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Abstract

Mathematical properties of extreme eigenfunctions of popular geographic weights matrices
used in spatial statistics are explored, and applications of these properties are presented. Three
theorems are proposed and proved. These theorems pertain to the popular binary geographic
weights matrix––an adjacency matrix––based upon a planar graph. They uncover relation-
ships between the determinant of this matrix and its extreme eigenvalues, regression and the
minimum eigenvalue of this matrix, and the eigenvectors of a row-standardized asymmetric
version of this matrix and its symmetric similarity matrix counterpart. In addition, a conjecture
is posited pertaining to estimation of the largest eigenvalue of the binary geographic weights
matrix when the estimate obtained with the oldest and well-known method of matrix powering
begins to oscillate between two trajectories in its convergence. An algorithm is outlined for
calculating the extreme eigenvalues of geographic weights matrices based upon planar graphs.
And, applications results for selected very large adjacency matrices are reported.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be an irreducible, undirected planar graph with n � 2 vertices. Let C be the
binary 0-1 n-by-n adjacency matrix constructed from G, where cij = 1 if vertices
i and j are adjacent, and cij = 0 otherwise. G is commonly employed in spatial
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analyses, where it is constructed for surface tessellations (e.g., pixels of a remotely
sensed image, counties of a state). Its planar property means that cij = 1 if tessella-
tion cells i and j share a nonzero length boundary, and cij = 0 otherwise. Especially
in spatial statistics, matrix C may be converted to its row-standardized, stochastic
version, say W; hence, wij = cij /(

∑n
j=1 cij ). Suppose an attribute variable has n

numerical values, where each of these values is associated with one and only one
of the vertices of G. Spatial autoregressive model estimation involves one of the
following matrix determinant Jacobian terms, say eJ (ρ), based upon these matrices:
det(I − ρC) and det(I − ρW), where I is an n-by-n identity matrix, and the scalar
ρ is a parameter denoting the nature and degree of spatial autocorrelation, the cor-
relation depicting tendencies for similar or dissimilar numerical values of a given
attribute variable to cluster within a tessellation (i.e., on a map)––in other words,
similar or dissimilar numerical values to be associated with adjacent nodes of G. Fol-
lowing Ord [25], the logarithmic counterpart to this Jacobian term may be rewritten
as J (ρ) = −(1/n)

∑n
i=1 LN(1 − ρλi), where λi are the i eigenvalues of matrix C

or W, depending upon which matrix is employed in a spatial statistical analysis. Sup-
pose these eigenvalues are arranged in descending order; hence λ1 and λn respectively
denote the largest and smallest eigenvalues. The objective of this paper is to give ana-
lytically derived eigenfunction results that allow J (ρ) to be approximated by Ĵ (ρ) for
very large, unpatterned versions of matrices C and W. The need to address this prob-
lem of computing log-determinants of large sparse matrices is emphasized by, among
others, Barry and Pace [3]. Advantages of approaches outlined in this paper over these
others include an ability to accurately approximate asymptotic standard errors (see
[17]), and avoidance of complications arising from selecting poor simulation samples.
The current underdeveloped state of efficient eigenvalue algorithms, and a need to rec-
tify this situation, is stressed by Luk and Qiao [23].

2. Deriving Ĵ (ρ), an approximation for the log-determinant of selected
matrices

The log-summation for J (ρ) is easily calculated for values of n as large as several
thousand; the upper limit of efficient and feasible calculation of sets of eigenfunc-
tions has been increasing with the advancement of computer technology. This log-
summation term also can be efficiently calculated for matrix C constructed for either
the linear (i.e., the minimally connected G) or the regular square tessellation surface
partitioning, whose eigenvalues are analytically known. Griffith [15, p. 102] presents
an extremely accurate approximation for the eigenvalues of the corresponding matrix
W for a regular square tessellation, and reports the analytical eigenvalues of matrix
W for the linear arrangement. Theorem 2.1 extends the calculation simplification for
J (ρ) to the entire class of planar graphs G.

