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Abstract. Recently, analytical approaches based on the eigenfunctions of spatial
configuration matrices have been proposed in order to consider explicitly spatial predictors.
The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied
to ecological problems and shows equivalencies of and differences between the two current
implementations of this methodology. The two approaches in this category are the distance-
based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial
filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed
by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors
that can be easily incorporated into conventional regression models. One important
advantage of these two approaches over any other spatial approach is that they provide a
flexible tool that allows the full range of general and generalized linear modeling theory to
be applied to ecological and geographical problems in the presence of nonzero spatial
autocorrelation.
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INTRODUCTION

A major issue in contemporary ecology pertains to the

identification and explanation of geographic variability

affiliated with ecological communities (Cormack and

Ord 1979, Smith 2002). Geographic space operates

either as a factor that molds or constrains ecological

structures, or as a confounding variable that introduces

biases when it is overlooked during an ecological

analysis (see Legendre 1993, Legendre and Legendre

1998, Keitt et al. 2002). On the one hand, spatial

autocorrelation is known to influence the interpretation

of statistical models by affecting tests of significance of

the association between species distributions and envi-

ronmental factors (Selmi and Boulinier 2001, Legendre

et al. 2002, Peres-Neto 2004), as well as calculated

correlations among such variables (Clifford et al. 1988,

Richardson 1990, Dutilleul 1993). On the other hand,

geographically contagious biotic processes (such as

population growth, geographic dispersal, differential

fertility or mortality, social organization, or competition

dynamics) also can promote spatial autocorrelation in

species distributions. In many instances, these two

influences operate simultaneously, inducing spatial

heterogeneity in ecological communities. The goal of

employing spatial statistical models is to explicitly

account for the effects of these two sources of influence.

Taken together, space can be seen as a predictor, when

the goal is to exploit the mechanisms (e.g., shared

common factors, geographic diffusion) that generate

spatial autocorrelation in species distributions in space,

and/or as a covariable when the goal is to adjust for (i.e.,

account for and filter out) spatial variation when testing

for associations between species distributions and

environmental factors.

Various modeling approaches can be utilized by

ecologists to explicitly account for spatial autocorrela-

tion in ecological phenomena (e.g., autoregression

models, trend surface analysis; see Keitt et al. [2002]

and Lichstein et al. [2002] for reviews). Paralleling the

history of statistics, initially model specifications in-

volved autoregressive versions of regression models

based up the normality assumptions (Ripley 1988).

While this approach had considerable, but limited,

success, a number of ecological phenomena can be

better described by the Poisson (i.e., counts of rare

events) or the binomial (i.e., binary or percentage

measures) probability models, given that species data

typically are quantified with abundance or presence–

absence values (i.e., some sites are occupied while others

are not). The implementation of auto-specifications

(akin to autoregressive models) of these latter two

models remained elusive for years, even after generalized

linear modeling (GLM) theory was reasonably well

developed in the statistics literature. The purpose of this

paper is threefold: (1) to describe how eigenfunction
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spatial analysis provides a flexible methodology for

incorporating spatial variation in ecological models,

regardless of the adopted probability model, that

accounts for observed spatial autocorrelation by explic-

itly casting spatial variability in terms of predictors and/

or covariates; (2) to unify the existing methods related to

eigenfunction spatial analysis; and (3) to demonstrate

how eigenfunction spatial analysis can be used to

estimate the spatial component structuring communities

and to filter out the effects of spatial autocorrelation

when modeling species distributions according to their

environment. The class of methods presented is flexible

enough that it can be applied to any type of distribution

under general as well as generalized linear model (e.g.,

logistic/binomial and Poisson regressions) procedures.

BACKGROUND TO THE PROBLEM

Ecologists are increasingly aware of the problems

introduced by spatial autocorrelation when assessing

relationships between distributional patterns and local

environmental characteristics. The problem arises in

these situations because statistical models and tests

overestimate the effects of environmental factors driving

species distribution if solely based on environmental

predictors without accounting for spatial variation

(Legendre and Legendre 1998, Dale and Fortin 2002).

