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Abstract. The Moran Coe½cient spatial autocorrelation index can be decom-
posed into orthogonal map pattern components. This decomposition relates it
directly to standard linear regression, in which corresponding eigenvectors can
be used as predictors. This paper reports comparative results between these
linear regressions and their auto-Gaussian counterparts for the following
georeferenced data sets: Columbus (Ohio) crime, Ottawa-Hull median family
income, Toronto population density, southwest Ohio unemployment, Syra-
cuse pediatric lead poisoning, and Glasgow standard mortality rates, and a
small remotely sensed image of the High Peak district. This methodology is
extended to auto-logistic and auto-Poisson situations, with selected data
analyses including percentage of urban population across Puerto Rico, and
the frequency of SIDs cases across North Carolina. These data analytic results
suggest that this approach to georeferenced data analysis o¨ers considerable
promise.
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1 Motivation

As with time series modelling, spatial statistical modelling involves nonlinear
model speci®cations and estimation in order to account for auto- or self-
correlation. One source of this nonlinearity is the complicated normalizing
factor that appears in spatial statistical likelihood function estimation equa-
tions. This factor ensures that when moving from a spatially autocorrelated
to a spatial unautocorrelated mathematical attribute space, probabilities sum/
integrate to 1. The expression for this normalizing constant in the auto-
Gaussian case ± the pre®x auto- signifying the acknowledgment of self-
correlation ± is cumbersome, relates directly to eigenfunctions (Ord 1975), and
can be accurately approximated (Gri½th and Sone 1995) or sometimes e½-
ciently handled through the use of special matrix operations (Barry and Pace



1997). Unfortunately the same is not true for the auto-logistic or auto-Poisson
speci®cations (Cressie 1991, pp. 424±440).

Normalizing factors for all spatial autoregressive models are problematic,
in that they are complex and often have no closed form solutions. One solu-
tion to this problem has been to avoid computing an analytical probability
density altogether; rather, a researcher could simply draw a very large random
sample from a target distribution using Markov Chain Monte Carlo (MCMC)
procedures (e.g., Gibbs sampling). If the sample is large enough, the distribu-
tion can be investigated empirically (e.g., the probability density could be ap-
proximated using kernel density estimators or histograms). Of note is that the
normalizing constant problem has plagued Bayesian statistics until recently,
with this MCMC approach supplying a means to circumvent it. LeSage (1996)
outlines how this computer intensive approach can be implemented; Conlon
and Waller (1999) outline implementation speci®cally for the spatial statistical
conditional autoregressive (CAR) prior. The primary goal of this paper is to
evaluate another possible solution to this problem by making selected empir-
ical comparisons. More speci®cally, it seeks to circumvent computational dif-
®culties associated with the complicating normalizing factors, reducing the
numerical intensity of spatial statistical procedures and making results more
directly comparable with those of more traditional statistical methods. Freeing
scientists from having to contend with such numerical di½culties is a consid-
erable advantage. The methodology presented and assessed here is especially
of importance to geographers and regional scientists who deal with percent-
age, counts, and/or large georeferenced data sets.

2 Background

The most common interpretation of spatial autocorrelation is in terms of
trends, gradients, or patterns across a map. Unlike conventional correlation
coe½cients, however, the Moran Coe½cient (MC) is not restricted to the
range �ÿ1; 1�; rather, its range is dictated by what essentially are the extreme
eigenvalues of the geographic connectivity matrix C (the matrix depicting the
geometric arrangement of areal units). C is constructed from n2 0=1 binary
values, where cij � 1 if row areal unit i and column areal unit j share a com-
mon boundary and cij � 0 otherwise, and consequently can go slightly beyond
these two usual endpoint values (de Jong et al. 1984). In fact, the accom-
panying eigenvectors represent a kaleidoscope of orthogonal map patterns of
possible spatial autocorrelation (Gri½th 1996). Tiefelsdorf and Boots (1995,
1996) uncover part of this relationship between the eigenfunctions and MC
values. It is this set of eigenvectors that o¨ers a possible solution to the trac-
tability of the normalizing constant problem, in a context similar to REML
(restricted maximum likelihood) methodology. Additionally, a theorem by
Rao (1967) con®rms the equivalency between the OLS and spatial auto-
regressive solutions here, since the spatial autoregressive covariance matrix
contained in the log-likelihood auto-Gaussian speci®cation [see expression
(3.1)] can be rewritten in the form he speci®es, namely

�Iÿ 11 0=n� �
Xn

i�1

ErkLkE 0
" #

s2; �2:1�
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where I is an n-by-n identity matrix, 1 is an n-by-1 vector of ones, E is an
n-by-n matrix of orthogonal eigenvectors, r is the spatial autocorrelation
parameter, L is an n-by-n diagonal matrix of eigenvalues (corresponding to
the eigenvectors in matrix E), C � ELE 0, 0 denotes the operation of matrix
transpose, and s2 denotes the standard constant variance parameter.

