validation probabilities versus the predicted probabilities from
the fitted spatial filter logistic regression model.

analytically known and are the same for both of these neighbor definitions (Griffith,
2003). In addition, because

(I-p0)" = E(1-pA)ET,

and

117 11" 11" 11"
n n n n

if certain types of higher order autoregressive models are based upon powers of matrix
C—for example, replacing a conditional spatial autoregression with a simultaneous
spatial autoregression specification —then the eigenvectors remain the same. The spatial
dependency adjustments that accompany these higher order models convert to changes
in estimated regression coefficients for the spatial filter specification, and changes in
weights applied to eigenvectors used to calculate MC values. In other words, more than
likely different eigenvectors will be selected for constructing matrix E,. As with the first-
order and second-order spatial autoregressive models, except for the special case of the
principal eigenvector of matrix C, the eigenvectors of matrix (I — 11" /n)C*(I — 11" /n)
asymptotically converge on those of matrix (I — pC)*. Therefore, a single spatial filter-
ing specification competes with a wide range of autoregressive model specifications.
But this result is lost when higher order autoregressive models are not simply powers
of matrix C. Discussions of these cases are found in Anselin and Smirnov (1996),
in Tiefelsdorf (2000, pages 32 —33), and in Haining (2003, pages 79 —87).

6 Conclusions

The spatial filtering methodology outlined in this paper furnishes an alternative
pseudolikelihood procedure—correlated georeferenced binary data are assumed to be
conditionally independent, given selected geographic weights matrix eigenvectors—
that successfully captures spatial dependency effects in the mean response term of a
logistic regression model, avoiding the complication of an intractable normalizing
factor. It is easily implemented with standard logistic regression and PCA software.
This filtering focuses on the particular form of positive spatial autocorrelation latent
in a given georeferenced dataset. In contrast to findings of Huffer and Wu (1998),
many of the simulated sampling distributions for estimated parameters inspected
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here failed to conform to a normal distribution (for the most part, they are symmetric
with heavy tails).

Classification results for the particular empirical example examined here appear in
table 6. Probabilities calculated with Besag’s pseudolikelihood estimation procedure
perform better when classifying the absence of disease. Probabilities calculated with
MCMC - maximum likelihood estimation perform better when classifying the presence
of disease. In contrast, probabilities calculated with the spatial filtering equation are as
good as the pseudolikelihood-based ones for absence of disease, and are as good as the
MCMC -maximum likelihood-based ones for presence of disease. The percentages of
correctly classified field plots are roughly the same for the pseudolikelihood and
MCMC - maximum likelihood results, but somewhat better for the spatial filter results.
Further, the residuals (binary value minus predicted probability) produced by both the
pseudolikelihood and MCMC —maximum likelihood results appear to contain non-
negligible negative spatial autocorrelation. These levels of spatial autocorrelation are
in contrast with the weak-to-moderate level (MC = 0.473) detected in the original
binary data. In contrast, only a trace amount of spatial autocorrelation appears to
remain in the spatial filter residuals. Finally, the maps of predicted probabilities and
their accompanying residuals appear in figures 1(b) — 1(d). All three procedures capture
the basic map pattern exhibited by the disease. Pseudolikelihood appears to do the
poorest job of prediction in the core area of disease concentration, whereas spatial
filtering appears to do the best job. The linear combination of 19 eigenvectors used in
the spatial filtering contains moderate-to-strong spatial autocorrelation, having an MC
value of 0.917. The map pattern portrayed by this composite variable can be used as a
clue to search for missing substantive variables (for example, soil type, soil —water
tension) that should be included in equation (4) as replacements for some or all of
the selected eigenvectors; such covariates also would reduce the magnitude of p in the
equation (2) specification. Similar findings are reported in Griffith (2003, pages 76 — 80,
115-116) for a spatial analysis of the presence —absence of West Nile virus by state (an
irregular lattice) in the United States.