Probably the most common approach used for parti-

tioning out the common effects due to spatial processes

is to use trend surface polynomial regression (e.g.,

Wartenberg 1985, Borcard et al. 1992, Legendre and

Legendre 1998, Lichstein et al. 2002 [and references

therein]). Trend surface analysis, however, presents

reasonable solutions only when the sample area is

approximately homogeneous and the sampling design

is close to regular (Norcliffe 1969, Scarlett 1972).

Additionally, the spatial structure to be modeled is

rather simple and global, such as a gradient, a single

wave, or a saddle (Legendre and Legendre 1998:739).

Moreover, the use of trend surfaces introduces an

arbitrary choice for the degree of the polynomial

functions, with their lack of independence possibly

hindering model selection. Although orthogonalization

is always possible (e.g., Gram-Schmidt, PCA), the

degree of interpretability of linear combinations of

polynomials can become difficult.

Lichstein et al. (2002) advocated the use of regression

models based on trend surface polynomials to account

for broad-scale spatial patterns, whereas autoregressive

models should be used to account for fine-scale

variations. The problem with this approach is that

ecologists are forced to work with different classes of

models that can potentially hinder interpretation since

results cannot be directly combined. In addition,

analysis can only be conducted at the species level since

there is no analogue for the autoregressive model in the

realms of multispecies analysis, such as direct gradient

analysis. Even when the auto-normal probability model

(i.e., a conventional autoregressive model) is employed,

accounting for spatial autocorrelation detected in the

geographic distribution of some ecological phenomena

can be problematic. The most severe complication here

arises when autoregressive models are used to describe

large georeferenced data sets, since the accompanying

Jacobian term, which is necessary to estimate the

autoregressive parameters, is based upon the determi-

nant of an n 3 n matrix. A second complication is the

need to forego classical GLMs in favor of somewhat less

developed models, such as the auto-Poisson and auto-

logistic regression models. These models can produce

maximum-likelihood estimates only under certain

limited conditions (Cressie 1991), although some com-

putational solutions are available (see Kaiser and

Cressie 1997, He et al. 2003).

Recent advances in spatial modeling that seek to

avoid the complications involved in estimating autore-

gressive parameters, as well as to exploit established

ordinary least-squares (OLS) and GLM theory, fall

under the heading of spatial-filtering methodology. In

the linear-regression context, spatial filtering transforms

a variable containing spatial dependence into one free

of spatial dependence by partitioning the original

georeferenced attribute variable into two synthetic

variates that can be employed with a GLM framework:

a spatial-filter variate capturing latent spatial depen-

dency that otherwise would remain in the response

residuals, and a nonspatial variate that is free of spatial

dependence. Three forms of spatial filtering have

emerged. Getis (1990, 1995) devised a multistep

procedure based upon Ripley’s second-order statistic

(Ripley 1977)—now called the K function—and the Gi

spatial statistic developed by Getis and Ord (1992).

Griffith (e.g., 2000a) proposes a transformation proce-

dure that depends on the eigenfunctions of matrix

(I � 11
T/n)C(I � 11

T/n)—where I is an n 3 n identity

matrix, 1 is an n 3 1 vector of ones, T denotes matrix

transpose, n is the number of sampling locations, and C

is a binary connectivity matrix that is a term appearing

in the numerator of the Moran coefficient (MC) spatial

autocorrelation index. Note that the analysis also could

be based upon the Geary ratio, the other popular

spatial autocorrelation index. In a somewhat similar

fashion, Borcard and Legendre (2002; see also Borcard

et al. 2004) proposed a transformation procedure, called

principal coordinates of neighbor matrices (PCNM),

that depends on the eigenfunctions of the matrix of

truncated geographic distances among locations. Getis

and Griffith (2002) furnished a comparison between

their individual formulations. The current study out-

lines the conceptual framework upon which Griffith’s

spatial-filtering and PCNM methodology are built,

demonstrating how these methods are linked to spatial

autocorrelation. Comparisons between the two method-

ologies are illustrated with the georeferenced oribatid

mite data set that already has been analyzed by Borcard

et al. (2004).
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EIGENFUNCTION-BASED SPATIAL-FILTERING

METHODOLOGIES

Paralleling principal components analysis in multi-

variate statistics, the Griffith and the Borcard-Legendre
methods begin by diagonalizing an n 3 n geographic

structure matrix (e.g., the aforementioned matrix C).
The resulting eigenvectors, themselves, then are used

directly as synthetic explanatory variables in regression
analysis. This modeling approach is semiparametric in

nature, casting spatial autocorrelation as some unknown
function (nonparametric), which must be estimated from

a given data set; the function is additively coupled with a
set of covariates whose coefficients need to be estimated