3 Problem statement

The presence of non-zero spatial autocorrelation introduces a number of com-
plications into the statistical analysis of georeferenced data. Foremost are the
necessary modi®cations of probability density/mass functions when moving
from a spatially autocorrelated to a spatially unautocorrelated mathematical
space, one of which is the normalizing constant. Second, because model speci-
®cations are nonlinear in nature, nonlinear estimation techniques must be
used. The third concerns attaining a better and deeper understanding of the
spatial autocorrelation phenomenon. These problems give rise to the follow-
ing research questions:

How can the normalizing constant complication be avoided?
How can spatial statistical models be equated with conventional statistical
models?
What does the spatial autocorrelation term in a spatial statistical model mean?

The general problem addressed here seeks to supply at least some answers to
each of these three questions.

3.1 The normalizing constant problem

Most regression analyses that take into account latent spatial dependency are
based upon the assumption of normally distributed error terms, and involve
maximum likelihood estimation (MLE) for which the log-likelihood function
for variable Y is speci®ed as

constantÿ n

2
LN�s2� � 1

2
LN�det�V�� ÿ �Yÿ Xb�0V�Yÿ Xb�=�2s2�;

�3:1�

where Y is an n-by-1 vector of map values for variable Y, det�V� denotes the
operation of matrix determinant being performed on matrix V, LN denotes
the natural logarithm, Xb denotes the standard nonconstant mean, b is a
�p� 1�-by-1 vector of regression coe½cient parameters, X is an n-by-�p� 1�
matrix of predictor variables, and matrix V is a function of the connectivity
matrix C and r. Essentially expression (3.1) is a standard probability density
function expression found in introductory multivariate textbooks. The nor-
malizing constant (the Jacobian of the transformation from a spatially auto-
correlated to a spatially unautocorrelated mathematical space, a concept dis-
cussed both in calculus and in introductory mathematical statistics textbooks),
is 1

2 LN�det�V�� in this case. The term det�V� can be rewritten in terms of the
eigenvalues of matrix V, which for the popular spatial autoregressive models
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translates this normalizing factor into

conditional autoregressive (CAR) model:
1

2

Xn

j�1

LN�1ÿ rlj�
simultaneous autoregressive (SAR)/autoregressive response (AR) model:Pn
j�1

LN�1ÿ rlj�

where the ljs are the n eigenvalues of matrix C or its row-standardized

version, matrix W
0@i:e:; wij � cijPn

j�1

cij

1A, depending upon which of these two

geographic weights matrices is used in a spatial analysis. Of note is that the
AR speci®cation di¨ers slightly from expression (3.1).

The auto-logistic speci®cation (assuming pairwise-only dependence between
sites), which can be extended to the auto-multinomial, for binary variable Y is
of the form

Pr�Y� � EXP�Y 0Xb� rY 0CY�
normalizing constant

; �3:2�

where Pr�Y� denotes the probability of vector Y, EXP denotes the base-e
(natural) anti-logarithm, and the normalizing constant in the denominator is
an in®nite sum for an in®nite region, one that has no closed form since it is a
function of the unknown parameters. One cumbersome way to handle this
term is through simulation work that allows the normalizing constant to be
approximated (e.g., MCMC). Another way is by using the pseudolikelihood,
which trades away statistical e½ciency in exchange for a closed-form expres-
sion that avoids working with this unwieldy normalizing constant (Cressie
1991, p. 461). And, Heagerty and Lele (1998) make the very appealing sug-
gestion of using a composite likelihood approach.

The auto-Poisson speci®cation (assuming pairwise-only dependence be-
tween sites) results from specifying that all components of a variable have
Poisson conditional probability mass functions, and for integer counts vari-
able Y is of the form

Pr�Y� �
EXP Y 0XbÿPn

i�1

LN�yi!� � rY 0CY

� �
normalizing constant

; �3:3�

where yi denotes the i-th element of vector Y, yi! denotes the number of per-
mutations of size yi, and the normalizing constant is a sequence of n in®nite
sums, one that is dependent upon the parameters. Here the normalizing con-
stant is intractable (Cressie 1991, p. 462). In addition, spatial dependence is
restricted to being negative in nature, a result that is counter to the real world.
Kaiser and Cressie (1997) propose a clever solution to this last problem, one
that di¨ers qualitatively from the solution suggested in this paper.

For these last two cases, Cressie emphasizes that the ``real hurdle to ob-
taining the likelihood (from which inference on the parameters can proceed)
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remains the normalizing constant'' (1991, p. 440). In addition, both can be
approximated with an auto-log-Gaussian speci®cation.

4 A conceptual framework

Consider the constant mean speci®cation of expression (3.1), for which Xb �
m1 and Iÿ 11 0

n

� �
�M. To begin, the Moran Coe½cient may be rewritten,

using both matrix and summation notation, as

MC � nPn
i�1

Pn
j�1

cij

Pn
i�1

Pn
j�1

cij�yi ÿ y��yj ÿ y�
Pn
i�1

�yi ÿ y�2
� n

1 0C1

Y 0MCMY

Y 0MY
; �4:1�

where the projection matrix M, commonly appearing in statistical theory
(Healy, 1986), centers the variable Y (i.e., subtracts the sample mean, y, from
each observed value, yi). Of note is that this matrix is idempotent, meaning
M2 �M.

de Jong et al. (1984) establish the exact extremes of the MC in terms of
part of the numerator of the right-hand fraction of expression (4.1), namely

MCM: �4:2�

These extremes approximately equal l2 and ln of matrix C. Tiefelsdorf and
Boots (1995) extend de Jong et al.'s results, demonstrating that each of the n
eigenvalues of expression (4.2) is a MC value, once it is multiplied by the left-

hand term of expression (4.1), namely
n

1 0C1
.