Theorem 2.1. If M is an n-by-n irreducible adjacency matrix––either a binary
0-1 matrix or its row-standardized counterpart––based upon an undirected planar
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graph, and λ1 and λn respectively are its extreme eigenvalues, then the affiliated
spatial autoregressive log-Jacobian term, J (ρ), may be approximated with Ĵ1(ρ),

whose expression is given by

ρ
α2,nλ

2
n − α1,nλ

2
1
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n|LN
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)
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)
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)
, (1)

where the coefficients α1,n and α2,n are half of the average distance between con-
secutive eigenvalues in, respectively, the negative and the positive ranges of a set of
n eigenvalues, and coefficients δ1,n and δ2,n help compensate for use of a truncated
log-series expansion.

Proof

J (ρ) = −1

n

n∑
i=1

LN(1 − ρλi)

= −1

n

∑
λi<0

LN(1 − ρλi) + 0 +
∑
λi>0

LN(1 − ρλi)

 .

Since the eigenvalues are not necessarily uniformly spaced across their range, guided
by both the trapezoidal rule and the Gaussian formula from calculus,∑

λi<0

LN(1 − ρλi) ≈ α1

∫ 0

λn

LN(1 − ρλ)dλ

= −α1
−LN(1 + ρ|λn|)(1 + ρ|λn|) + ρ|λn|

ρ

and ∑
λi>0

LN(1 − ρλi) ≈ α2

∫ λn

0
LN(1 − ρλ)dλ

= −α2
−LN(1 − ρλ1)(1 − ρλ1) − ρλ1

ρ
.

Substituting these two results into the equation for J (ρ) after replacing
(LN(1−ρλ))/ρ with the first two terms of its log-series expansion, namely
(−ρλ − ρ2λ2/2)/ρ, yields expression (1), where the coefficients α1,n and α2,n are
subscripted with n because, respectively, they are computed from α1/n and α2/n,
and 1 is replaced by δ1,n and δ2,n. �
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If α1,n and α2,n respectively have 1/|λn| and 1/λ1 factored out of them, expres-
sion (1) becomes the approximation expression reported and evaluated by Griffith
and Sone [20].

Three sources of error are affiliated with Eq. (1). The first arises from using the
trapezoid rule of integration, and is of order O(λ3

k/n
2
k), where λk is either λ1 or λn,

and nk denotes the number of positive (λk = λ1) or negative (λk = λn) eigenvalues.
This quantity is rather modest because λ1 at most tends to be proportional to

√
n

(see Eq. (3), for example). The second arises from truncating a series expansion
of a logarithm expression, and is of order O(ρ3λ3

k). This quantity is rather modest
for most values of ρ, since the autocorrelation parameter value is restricted such
that 1/λn < ρ < 1/λ1. The third source of error arises from the nonuniform spac-
ing of the eigenvalues, which diminishes with increasing n because the eigenvalue
range is divided into increasingly smaller intervals––n increases faster than the in-
terval [λn, λ1], which in some cases is constant over n. A database containing 130
graph adjacency matrices (see Appendix A for a description of it) has been complied
and used here to both evaluate mathematical specifications and supply model-based
inferential support for generalizing findings to other graphs not contained in the dat-
abase. Calculations obtained with Eq. (1) suggest that the combination of these three
sources of error results in modest total error in practice; based on dividing the fea-
sible spatial autocorrelation parameter space into 20 intervals, the relative error sum
of squares (RESS; the residual sum of squares divided by the corrected total sum
of squares) has a mean of 0.00057, a standard deviation of 0.00096, a minimum of
0.00000, and a maximum of 0.00485. Roughly 44% of the RESS is accounted for by
the following trend in these data:

RESS ≈ 0.00268

1 + 8.65638e−0.00485n
.

This trend suggests that the total error should be negligible across n.
The log-summation version of J (ρ) focuses attention on both the eigenfunctions

associated with G and the importance of the pairs of extreme eigenvalues. In order
to calibrate expression (1), then, these extreme eigenvalues need to be computable.