(parametric). Linear combinations of judiciously se-
lected subsets of the aforementioned eigenvectors con-

stitute the unknown function.
The Griffith topology-based spatial-filtering method-

ology rests on the following property (Griffith 2003):
The first eigenvector, say E1, is the set of numerical

values that has the largest MC achievable by any set for
the spatial arrangement defined by the geographic

connectivity matrix C. The second eigenvector is the
set of values that has the largest achievable MC by any
set that is uncorrelated with E1. The third eigenvector is

the third such set of values. And so on. This sequential
construction of eigenvectors continues through En, the

set of values that has the largest negative MC achievable
by any set that is uncorrelated with the preceding (n� 1)

eigenvectors. As such, Griffith (2000a) argued that these
eigenvectors furnish distinct map pattern descriptions of

latent spatial autocorrelation in georeferenced variables.
Note that the number of positively and negatively

autocorrelated eigenvectors changes depending on the
neighborhood matrix, but the number of negatively

autocorrelated eigenvectors is always larger than the
number of positively autocorrelated eigenvectors for

irregular tessellations. Moreover, MC values are not
necessarily consistent across the two sets of eigenvectors

(i.e., the largest positive MC does not equal the largest
negative MC).

In ecological applications, a spatial filter is con-
structed by first restricting attention to the set of
candidate eigenvectors that represent positive spatial

autocorrelation, which is the one known to overestimate
the contribution of environmental factors (Legendre et

al. 2002). Next, judicious selection of eigenvectors can
be made with a forward-regression routine (see Appen-

dix B). Of note is that the eigenvectors in the resulting
subset representing distinct map patterns are both

mutually orthogonal and linearly uncorrelated in their
numerical form (Griffith 2000b), a property that is

corrupted by the weighting involved in computing GLM
parameter estimates, but could be correlated with

covariates contained in a model specification. This
multicollinearity can be eliminated by extracting the

eigenfunctions of matrix [I � X(XT
X)�1XT]C[I �

X(XTX)�1XT], where the n 3 (p þ 1) matrix X contains

the p predictor variables plus a vector of ones

(Tiefelsdorf and Griffith 2006). This is the numerator

of the MC for a mean-response linear combination of

predictor variables contained in matrix X.

The PCNM spatial-filtering method (Borcard and

Legendre 2002) begins with an eigenfunction decom-

position of a truncated matrix of geographic distances

among locations. Eigenvectors corresponding to positive

eigenvalues are used as spatial descriptors in regression

or canonical analysis. This method can be applied to any

set of locations providing a good coverage of a given

geographic landscape. In the original method described

by Borcard and Legendre (2002), the truncated matrix

of geographic distances is built in such a way that it

considers the influence of a sampling location on itself

(i.e., the geographic distance matrix has nonzero values

in the main diagonal). Although this consideration could

be seen as difficult to justify, there are examples of

spatial models where it has been applied (Bavaud 1998).

However, in order to make the method fully compatible

with the MC framework, and therefore more similar to

the Griffith topology-based spatial-filtering methodol-

ogy, Dray et al. (2006) implemented a modification in

the original Borcard-Legendre (2002) PCNM spatial-

filtering method. Hereafter, we will refer to the results of

this modified version as distance-based eigenvector

maps, to distinguish it from Griffith’s method, whose

results can be referred to as topology-based eigenvector

maps. The distance-based eigenvector procedure (after

Dray et al. 2006) can be summarized with the following

steps:

1) Compute a pairwise Euclidean (geographic) dis-

tance matrix D among sampling units (D ¼ [dij]).

2) Choose a threshold value t and construct a

truncated connectivity matrix W (i.e., not all sites

are connected) using the following rule:

W ¼ ðwijÞ ¼
0 if i ¼ j
0 if dij.t

½1� ðdij=4tÞ2� if dij � t

8<
:

where t is chosen as the maximum distance that

maintains all sampling units being connected using

a minimum spanning tree algorithm (Legendre and

Legendre 1998).