In extending the ®ndings of Tiefelsdorf and Boots (1995), and linking them
to principal components analysis (PCA; Gri½th 1984), the eigenvalues of ex-
pression (4.2) may be interpreted in the context of map pattern as follows:

The ®rst eigenvector, E�1 , of expression (4.2) is the set of numerical values that
has the largest MC achievable by any set of numerical values, for the given
geographic connectivity matrix C. The second eigenvector is the set of nu-
merical values that has the largest achievable MC by any set of numerical
values that is uncorrelated with E�1 . This sequential construction of eigen-
vectors continues through E�n , which is the set of numerical values that has
the largest negative MC achievable by any set of numerical values that is un-
correlated with the preceding �nÿ 1� eigenvectors.

Hence these n eigenvectors describe the full range of all possible mutually or-
thogonal map patterns, and may be interpreted as synthetic map variables.
Constructing a Moran scatterplot by plotting CE�j versus E�j always reveals

a linear alignment of points, but with a slope that varies with j. The slope de-
®ned by CE�1 versus E�1 is the maximum positive one, and for CE�n versus E�n is
the maximum negative one, with the �nÿ 2� intervening slopes sequentially
rotating from this ®rst to this nth case.
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Paralleling PCA, the eigenvectors of expression (4.2) can be used to con-
struct linear combinations with prespeci®ed levels of spatial autocorrelation.
In fact, suppose b � E�M2Y. Then expression (4.1) may be rewritten as

n

1 0C1

b 0Lb

b 0b
� nPn

i�1

Pn
j�1

cij

Pn
j�1

b2
j lj

Pn
j�1

b2
j

; �4:3�

where the vector b actually is an estimate of a regression coe½cient vector b.
In other words, judiciously selected weights used to construct a linear combi-
nation of eigenvectors allow a map pattern to be constructed having a pre-
speci®ed MC value. Because these weights are squared, and any eigenvector is
determined up to a multiplicative factor of ÿ1, the signs of the coe½cients are
irrelevant. Rather, the resulting target MC value is a weighted average, and
hence requires eigenvectors to be combined that have MC values both greater
than and less than the target MC value.

Expression (4.3) alludes to spatial autocorrelation being directly linked to
conventional OLS (ordinary least squares) regression in the auto-normal case.
Consider the following pure SAR model:

MY � rCMY� e; �4:4�

where e is an n-by-1 vector of errors. This equation may be rewritten with a
spectral decomposition as a spatially ®ltered OLS speci®cation:

MY � rMELE 0MY� e

ArE�LE�0Y� e � E�b� e: �4:5�

Of note is that b � E�0Y is the standard OLS estimator when vector Y is re-
gressed on matrix E�, as well as it appears in both the numerator and the de-
nominator of the MC as written in expression (4.3). This solution is analogous
to using PCA synthetic variables in regression in order to handle multicolli-
nearity1. But here the eigenvectors of expression (4.2) are introduced in order
to account for spatial autocorrelation. By accounting for spatial autocorrela-
tion with judiciously selected eigenvectors (i.e., ones with signi®cant regression
coe½cients, representing compelling degrees of spatial autocorrelation, and
the spatial autocorrelation nature indicated by the MC), behavior of the error
term will mimic that of independence. Of note is that matrix ME approxi-
mately equals E�, the eigenvectors of expression (4.2). Furthermore, this de-
composition supplies a foundation for the derivation of expression (2.1).

1 PCA orthogonalizes the covariance matrix for a set of p variables, in R-mode, and uses
eigenvectors of this covariance matrix to construct synthetic variates that are orthogonal and
uncorrelated and can be used as predictors in a regression analysis. The solution presented here
orthogonalizes the covariance matrix for a set of n observations, similar to what is done by PCA
in Q-mode, and uses the eigenvectors themselves as synthetic variates that are uncorrelated and
can be used as predictors in a regression analysis.
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5 Empirical demonstrations

Four data sets whose analyses are reported in the literature have been chosen
for comparative purposes here. The ®rst three provide a comparison over a
wide range of sample sizes, while the fourth furnishes a comparison in the
presence of negative spatial autocorrelation. Estimation results for these
analyses are tabulated in Table 1. Two additional comparisons have been
completed that are not summarized in detail here; one is for the Gri½th and
Amrhein Syracuse pediatric lead poisoning data (1997, p. 313), and the other
is for the Haining Glasgow cancer data (1990, p. 366). These demonstrations
emphasize advantages and disadvantages of using judiciously selected eigen-
vectors to ®lter spatial autocorrelation out of the error term posited for
georeferenced data.