3. The principal eigenvalues of matrices C and W

Because matrix W is stochastic, its largest eigenvalue, say λ1(W), theoretically
is known to be 1 (all rows sum to 1). The largest eigenvalue of matrix C, say
λ1(C), is easily calculated by using one of the oldest and the well-known method
of limk→∞(1′Ck+11)/(1′Ck1) = λ1 for matrix C [7, p. 213]; this Rayleigh quotient
usually converges to λ1(C) as k → ∞. Because matrix C is sparse––since G is pla-
nar, the maximum number of 1s is 6(n − 2)––the calculation of powers of matrix C
can be expedited by restricting attention to only those cij = 1; Anselin and Smirnov
[2] discuss efficient procedures for constructing these types of powered matrices, too.
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And, the irreducibility of G can be checked quite easily by tracing a path through the
graph with a numerical algorithm to see whether or not it passes through all nodes.
For purposes of this paper, this approach has allowed a quick calculation of λ1(C)

for n as large as 45,974.
Friedman [14] discusses error bounds for the calculation of λ1(C). Another appro-

ach to accuracy assessment is based upon the trajectory traced by λ1(C)τ , the estimate
of λ1(C) at iteration τ , which often asymptotically approaches λ1(C) from below.
Inspection of a number of these trajectories has suggested the following conjecture.

Conjecture 3.1. If C is an n-by-n irreducible binary 0-1 adjacency matrix based
upon an undirected planar graph, and λ1 is computed with limτ→∞(1′Cτ+11)/

(1′Cτ 1), then

λ1(C)τ ≈ λ̂1(C) + α̂Ieven/odd + β̂e−γ̂ τ , (2)

where Ieven/odd = 1 if τ is even, and −1 otherwise.

The ideal trajectory sketched by λ1(C)τ is a concave curve that converges upon
asymptote λ̂1(C). If C is a periodic matrix, then the trajectory λ1(C)τ oscillates
between two concave curves, one traced by even powers and the other traced by odd
powers of matrix C. This trajectory pair is detected by α̂ /= 0, which renders λ̂1(C) as
a weighted average of the two trajectories; α̂ ≈ 0 when a single trajectory exists. Be-
cause all trajectories converge upon asymptotes, β̂e−γ̂ τ describes this convergence;
this specification of error disappearance is suggested by the matrix exponentiation
involved in constructing the trajectories.

In practice, the first τ = 1, 2, . . . , L of λ1(C)τ need to be discarded in order for
the intercept estimate, λ̂1(C), to be approximately equal to λ1(C); this action is sim-
ilar to that taken with simulation work, where a simulated process requires a burn-in
time. Experience suggests that L should be at least 0.10τmax, where τmax denotes
the maximum number of iterations performed when convergence is attained. The
parameter α accounts for the possible presence of both an upper and a lower bound
trajectory for λ1(C), rather than the trajectory itself that converges on λ1(C), a situa-
tion that arises when adjacency matrices constructed for G are periodic. If these two
separate trajectories do not exist, then α = 0; if they do, then λ̂1(C) is an average of
the asymptotic upper and lower bound values, and may only be approximately equal
to λ1(C) in the limit. For example, the triangular–hexagonal Archimedean tiling of
a plane (e.g., tiling 3.6.3.6 in the notation of Ahuja and Schachter [1, p. 7]), for
n = 36, has λ1(C) = 3.75130, λ̂1(C) = 3.75706, α̂ = −0.20813, β̂ = −0.17181,
γ̂ = 0.48740, L = 7 (roughly 10% of the τmax = 74 iterations resulting from using a
convergence criterion of sequential estimate change less than 10−12), and asymptotic
upper and lower bounds of 3.96519 and 3.54893.

A statistical description of λ1(C) has been obtained from the database containing
130 matrices. This description exploits the following three known properties of the
principal eigenvalue:
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(1) λ1(C) � MAX
(∑n

j=1 cij

)
, the maximum row sum of the binary adjacency ma-

trix C, an upper bound [5];

(2)

√√√√√√∑n
i=1

(
n∑

j=1
cij

)2

n
� λ1(C),

a lower bound [9]; and,

(3) λ1(C) =
p

√√√√√√∑n
i=1

(
n∑

j=1
cij

)p

n
,

for some real number p [21], a central tendency measure when p is estimated by
pooling a collection of surface partitionings.