3) Compute the eigenvectors of the centered con-

nectivity matrix, (I � 11
T/n)W(I � 11

T/n). As for

the topology-based spatial-filtering methodology,

this centering process guarantees that the extracted

eigenvectors are orthogonal and linearly indepen-

dent (Griffith 2000b).

Given the non-Euclidean nature of spatial connectiv-

ity matrices, both positive and negative eigenvalues are

produced. The non-Euclidean part is introduced by the

fact that only certain connections among sites, and not

all, are considered in matrix W. As in Griffith’s method,

the extracted eigenvectors represent the decomposition

of the MC into all mutually orthogonal and linearly
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uncorrelated map patterns. Eigenvectors having asso-

ciated positive eigenvalues represent positive spatial

association, whereas eigenvectors having negative eigen-

values represent negative spatial association. An MC for

any eigenvector v can be directly calculated as follows

(Dray et al. 2006):

MCðvÞ ¼ n

1TS1
vT I� 11T

n

� �
W I� 11T

n

� �
v

¼ n

1TS1
vTWv:

Distance-based eigenvector maps with large eigenval-

ues represent coarse scales of variability or landscape-

wide trends (e.g., global); eigenvectors with intermediate

size eigenvalues represent medium scales (e.g., regional);

eigenvectors with small eigenvalues represent fine scales

or patchiness (e.g., local). Therefore, distance-based

eigenvector maps capture a range of geographic scales

encapsulated in a given data set, restricted by the

landscape boundary extent of sample locations and the

threshold value used to truncate distance, and by the

smallest interlocation distances existing in a landscape.

Again, only prominent eigenvector maps (i.e., those that

significantly contribute to the explanation of a response

variable) should be utilized.

To provide a clear description of the topology-based

and the distance-based eigenvector maps, we provide an

example involving a small number of sampling loca-

tions, where all the main analytical steps and the

matrixes involved are presented (see Fig. 1). Eigenvector

maps are treated just as other predictors of interest; after

extraction, eigenvector maps are selected (see Appendix

B) and considered jointly with environmental predictors

in the model (Fig. 1). In addition, we make available a

complete set of Matlab routines that calculate eigenvec-

tor predictors based on both methods (see Supplements

1–3). We also show the spatial patterns depicted by three

distance-based eigenvector maps constructed for a 40 3

40 regular grid and a linear combination of eigenvectors

(Fig. 2). In this latter case, each of 40 randomly chosen

eigenvectors (out of 745 portraying prominent degrees

of positive spatial autocorrelation) was multiplied by a

randomly chosen coefficient from the interval [�1,1],

and then the weighted set was summed. This procedure

mimics a possible outcome of a linear combination of

eigenvector maps created with a model selection

technique.

THE ORIBATID MITE DATA SET REVISITED: AN EMPIRICAL

COMPARISON OF THE TWO EIGENFUNCTION METHODS

In June 1989, 70 Sphagnum moss cores (5 cm in

diameter and 7 cm deep) were sampled from a 10 3 2.5

m area in a floating moss and peat blanket that extended

from a forest border into a lake in St. Hippolyte, Québec

(Borcard et al. 1992). The resulting ecological data set

comprises the following: 35 oribatid mite species counts;

spatial coordinates (u, v) of the 70 sample cores; and 11

environmental variables, i.e., bulk density of the

substratum (measured in grams per liter of dry uncom-

pressed matter), water content (measured in grams per

liter of raw uncompressed material), and Helmert

orthogonal contrasts coding four species of Sphagnum

moss, ligneous litter, bare peat, the interface between

two substrates, three categories of shrubs, and micro-

topography (blanket or hummock).

In this example, 28 topology-based eigenvectors and

22 distance-based eigenvectors having positive eigenval-

ues were retained as spatial descriptors. In order to

compare the two sets of predictors, we use canonical

analysis as a template. Canonical analyses, such as

redundancy analysis (RDA, Rao 1964) and canonical

correspondence analysis (CCA, ter Braak 1986), are

widely used tools for modeling communities with

environmental and spatial predictors (Legendre and

Legendre 1998). They provide the means of conducting

direct explanatory analyses in which associations among

species can be studied with respect to their common and

unique relationships with environmental variables and

spatial predictors. Redundancy analysis can be best

understood as a method for extending multiple regres-

sion, which has a single response Y and multiple

predictors X (e.g., several spatial and environmental

predictors), to multiple regression involving multiple

response variables (e.g., several species) and a common

matrix of predictors X. Prior to analysis, the species data

was Hellinger-transformed (Legendre and Gallagher

2001). Using a few fabricated examples, Legendre and

!
FIG. 1. A schematic representation of the steps involved in the distance-based and topology-based eigenvector map extraction