For the ®rst demonstration consider Anselin's (1988, pp. 193, 197) pro-
posal for an initial regression model that describes crime (the combined total
of residential burglaries and vehicle thefts per 1,000 households) in Columbus,
Ohio, as a function of income and housing value. These raw data conform
reasonably well to a normal distribution [Shapiro-Wilk (S-W) � 0.96409,
probability under the null hypothesis �p� > 0:10]. Variation across the four
quadrants of the Columbus geographic landscape displays a tolerable degree
of heterogeneity2 (Bartlett � 4:651, p > 0:10). Marked positive spatial auto-
correlation is displayed by the geographic distribution (MC � 0:52064,
zA 5:6).

Because the detected latent positive spatial autocorrelation should be
linked to a spatial process, such as crime displacement, and because variables
more than likely are missing from the equation speci®cation, spatial auto-
correlation is viewed here as entering into the analysis through the error term;
as such, an SAR model speci®cation has been estimated. Data analysis results
reported in Table 1 di¨er slightly from those reported by Anselin because of
the di¨erent spatial autoregressive model speci®cation employed here. Com-
parison of the autoregressive and ®ltering results reveals: (1) marked positive
spatial autocorrelation present in the raw crime data persists in the OLS re-
siduals, and essentially is completely accounted for by the spatial SAR model
and eigenvector ®ltered OLS speci®cations; (2) the ®ltered OLS speci®cation
may do a modestly better job than the SAR one in accounting for spatial au-
tocorrelation; and, (3) the non-normality and variance heterogeneity detected
for the ®ltered OLS solution is attributable to the presence of an outlier
(Neighborhood a4), which also is conspicuous in the SAR residual results
but only potentially so in the traditional OLS results. Of note is that the three
eigenvectors were selected from the set identi®ed as having MC > 0.

For the second demonstration consider Gri½th's (1992) analysis of the
geographic distribution of 1986 median family income across the Ottawa-Hull
metropolitan region as a function of population density of census tracts. These
raw data fail to adequately conform to a normal distribution (S-W � 0:96254,

2 Variance heterogeneity may be quanti®ed with Bartlett's statistic, which assumes normality, as
well as Levene's statistics, which assumes a continuous variable. While both statistics were com-
puted as part of the analyses undertaken in this research, only Bartlett statistics are reported. For
the case of perfectly homogeneous variance, Bartlett � 0; the parent populations have exactly the
same variance.
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p < 0:01). Variation across the four quadrants of the Ottawa-Hull geographic
landscape displays a modest degree of heterogeneity (Bartlett � 1:703,
p > 0:10). And, moderate positive spatial autocorrelation is displayed by this
geographic distribution (MC � 0:35839, zA 8:1).

Because the detected latent positive spatial autocorrelation should be
linked to a spatial process, such as similar socioeconomic groups clustering
together, and because variables most certainly are missing from the equation
speci®cation, spatial autocorrelation is viewed here as entering into the anal-
ysis through the error term; as such, again an SAR model speci®cation has
been estimated. As the number of eigenvectors increases, an attempt to search
through them for compelling relationships becomes more problematic. The
exploratory strategy employed with this example is to select a threshold MC
value below which all eigenvectors are weighted zero, and then construct a
linear combination of the remaining ones to include as a synthetic variable in
the regression equation; the threshold used for these Ottawa-Hull data is 0.5;
bj � E�Tj YA 0 will have the e¨ect of essentially excluding a nonsigni®cant
eigenvector from this linear combination. Accordingly, this synthetic variate
has multiple degrees of freedom associated with it (k � 28 in this Ottawa-Hull
case). Comparison of the autoregressive and ®ltering results reveals: (1) posi-
tive spatial autocorrelation present in the raw income data persists in the OLS

Table 1. Comparative estimation results for selected georeferenced data sets having spatial auto-
regressive results reported in the literature

OLS s.e. S/AR(W) s.e. ®ltered OLS s.e.

Anselin's Columbus crime data �n � 49�
r̂ � � 0.56163 0.20641 � �
b0 68.61886 4.73547 59.89390 5.98608 59.43748 4.29781
bincome ÿ1.59730 0.33413 ÿ0.94132 0.36763 ÿ0.95530 0.28637
bhouse value ÿ0.27393 0.10320 ÿ0.30226 0.09442 ÿ0.27516 0.08750
bE �3 � � � � ÿ44.95254 9.75474
bE �5 � � � � ÿ24.37356 9.35443
bE �2 � � � � ÿ23.90644 9.95318
(pseudo-)R2 0.552 0.658 0.742
residuals
S-W 0.98303 � p > 0:10� 0.96452 � p > 0:10� 0.95051 � p < 0:10�
Bartlett 6.154 � p > 0:10� 4.289 � p > 0:10� 8.911 � p < 0:05�
MC 0.24220 �jzjA 2:6� 0.03908 �jzjA 0:4� ÿ0.02895 �jzjA 0:3�

Gri½th's Ottawa-Hull income data �n � 192�
r̂ � � 0.52168 0.12058 � �
b0 43655 1018.85 42581 1641.19 41986 820.72
bpopulation density ÿ1.02916 0.26745 ÿ0.69221 0.31957 ÿ0.45751 0.22050
bvÿv ÿ0.35936 0.07836 ÿ0.29755 0.12706 ÿ0.14358 0.06462
bIÿoutlier�CTa50� � � � � ÿ20368 7352.01
bI�outlier�CTa52� � � � � ÿ28345 7442.61
bPk

j�1

bj E
�
j

� � � � 0.92056 0.08945

(pseudo-)R2 0.163 0.335 0.499
residuals
S-W 0.98648 � p > 0:10� 0.98636 � p > 0:10� 0.98389 � p > 0:10�
Bartlett 5.555 � p > 0:10� 5.778 � p > 0:10� 5.437 � p > 0:10�
MC 0.24110 �jzjA 5:4� 0.00716 �jzjA 0:2� ÿ0.00118 �jzjA 0:0�
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residuals, and essentially is well accounted for by the spatial SAR model and
eigenvector ®ltered OLS speci®cations; (2) the ®ltered OLS speci®cation may
do a slightly better job accounting for the geographic variation in median
family income; (3) coe½cient and standard error estimates for population
density are volatile across these implementations; and, (4) the ®ltered OLS
solution identi®es two prominent outliers, one being an extreme in the right-
hand tail and the other in the left-hand tail of the frequency distribution. Of
note is that the goodly number of degrees of freedom associated with the
synthetic variate is consistent with the notion of spatial autocorrelation in-
dexing redundant information in georeferenced data.

For the third demonstration consider Gri½th and Can's (1996) formula-
tion of a spatial autoregressive population density model for the 1986 Toronto-
centered region in terms of a negative exponential function of distance sepa-
rating census tracts (CTs) from the CBD (central business district). The raw
data fail to adequately conform to a normal distribution (S-W � 0:78683,
p < 0:01). These researchers have uncovered several outliers, one being an
excessively high density, and several others being zero or near-zero densities.
Results reported here di¨er slight from those of Gri½th and Can because the
constant 1604.6 was added to population density before a logarithmic trans-
formation was performed on this variable, and because the CBD coordinate is

Table 1. (continued)

OLS s.e. S/AR(W) s.e. ®ltered OLS s.e.

Gri½th & Can's Toronto population density data �n � 731�
r̂ � � 0.60796 0.04850 � �
b0 9.03133 0.02885 9.10907 0.06342 8.62482 0.02636
bdistance from CBD ÿ0.02850 0.00130 ÿ0.01076 0.00178 ÿ0.00550 0.00131
bIexcessdensity

2.07654 0.46657 1.98728 0.38943 1.91199 0.33930
bInearÿzero density

ÿ1.43890 0.26986 ÿ1.46195 0.22522 ÿ1.31746 0.19627
bPk

j�1

bj E
�
j

� � � � 0.89494 0.03513

(pseudo-)R2 0.419 0.600 0.693
residuals
S-W 0.98471 �p > 0:10� 0.98353 �p > 0:10� 0.98749 �p > 0:10�
Bartlett 17.628 �p < 0:01� 6.948 �p < 0:10� 10.173 �p < 0:05�
MC 0.40656 �jzjA 7:6� 0.04976 �jzjA 0:9� ÿ0.01359 �jzjA 0:2�

Anselin's southwest Ohio unemployment data �n � 25�
r̂ � � ÿ0.62307 0.21957 � �
b0 0.96650 0.02219 0.98796 0.01334 0.98856 0.01602
b1983 unemployment 0.96033 0.31775 1.01484 0.27580 0.62394 0.23207
b1983 net migration ÿ1.02676 0.34417 ÿ0.88492 0.30476 ÿ0.72395 0.26389
bISMSAnear-zero density

ÿ0.02609 0.01406 ÿ0.01659 0.01294 ÿ0.01304 0.01050
bE �21

� � � � ÿ0.06216 0.01557
bE �14

� � � � 0.03325 0.01491
bE �7 � � � � 0.03378 0.01516
(pseudo-)R2 0.486 0.636 0.789
residuals
S-W 0.98071 � p > 0:10� 0.96826 � p > 0:10� 0.92218 � p < 0:10�
Bartlett 6.987 � p < 0:10� 2.628 � p > 0:10� 1.248 � p > 0:10�
MC ÿ0.27733 �jzjA 2:1� ÿ0.15546 �jzjA 1:2� ÿ0.17362 �jzjA 1:3�
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estimated from the data rather than being set in this exercise; the principle
consequence is the removal of a weak east-west trend from the data.

Because the detected latent positive spatial autocorrelation should be
linked to a spatial response mechanism, such that localities with similar pop-
ulation densities will tend to cluster together in urban space, spatial auto-
correlation is viewed here as entering into the analysis as a direct response to
density itself. Therefore, an AR model speci®cation has been estimated. The
exploratory strategy again is used here, employing a threshold MC value of
0.5, which in turn results in construction of the synthetic variate using k � 118
eigenvectors. Comparison of the autoregressive and ®ltering results reveals: (1)
marked positive spatial autocorrelation present in the raw population density
data persists in the OLS residuals, and essentially is adequately accounted for
by the spatial AR model and eigenvector ®ltered OLS speci®cations; (2) just
as Gri½th and Can report, these data contain considerable spatial heteroge-
neity; and, (3) as Curry (1972) shows, estimation procedures can confuse spa-
tial autocorrelation and distance decay e¨ects.