A value of p for this third property was calculated for each of the 130 matrices
in the database. The average value is approximately 4; estimation of p for the 130
matrices simultaneously also yielded a value for p of roughly 4. A boxplot of the
130 values suggests the presence of a half-dozen outliers, all values of p between
6 and 7. These six graphs display no conspicuous differences from the remaining
124. The remaining values of p are symmetrically distributed, conforming closely
to a bell-shaped curve, and are contained in the interval (2.50, 5.75). The Box–Cox
transformation (p + 3.25)−1.50, applied to the full set of p values, conforms very
well to a normal distribution.

A very good statistical description of the principal eigenvalue, obtained with lin-
ear regression, and casting λ1(C) as a weighted average of its bounds and the Hof-
meister-based measure of central tendency, is given by

λ̂1(C) = −0.94606 + 0.54806

√√√√∑n
i=1

(∑n
j=1 cij

)2

n

+ 1.32521

√√√√√√√ 4

√√√√√√∑n
i=1

(
n∑

j=1
cij

)4

n
+ 0.05962 MAX

 n∑
j=1

cij

 . (3)

Diagnostic statistics for Eq. (3) include 97.04% of the variance in λ1(C) being
accounted for, implying a very good fit (which is confirmed by a λ1(C)-versus-̂λ1(C)

plot), a Shapiro–Wilk statistic of 0.99013 for the regression residuals, implying very
close conformity with a bell-shaped curve, and a residuals-versus-predicted plot that
exhibits no apparent variance heterogeneity. In sum, the rather small residual values
associated with Eq. (3) are statistically well behaved, furnishing sound model-based
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inferential support for generalizing its results to the wider population of graphs used
in empirical spatial statistical analyses. Furthermore, 34 of the λ̂1(C) values deviate
from their corresponding λ1(C) values by less than 1%, 81 deviate by between 1%
and 5%, and 34 deviate by between 6% and 9%. The only apparent graph type feature
detectable here is that Archimedean tilings other than the square and hexagon do
not fall into the “less than 1% deviation” category. Finally, based upon a stepwise
regression procedure, the central tendency variable,√√√√√ 4

√√√√∑n
i=1

(∑n
j=1 cij

)4

n
,

accounts for 91.87% of the variance in λ1(C), the upper bound accounts for 3.76%
of this variance, and the lower bound accounts for 1.41% of this variance. Of note is
that for the case of n = 2 (a graph not in the database), namely

C = W =
(

0 1
1 0

)
,

for which λ1(C) = 1 and λn(C) = −1 by inspection,1 Eq. (3) predicts a value of
0.98683. And for the previously mentioned case of the triangular–hexagonal–square
Archimedean tiling, Eq. (3) predicts a value of 3.99660 (a 6.1% error).

4. The smallest eigenvalues of matrices C and W

In large part, spatial statistics is concerned with the spatial autocorrelation latent
in attribute variables distributed across geographic space; most often, similar values
tend to cluster on a map, a feature labeled spatial autocorrelation. Spatial autocorre-
lation is characterized in terms of either matrix C or W; these matrices capture the
arrangement of numerical values on a map. One index of spatial autocorrelation is
the Moran Coefficient, which looks and behaves very much like a Pearson product–
moment correlation coefficient. But its extreme values are not ±1; rather, de Jong
et al. [11] show that the Moran Coefficient extremes are determined by a pair of
extreme eigenvalues. The matrix from which these extreme eigenvalues are extracted
is the following modified version of binary matrix C:

(I − 11′/n)C(I − 11′/n), (4)

where 1 is an n-by-1 vector of ones; this matrix expression appears in the numerator
of the Moran Coefficient. Tiefelsdorf and Boots [26] show that all of the eigen-
values of matrix expression (4) relate to specific Moran Coefficients. Griffith [16]
shows that the corresponding eigenvectors relate to distinct types of numerical map