procedures. Sampling units are identified by letters, and columns and rows in the matrices follow the same order. For the distance-
based eigenvector maps (left panel), the following five steps are involved: (1) compute a pairwise Euclidian distance matrix D¼ [dij]
for the sampling localities; (2) chose a threshold t (here a value of 3.6056 was employed, which was found by a minimum spanning
tree [see Eigenfunction-based spatial-filtering methodologies]), and construct a truncated connectivity matrix W ¼ [wij] using the
following rule: wij ¼ 0 if i ¼ j; wij ¼ 0 if dij . t; and wij ¼ [1 � (dij/4t)

2]; and (3) center the truncated connectivity matrix (see
Eigenfunction-based spatial-filtering methodologies) using the projection matrix (I � 11T/n), and then extract the associated
eigenvectors. Meanwhile, the following are the steps for the topology-based eigenvector maps (right panel): (1) compute a binary 0–
1 connectivity matrix based upon a particular surface partitioning (landscape topology); and (2) center the connectivity matrix
using the projection matrix (I� 11

T/n), and then extract the associated eigenvectors. In the present example, Thiessen polygons are
employed to establish a topological surface articulation. Once eigenvector maps are extracted with both methods, a selection
scheme (see Eigenfunction-based spatial-filtering methodologies) is used to retain only prominent eigenvectors. Finally, species
distributions are modeled as functions of the retained eigenvector maps and environmental factors. As a fictional example, we show
a model based on three environmental variables (X1, X2, and X3) and two eigenvector maps (EV1 and EV3).
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Gallagher (2001) report that this transformation might

provide better resolutions for species, by making them

behave more like a Gaussian distribution, than the

commonly used chi-square metric employed in CCA (ter

Braak 1986). In addition, Peres-Neto et al. (2006)

showed that this transformation provides appropriate

estimates of the redundancy statistic R2
Y j X (i.e., the

RDA equivalent of the regression coefficient of deter-

mination, R2). Next, species-transformed values were

detrended to remove the linear component of variation.

Detrended values represent regression residuals of the

Hellinger-transformed data using geographic coordi-

nates as covariates.

We began by comparing the sets of multivariate scores

for the first two canonical axes of two separate RDAs

based on the two sets of spatial predictors (Fig. 3).

Canonical scores are simply based on a principal

components analysis of the covariance matrix of

predicted values between species, and are routinely used

to construct bi-plots to identify environmental and

spatial gradients regarding species distributions (Legen-

dre and Legendre 1998). The plots of scores vs. their

FIG. 2. Examples of spatial patterns depicted by eigenvector maps. Three distance-based eigenvectors (numbers 1, 112, and 345,
based upon a descending ordering of the accompanying eigenvalues) are presented. These were extracted from a spatial structure
matrix for a 40340 regular grid. The composite map (bottom right panel) represents a linear combination of eigenvector maps (see
Eigenfunction-based spatial-filtering methodologies). Eigenvector maps whose associated eigenvalues are the largest have large
Moran coefficient (MC) values and represent coarse spatial scales, whereas axes with eigenvalues closer to zero correspond to finer
spatial scales.
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coordinates show that both sets of spatial predictors

provide high concordance in terms of their predicted

values. Next, we conducted a variance partitioning

(Borcard et al. 1992, Peres-Neto et al. 2006; see

Appendix C for a complete description of the method)

based on the two sets of spatial predictors and the

environmental predictors. In this approach, the total

percentage of variation explained by the model (R2
Y j X) is

partitioned into unique and common contributions of

the sets of environmental and spatial predictors. Results

of variance partitioning based on adjusted fractions of

variance (Peres-Neto et al. 2006; see Appendix C) are

presented in Fig. 4, and they indicate that differences

between the two methods are not substantial with regard

to the amount of variation solely explained by environ-

ment and space. We also conducted a variance-

partitioning exercise using the two sets of spatial

predictors, with results indicating that most of the

explained variation in species distribution is shared

between the topology- and distance-based eigenvectors.