For the fourth demonstration consider Anselin's (1988, 206±210) spatial
econometrics analysis of a georeferenced socioeconomic attribute data set that
relates to a spatial economics version of the classical economics Philips curve
(i.e., a graph depicting the relationship between in¯ation and unemployment).
His study area comprises the 25 counties of southwest Ohio. The dependent
variable in his analysis is the change in wage rates for 1983. He reports results
from ®tting both a conventional OLS and a spatial AR model to this variable,
using the inverse unemployment rate, a net migration rate, and a standard
metropolitan statistical area (SMSA) indicator variable as predictors. This
example is of particular interest because it involves modest negative spatial
autocorrelation.

The ®ltered OLS analysis employed here restricts attention to eigenvectors
depicting negative spatial autocorrelation. Comparison of the autoregressive
and ®ltering results reveals: (1) negative spatial autocorrelation lurking in the
raw county unemployment rates, which is largely accounted for by the spatial
AR model and eigenvector ®ltered OLS speci®cations; and, (2) a reversal of
the inference concerning the SMSA indicator variable based upon either the
AR or the ®ltered OLS estimation results. Of note is that theoretically nega-
tive spatial autocorrelation is a½liated with a suppression of the number of
degrees of freedom, whereas the ®ltered OLS results reported here suggest that
degrees of freedom are lost in its presence.

Noteworthy results reported in Table 1 for comparative purposes concern
the estimated regression coe½cients and their corresponding standard errors.
For Anselin's crime data there is little di¨erence between the income and house
value coe½cient estimates across the three speci®cations, and little di¨erence
between the intercept estimates obtained for the SAR and spatial ®ltering
speci®cations. The standard errors obtained with the spatial ®ltering speci®-
cation change disproportionately to the change in R2. For Gri½th's income
data there are substantial di¨erences between the non-intercept regression co-
e½cients and the standard errors across the three speci®cations. For Gri½th
and Can's population density data results for the outlier indicator variables
appear to be the most stable across the three speci®cations. Finally, for An-
selin's unemployment data the estimated regression coe½cient for the unem-
ployment rate di¨ers most noticeably between the SAR and spatially ®ltered
speci®cations. Volatilities displayed by these results more than likely are
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largely attributable to spatial autocorrelation latent in the X matrix. Modify-
ing the eigenvector spatial ®ltering approach to more closely parallel Getis's
(1995) spatial ®ltering approach would acknowledge and clarify this situation.

6 Implications about the proposed speci®cation for spatial auto-logistic and
auto-poisson models

Especially the empirical demonstrations completed employing log-Gaussian
analyses for percent of children having elevated blood lead levels, and for lung
cancer rates, suggest that the eigenvector ®ltering methodology o¨ers a con-
venient way to accommodate the presence of spatial autocorrelation in
georeferenced data while retaining more conventional statistical model speci-
®cations. This implication is particularly encouraging for logistic and Poisson
regression modeling, where the normalizing factors for the spatial auto- ver-
sions are analytically intractable, and because the spatial auto-Poisson speci-
®cation cannot accommodate the almost always encountered case of positive
spatial autocorrelation. Two additional empirical demonstrations are re-
viewed in this section, one for each of these two auto- situations. Their com-
parative estimation results are reported in Table 2.

The geographic distribution of the percentage of urban population by muni-
cipio across Puerto Rico in 1970 can be described with a logistic model speci®-
cation (Gri½th and Amrhein 1997, pp. 306±308). This geographic distribution
should re¯ect the urban hierarchy on the island. Accordingly, the description
devised here is based upon the ®ve urban regions of Puerto Rico; moreover, it is
an ANOVA. Based upon a similar argument to that presented for the preceding
population density analysis, in this situation a spatial AR model has been esti-
mated. Of note is that the log-Gaussian approximation involves the logarithmic

transformation LN
% urban population� 13:80998

100ÿ% urban population� 13:80998

� �
. Comparison of

the autoregressive and ®ltering results reveals: (1) weak positive spatial auto-
correlation present in the percentage urban population data (MC � 0:16164)
is accounted for by the spatial AR model and eigenvector ®ltered OLS speci-
®cations as well as the ®ltered logistic regression speci®cation; (2) as expected,
the log-Gaussian approximation analyses are plagued by nonconstant vari-
ance; and, (3) because the logistic regression results are based upon actual
population ®gures, conspicuous statistical inference di¨erences appear between
the log-Gaussian approximation and logistic regression estimations (i.e., the
sample sizes used to compute the standard errors are tens of thousands rather
than 72).

Repeating this logistic regression exercise with 1980 georeferenced data
uncovers a third prominent eigenvector for ®ltering spatial autocorrelation
e¨ects. Because the eigenvectors do not change between 1970 and 1980, the
statistical analysis links to a ®xed e¨ects model speci®cation.