1 The maximum eigenvalue is contained in the interval defined by the minimum and maximum row
sums, and the sum of the eigenvalues equals the trace of the matrix.
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patterns. Hence, the eigenvector associated with the principal eigenvalue of expres-
sion (4) depicts that geographic distribution of numerical values having the highest
level of positive spatial autocorrelation that is possible. Similarly, the eigenvector
associated with the smallest eigenvalue of expression (4) depicts that geographic
distribution of values having the highest level of negative spatial autocorrelation that
is possible. Finally, Griffith and Amrhein [18] show that a Moran Coefficient can
be computed for some attribute variable Y by regressing vector C(I − 11′/n)Y on
vector (I − 11′/n)Y.

This link between the Moran Coefficient and regression indicates that regressing
some eigenvector Ek of expression (4) on vector C(I − 11′/n)Ek should display
appealing properties. Accordingly,

Theorem 4.1. If Ek is an eigenvector of an n-by-n real symmetric matrix M, and
its corresponding eigenvalue is λk /= 0, then the simple linear regression ordinary
least squares estimates of the intercept and slope coefficients obtained by regressing
Ek on MEk respectively are 0 and 1/λk.

Proof

b =
(

< 1
... MEk > ′ < 1

... MEk >

)−1

< 1
... MEk > Ek

=
(

n 1′MEk

EkM1 E′
kM′MEk

)−1 ( 1′Ek

E′
kMEk

)
=
(
nλ2

k − λ2
kE′

k11′Ek

)−1
(

λ2
k −λk1′Ek

−λkEk1 n

)(
1′Ek

λk

)
=
(
nλ2

k − λ2
kE′

k11′Ek

)−1
(

0
−λkE′11′E + nλk

)
=
(

0
1
λk

)
. �

Besides knowing the regression equation coefficients analytically, establishing the
goodness-of-fit of the associated regression line also is desirable. Hence,

Theorem 4.2. If Ek is an eigenvector of an n-by-n real symmetric matrix M, and
its corresponding eigenvalue is λk /= 0, then the simple linear regression equation ob-
tained by regressing Ek on MEk has a sum of squared errors (SSE) term equal to 0.

Proof

SSE = E′
kEk − b′ < 1

... MEk > Ek = 1 −
(

0 1
λk

)(1′Ek

λk

)
= 1 − 1 = 0. �

These two results allow efficient algorithms to be developed, ones that quickly
converge upon minimum eigenvalues.
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4.1. The smallest eigenvalue of matrix C

Griffith [15] shows that, for the regular square tessellation, as n goes to infin-
ity, ordered pairings of eigenvalues of matrix C and expression (4) converge, once
λ1(C) is replaced with 0 and E1(C) is replaced with (1/

√
n)1––this modification

is attributable to the multiplicative presence of the projection matrix (I − 11′/n)

in expression (4). Because the matrix expression (4) is symmetric, its eigenvectors
are orthogonal. This property can be fruitfully combined with the two presented
in Theorems 4.1 and 4.2, as well as the negative spatial autocorrelation result that
the eigenvector associated with the smallest eigenvalue of expression (4) will be
such that (I − 11′/n)Ek ≡ C(I − 11′/n)Ek . Therefore, λn(C) can be approximated
iteratively as follows:

Phase 1: initialize the eigenvector corresponding to the minimum eigenvalue.
Step 1: compute E1 from the results of limτ→∞(1′Cτ+11)/(1′Cτ 1); the nor-

malized vector Cτmax1 converges on E1,
Step 2: let En,τ=0 = E1.

Phase 2: sequentially move En,τ=0 toward maximum negative spatial autocorrela-
tion.