The unique fractions of variation related to the top-

ology-based and distance-based eigenvectors are 0.093

and 0.080, respectively, whereas the common fraction

accounts for the largest amount of variation (0.166).

In order to assess the success of both types of spatial

predictors in removing the effects of spatial dependence

in regression residuals, for each oribatid species we

calculated a global Moran’s coefficient I (MC) (see

Appendix A for calculations and tests of significance)

for the environmental model residuals (Table 1).

Regression analysis results for 12 and 11 species reveal

the presence of significant spatial dependence according

to the topology- and distance-based neighborhood

matrices, respectively. Here a forward selection proce-

dure based on including variables that decrease the

amount of positive spatial autocorrelation in residuals

was implemented (see Appendix B for details). In this

approach, eigenvectors are added to a model until the

spatial autocorrelation measured by I in the residuals is

no longer significant according to a preestablished alpha

level. Most species that display significant levels of

positive autocorrelation for one set of spatial predictors

also do so for the other set. Both sets of predictors are

equally successful in removing the spatial trends in the

model residuals. In addition, we also tested the environ-

mental contribution after spatial predictors were entered

into a model (see Legendre and Legendre 1998:608–612).

For both sets of predictors, unique percentages of

contribution and probability levels were comparable

across all species regarding the influence of environ-

mental factors driving their distributions after spatial

dependence was removed. In Appendix D, we compare

results based on the eigenvector filtering methods with

those obtained by estimating a simultaneous autore-

gressive (SAR) spatial model, and we show that the SAR

model does not completely remove the autocorrelation

among regression residuals for all species. This is a

restricted comparison in the sense that we only consider

the species studied here. However, it points out that,

given the selection procedure implemented here, the

eigenvector method is designed to assure that residuals

are not spatially autocorrelated, which is not the case for

the autoregressive family based on maximum likelihood

estimates (Tiefelsdorf and Griffith 2006). Indeed,

autoregressive models might not be completely success-

ful in removing autocorrelation in model residuals (e.g.,

see Lichstein et al. (2002: Fig. 2) regarding the CAR

model, and Tognelli and Kelt (2004: Fig. 4) regarding

the SAR and CAR models).

DISCUSSION

Our goal here is to expose ecologists to a new class of

spatial predictors based on eigenfunction analysis and to

compare the two implementation methods that are

FIG. 3. The first two canonical axes of an RDA of the
Hellinger-transformed oribatid mite species data explained by
topology- and eigenvector-based spatial predictors.
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available in this relatively new and emerging spatial

approach. In addition, we compare the two methods

based on multi- and single-species analysis, showing the

flexibility of this class of methods to both types of

analysis. The modeling approaches (redundancy analysis

[RDA] and multiple regression) used here are based on

ordinary least-squares regression. Although the issues of

normality here may appear as a concern, and if so can be

addressed as in Griffith (2002) and Griffith (2004), the

Hellinger-transformation provides reliable estimates in

variance partitioning (Peres-Neto et al. 2006) and

representation in canonical space (Legendre and Gal-

lagher 2001). In addition, all conducted statistical tests

reported here are based on randomization procedures to

avoid potential problems with the normality assump-

tions associated with inference. However, the two classes

of eigenvector methods can be easily extended to

generalized linear models (GLMs; e.g., logistic/binomial

and Poisson regressions), whereas the autoregressive

approach becomes cumbersome and difficult to estimate

when extended to GLMs. The principal problem with

autoregression is the normalizing constant, which is the

Jacobian term in the case of a linear model and requires

Markov chain Monte Carlo estimation in the GLM

case. In addition, there is nothing akin to the

autoregressive model for modeling communities (i.e.,

multiple species). The methods presented here can be

easily incorporated in a GLM framework where binary,

percentage, and count data are to be analyzed using

environmental and eigenvector predictors, with selection

continuing to be based on choosing eigenvectors that

reduce autocorrelation in model residuals. In Supple-

ment 3, we make available software that performs the

eigenvector selection procedure described here for OLS

and GLM (logistic and Poisson) estimation.