Meanwhile, Cressie (1991, pp. 386±389) reports georeferenced data for
SIDs (sudden infant death syndrome) cases during 1974±1978 and 1979±1984
in North Carolina. Geographical clustering of SIDs cases already has been
documented for this North Carolina data set. Cressie (1991, p. 429) comments
that an auto-Poisson model would constitute a reasonable spatial autore-
gressive speci®cation here and that a geographic trend in SIDs cases occurs
across the set of 100 North Carolina counties. He also notes that a suitable
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power transformation ± suggesting a preference for the logarithmic one ± can
be applied to the rates version of these data so that a Gaussian autoregressive
speci®cation can be estimated (p. 434). Cressie identi®es an outlier in the
1974±1978 data set, and adds unity to each value to better computationally
handle 0 values (p. 391). Results reported here di¨er slightly from those re-
ported by Cressie because the optimal constant to add to the rates was found
to be 0.34235, rather than 1.

An SAR spatial autoregressive speci®cation has been estimated here be-
cause missing variables, such as ethnicity, local health care practices, and
socioeconomic attributes of local areas, appear to account for geographic
clustering of cases. Of note is that the statistical description furnished by a
Poisson speci®cation incorporating the OLS-identi®ed prominent eigen-
vectors, to adjust for spatial autocorrelation, is considerably better than the
description furnished by a log-Gaussian approximation. Comparison of the
autoregressive and ®ltering results reveals: (1) modest positive spatial auto-
correlation present in the raw SIDs data (MC � 0:24465) is well accounted

Table 2. Comparative estimation results for selected georeferenced data sets conforming to non-
Gaussian distributions

log-Gau-
ssian
AR(W)

s.e. log-
Gaussian
®ltered OLS

s.e. ®ltered
logistic/
Poisson

s.e.

Gri½th & Amrhein's Puerto Rico percent urban population data �n � 73�
r̂ 0.21545 0.23020 � � � �
b0 ÿ0.54828 0.13032 ÿ0.55863 0.09482 ÿ0.3042 0.00158
bSan Juan-Caguas 0.34719 0.19420 0.46193 0.17271 0.9445 0.00252
bArecibo-Caguas ÿ0.17356 0.23031 ÿ0.50777 0.22184 ÿ1.1052 0.00346
bMayaguez-Caguas ÿ0.19272 0.20197 ÿ0.21366 0.20159 0.2058 0.00350
bPonce-Caguas 0.10840 0.20527 0.29648 0.20041 0.4381 0.00309
bE�7 � � ÿ2.57779 0.88176 5.1415 0.01290
bE�6 � � 1.98345 0.86773 ÿ3.5605 0.01260
(pseudo-)R2 0.118 0.251 0.213
residuals
S-W 0.96799 � p > 0:10� 0.97033 � p > 0:10� �
Bartlett 12.622 � p < 0:05� 8.759 � p < 0:10� 3.257 � p > 0:10�
MC 0.02287 �jzjA 0:3� ÿ0.03776 �jzjA 0:5� 0.06530 �jzjA 0:9�

Cressie's North Carolina SIDs data �n � 100�
r̂ 0.23625 0.18362 � � � �
b0 ÿ6.24821 0.07560 ÿ6.26602 0.0497 ÿ6.31137 0.0460
buÿu 0.00167 0.00064 0.00180 0.0004 0.00248 0.0005
bvÿv ÿ0.00364 0.00186 ÿ0.00599 0.0017 ÿ0.00457 0.0017
bIlow value outlier

ÿ1.71068 0.57770 ÿ1.81613 0.5052 ÿ13.38106 346.0466
bIhigh value outlier

� � 1.42739 0.5043 1.51990 0.2803
bE �4 � � 1.45647 0.6323 1.28682 0.5797
bE �15

� � ÿ1.06673 0.4946 ÿ0.86467 0.3708
bE �16

� � ÿ2.20995 0.4943 ÿ2.43255 0.4652
bE �19

� � ÿ1.14049 0.5060 ÿ1.12825 0.4585
(pseudo-)R2 0.265 0.482 0.884
residuals
S-W 0.98539 � p > 0:10� 0.98313 � p > 0:10� �
Bartlett 7.813 � p < 0:10� 3.568 � p > 0:10� �
MC ÿ0.01148 �jzjA 0:2� ÿ0.07178 �jzjA 1:1� ÿ0.01321 �jzjA 0:2�
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for by the spatial SAR model and eigenvector ®ltered OLS speci®cation as
well as the ®ltered Poisson regression speci®cation; (2) as might be expected,
the log-Gaussian approximation SAR analysis is characterized by noncon-
stant variance; and, (3) the low value outlier may well be an artifact of model
misspeci®cation.

Repeating this Poisson regression exercise with the 1979±1984 georefer-
enced data results in disappearance of two of the prominent eigenvectors for
®ltering spatial autocorrelation e¨ects, as well as failure for extremely low
values to emerge as outliers. Again because the eigenvectors do not change
between the two time periods, the statistical analysis links to a ®xed e¨ects
model speci®cation.