Results of this type of spatial filtering analysis offer useful insights into the spatial
process under study. The empirical example analyzed here is the diffusion of a partic-
ular disease over a geographic landscape, a spatially autocorrelated phenomenon by
its very nature. Based on the ¢ correlation coefficient, the pseudolikelihood results
suggest that roughly 25% of the variance in presence—absence of the pepper plant
disease is locationally redundant. MCMC results, which statistically are more efficient,
suggest that about 33% is redundant information. Spatial filtering suggests that about
50% is redundant information. In addition, both pseudolikelihood and MCMC find-
ings suggest that the number of ones on the map should be approximately 50% of the
total (that is, & = —2f). But the number of ones is only about 36%. Although MCMC
indicates the presence of slightly stronger spatial autocorrelation, neither estimator has
an upper bound. In contrast, with an MC/MC,,, value of 0.896, the spatial filter
specification suggests a well-structured pattern, which is visible in figure 1(a); and
the index has an upper limit of 1. Finally, both the pseudolikelihood and MCMC
procedures appear® to have overcorrected for spatial autocorrelation (see table 6);
these methods are based upon pC, which uses all the eigenvectors of matrix C (see
section 5). Because spatial filtering involves a judicious selection of a subset of the
eigenvectors of matrix C, it enables overcorrection for spatial autocorrelation to be
better controlled. In other words, the map appearing in figure 1(d) should better
portray the spatial process outcome than do the maps in figures 1(b) and 1(c).

®) Z-scores reported in table 6 are approximate. The spatial autocorrelation sampling distribution
theory for residuals from a logistic regression remains undeveloped.
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Findings reported here are important for spatial statistics because the autologistic
specification for binary data naturally lends itself to geographic studies of disease
and species. These findings also complement those reported in Griffith (2002) for the
auto-Poisson model. The synthetic variate constructed as a linear combination of
eigenvectors yields a map that furnishes clues to help search for missing substantive
variables. In doing so, it serendipitously removes biasing effects of ignoring autocorre-
lation latent in georeferenced binary data. And, because each eigenvector depicts an
orthogonal map pattern, with increasing fragmentation of the attribute surface as the
associated eigenvalue decreases, articulating connections between spatial filtering
and local statistics (for example, local indicators of spatial autocorrelation) and local
models (for example, geographically weighted regression) should be a fruitful avenue
for future research.
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Appendix
Loss of eigenvector orthogonality in logistic regression
Suppose
X
PYIX) — p — SR LS) i= L2 ..

I+exp(a+ X p)

where X; is a 1 x K vector of K predictor variables. Let ¥ be the n x 1 vector of
observed binary 1/0 values. Then the log-likelihood function is given by

Y'XB+a¥Y"1-) In[l +exp(o+ X, B)]. (A)
i=1

Maximizing this function can be done efficiently with a quasi-Newton method, which
approximates its appropriate second-order derivatives in terms of squared residuals.

The first term in equation (Al) reveals that some relief from multicollinearity
problems may be realized when the predictor variables contained in matrix X are
orthogonal. Maximization is with respect to the elements of vector f and scalar o,
and orthogonality of matrix X results in an absence of covariation among the partial
derivatives with respect to the individual 8, that would be attributable to the Y'X
term. When the mean of each X variable is 0, there also is an absence of covariation
among the partial derivates that would be attributable to vector 1. But the partial
derivative of the third term in expression (Al) with respect to f; is

D xjexplo+ X B)

i=1

1 +exp(a+ X )

resulting in covariations among InX;, and X, (j# k). This covariation is present
regardless of the orthogonality of matrix X.

A more explicit illustration of how the orthogonality of matrix X is corrupted in
logistic regression is furnished by considering an asymptotic equivalence to the maxi-
mization of equation (Al). The variance of population probabability parameter p; is
given by p; (1 — p;), indicating heterogeneous variance when p; is not constant (that is,
variation across the n observations). This feature of logistic regression is exploited in a
second criterion that can be used for parameter estimation, namely minimizing the
weighted sum of squares quantity

E)

- (yi_ﬁi)z (A2)

—~ pi(1=p;)
where p; is given above. Expression (A2) reveals that orthogonality not only is lost
through the nonlinearity of the logistic function [for example, through the third term in
equation (Al)], but also through adjusting for heteroscedasticity with the weights
p;(1 — p;), which are not included in the orthogonalization of the original predictor
variables represented by matrix X. The algebra of this situation can be studied in terms
of iteratively reweighted least squares (for example, see Fox, 1997).

Therefore, if matrix X is the eigenvectors Ey, collinearity complications are intro-
duced because these eigenvectors retain their orthogonality only for simple linear
models.
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