Another important advantage of the spatial eigenvec-

tors is that a forward selection method based on the idea

of reducing the degree of dependence between residuals

can be performed, since we can estimate the degree of

global autocorrelation in these residuals. This approach

is important when assessing the contribution of environ-

mental predictors because, if all spatial eigenvectors (28

and 22 for the topology- and distance-based, respec-

tively, in the example data used here) are kept in a model

jointly with environmental predictors, one may decrease

statistical power due to the loss of degrees of freedom.

This would be the case either when assessing the unique

contribution of environment in a variance-partitioning

scheme or when interpreting individual slopes for each

environmental predictor in single-species models. How-

ever, if the interest is to estimate the importance of space

rather then control for it, then we suggest that all

predictors are used and contributions are adjusted in

accordance with the number of predictors in a model.

Based upon simulation experiments, Peres-Neto et al.

(2006) found that adjusted fractions in variance parti-

tioning are better estimated when all regressors are used

rather than just a reduced set identified with forward

model selection techniques. Another point to consider is

that ecologists seem to often apply correlograms to

judge whether applying a spatial model successfully

removes spatial dependence among residuals. Although

we have considered global measures of autocorrelation,

one could easily modify the eigenvector selection

procedure in order to reduce the autocorrelation

between particular classes of distances.

Although both eigenfunction-based methods we

compare are quite similar in terms of their results

regarding the example employed here, this outcome may

not always be the case, and choice might depend on the

specific success of each method in removing spatial

dependence in regression residuals. In addition, both

methods are flexible enough, given that they can be

further modified. For instance, we could apply the

surface partitioning used in generating the topology-

based eigenvector maps to the distance-based method

FIG. 4. Variance partitioning Venn diagrams representing percentages of unique contribution of environmental [a] and spatial
[c] components to the oribatid mite distribution based on topology- and distance-based eigenvectors. In the figure, [b] represents the
amount of shared variation between the environmental and spatial components, and [d] represents the residual fraction (i.e.,
unexplained variation).

DANIEL A. GRIFFITH AND PEDRO R. PERES-NETO2610 Ecology, Vol. 87, No. 10



where the 1’s in the connectivity matrix (Fig. 1) could be

replaced by geographic distances. Conversely, the

truncated connectivity matrix used in the distance-based

method could have its distances replaced by 1’s. There

are many possible avenues for applying and expanding

the applications of eigenvector maps, and our study is an

illustration of two methods that can be unified under the

class of spatial eigenfunction maps, a relatively new and

flexible technique for spatial analysis.
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26:329–358.

Richardson, S. 1990. Some remarks on the testing of
association between spatial processes. Pages 277–309 in D.
Griffith, editor. Spatial statistics: past, present, and future.
Institute of Mathematical Geography, Ann Arbor, Michigan,
USA.

Ripley, B. 1977. Modeling spatial patterns. Journal of the
Royal Statistical Society B 39:172–212.

Ripley, B. 1988. Statistical inference for spatial processes.
Cambridge University Press, Cambridge, UK.

Scarlett, M. J. 1972. Problems of analysis of spatial distribu-
tion. Pages 928–931 in W. P. Adams and F. M. Helleiner,
editors. Congrès international de géographie. University of
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APPENDIX A

Detailed description for calculating a global Moran’s I and significance test based on a permutation procedure for environmental
model residuals based on topology-based and distance-based eigenvector maps (Ecological Archives E087-157-A1).

APPENDIX B

Forward selection procedure for eigenvector maps (Ecological Archives E087-157-A2).
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APPENDIX C

Adjusted redundancy statistic and variation partitioning in redundancy analysis (Ecological Archives E087-157-A3).

APPENDIX D

A comparison between eigenvector maps and simultaneous autoregressive models (SAR) using the oribatid mite data set for
controlling spatial autocorrelation in regression residuals (Ecological Archives E087-157-A4).

SUPPLEMENT 1

Matlab functions for generating topology-based and distance-based eigenvector maps (Ecological Archives E087-157-S1).

SUPPLEMENT 2

Matlab function for performing model selection of eigenvector maps (Ecological Archives E087-157-S2).

SUPPLEMENT 3

Matlab compiled software to perform the eigenvector selection procedure for generalized linear models (normal, logistic, and
Poisson) (Ecological Archives E087-157-S3).
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