7 Large georeferenced data sets

A conspicuous feature of each of the six preceding empirical analyses is their
respective relatively small n value. One of the sources of massively large
georeferenced data sets is remote sensing. Bailey and Gatrell (1995, p. 254)
analyze data from a one-square-kilometer, 30-by-30 pixels portion of the High
Peak District in England; in practice a serious spatial scientist would rarely
analyze a LANDSAT image this small, but this data set is invaluable for
illustrative purposes. The focus of the analysis here is on the ratio of Band a4
to Band a3, bands that, respectively, represent the near-infrared and red
wavelengths of the electromagnetic spectrum. This ratio provides a good pic-
ture of spatial variation in biomass, with healthy green vegetation re¯ecting
strongly in Band a4, which measures the vigor of vegetation, whereas its
energy absorption is strongly sensed in Band a3, which aids in the identi®-
cation of plant species. The frequency distribution for this ratio deviates from
a normal frequency distribution (S-W � 0:94904, p < 0:01), with marked
variance ¯uctuation across the four quadrants of the region (Bartlett �
91.561, p < 0:01). Such variance heterogeneity often typi®es remotely sensed
data. In addition, as is characteristic of most remotely sensed data, this ratio
displays strong positive spatial autocorrelation (MC � 0:88047, zA 36:7).

An SAR spatial autoregressive speci®cation has been estimated here be-
cause variables most certainly are missing for this simple analysis. The SAR
and ®ltered OLS estimation results together with diagnostic statistics for this
data set include

SAR (W) s.e. filtered OLS s.e.
r̂ 0.98812 0.00886 �
b0 2.10031 0.33445 2.10730 0.00300
bPk

j�1
bjEj

� 1.00000 0.00586

(pseudo-)
R2

0.953 0.970

residuals
W-S 0.95641 (p < 0.01) 0.98300 (p < 0.10)
Bartlett 39.201 (p < 0.01) 22.670 (p < 0.01)
MC 0.16838 0.14206.
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The exploratory strategy was adopted here, and employs a threshold MC value
of 0.25, which in turn results in construction of the synthetic variate using
k � 279 eigenvectors. Comparison of these results reveals: (1) latent spatial
autocorrelation is extremely strong, and contributes substantially to the vari-
ance heterogeneity across this geographic landscape; (2) pronounced positive
spatial autocorrelation present in the raw spectral bands ratio data (MC �
0.38469) is not totally accounted for by either the spatial SAR model or the
eigenvector ®ltered OLS speci®cation; and, (3) the SAR and ®ltered OLS re-
siduals are ill behaved. Of note is that the eigenvectors included here are the
centered analytical ones for matrix C, which approximate those for expression
(4.2); the ®rst eigenvector has not been removed from this set. These eigen-
vectors are known analytically (Gri½th 1999), which allows any size remotely
sensed image to be analyzed using the ®ltered-OLS methodology.

8 Conclusions

The empirical demonstrations explored in this paper provide evidence that
the eigenvectors of matrix expression (4.2) can be used with OLS regression
to account for spatial autocorrelation during the statistical modelling of geo-
referenced data. This methodological ®nding is especially useful in the cases of
auto-logistic and auto-Poisson analyses, for which the necessary autoregres-
sive normalizing constant remains elusive. Future research should focus, at
least in part, on deriving statistical distribution theory, more than likely within
the context of ®xed e¨ects, for such model speci®cations, and to further re®ne
the exploratory strategy repeatedly employed in this paper.

Stepwise regression analysis, which is illuminating here because the eigen-
vectors of expression (4.2) are uncorrelated, frequently indicates that many
signi®cant eigenvectors account for only a fraction of a percent of variance in
a given dependent georeferenced variable. This is one reason why the explor-
atory composite index approach appears to be successful. Several recent sci-
enti®c discoveries suggest that this may be the expected, rather than a concern,
in attaining a better understanding of phenomena. For example, Hadi and
Ling (1998) argue that PCA components associated with near-zero eigen-
values should not necessarily be routinely discarded. Recent experiments in
physics reveal that neutrinos, which historically had been assigned a mass of
zero, actually have a minute mass that, when accumulated across the trillions
and trillions and trillions that exist, adds up to a substantial mass, explaining
at least some of the missing mass puzzle that has bedeviled astrophysicists for
decades. And, psychologists recently found that a battery of genes (there
might be 50 or more) appears to in¯uence intelligence, with the one discovered
on the long arm of chromosome 6 of the human genome accounting for only
about 2% of the variance in IQ.

Finally, the empirical demonstrations reviewed in this paper o¨er at least
partial answers to the posed research problem questions; these may be sum-
marized as follows:

How can the normalizing constant complication be avoided? Potentially by
implementing the eigenvector ®ltering OLS methodology.
How can spatial statistical models be equated with conventional statistical
models? Again, potentially by implementing the eigenvector ®ltering OLS
methodology.
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What does the spatial autocorrelation term in a spatial statistical model mean?
It often means that very complex map pattern e¨ects are complicating the
statistical analysis of georeferenced data. Rarely do simple linear gra-
dient trends fully account for these e¨ects; rather, often some combination of
numerous eigenvector map patterns is needed to account for latent spatial
autocorrelation.

Therefore, the verdict is that the eigenvector ®ltering OLS methodology o¨ers
considerable promise for the proper statistical analysis in a regression context
of spatial data.
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