Step 1: let ei,n,τ=1 = −∑n
j=1 cij ej,n,τ=1,

if

∣∣∣∣∣∣−
n∑

j=1

cij ej,n,τ=1 −
n∑

j=1

cij ej,n,τ=1

∣∣∣∣∣∣
+

n∑
j=1

cij

∣∣∣∣∣∣ej,n,τ=1 −
 n∑

k=1

cjkek,n,τ=1 − ei,n,τ=1 +
−

n∑
j=1

cij ej,n,τ=1

∣∣∣∣∣∣
<

∣∣∣∣∣∣ei,n,τ=1 −
n∑

j=1

cij ej,n,τ=1

∣∣∣∣∣∣ +
∣∣∣∣∣∣

n∑
j=1

cij

(
ej,n,τ=1 −

n∑
k=1

cjkek,n,τ=1

)∣∣∣∣∣∣ ,
i = 1, 2, . . . , n,

Step 2: center the vector by subtracting its mean from it:

ei,n,τ=2 = ei,n,τ=1 −
∑n

i=1 ei,n,τ=1

n
, i = 1, 2, . . . , n,

Step 3: normalize the vector by dividing it by the square-root of its sum of
squares:

ei,n,τ=3 = ei,n,τ=2√∑n
i=1 e2

i,n,τ=2

, i = 1, 2, . . . , n,
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Step 4: Repeat Steps 1–3 until the SSE from regressing En,τ on CEn,τ stops
decreasing.

Step 5: let λn,r = E′
n,τ CEn,τ /E′

n,τ En,τ .

Phase 3: update eigenvector values with the regression coefficients––where a de-
notes the intercept term and b denotes the slope coefficient––obtained with a simple
linear regression of En,τ on CEn,τ .

Step 1: let ei,n,τ+1 = a + b
∑n

j=1 cij ej,n,τ ,

if

∣∣∣∣∣∣
a + b

n∑
j=1

cij ej,n,τ

 −
n∑

j=1

cij ej,n,τ

∣∣∣∣∣∣
+

n∑
j=1

cij

∣∣∣∣∣∣ej,n,τ −
 n∑

k=1

cjkek,n,τ − ei,n,τ +
a + b

n∑
j=1

cij ej,n,τ

∣∣∣∣∣∣
<

∣∣∣∣∣∣ei,n,τ −
n∑

j=1

cij ej,n,τ

∣∣∣∣∣∣ +
∣∣∣∣∣∣

n∑
j=1

cij

(
ej,n,τ −

n∑
k=1

cjkek,n,τ

)∣∣∣∣∣∣ ,
i = 1, 2, . . . , n,

Step 2: center the vector by subtracting its mean from it (see Phase 2, Step 2),
Step 3: normalize the vector (see Phase 2, Step 3),
Step 4: let λn,τ+1 = E′

n,τ+1CEn,τ+1/E′
n,τ+1En,τ+1,

Step 5: repeat Steps 1-4 until
∣∣λn,τ+1 − λn,τ

∣∣ < c, where c is a very small con-
stant,2 or the SSE from regressing En,τ on CEn,τ stops decreasing.

Phase 4: fine tune the eigenfunction estimation.
Step 1: obtain estimates of coefficients a and b by regressing En,τ on CEn,τ ,

Step 2: let En,τ+1 = a + bCEn,τ ,

Step 3: center the vector by subtracting its mean from it (see Phase 2, Step 2),
Step 4: normalize the vector (see Phase 2, Step 3),
Step 5: repeat Steps 1–4 until the SSE < 10−15,

Step 6: let λ̂n = E′
n,τ+1CEn,τ+1/E′

n,τ+1En,τ+1.

The resulting λ̂n estimates the minimum eigenvalue of matrix expression (4), say
λ∗

n(C), and serves as a good estimate for the minimum eigenvalue of matrix C, as it
is a tight upper bound for λn(C). In fact, regressing λn(C) of λ̂n yields

λn(C) = −0.03861 + 0.92207 λ̂n + e,

2 A reasonable value for c appears to be 10−12, while a maximum value of 10−6 allows a reasonably
accurate but very quick calculation.
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where e is the regression residual error term, and R2 = 0.990. This equation has only
a few λ̂n values that are conspicuously less than their λn(C) counterparts; the worst
is for the n = 39 Archimedean tiling comprising hexagons, squares and dodecagons
and labeled 4.6.12 in the notation of Ahuja and Schachter [1, p. 7]. And, the intercept
and slope estimates respectively are consistent with statistical null hypothesis values
of 0 and 1. Mäkeläinen [24] gives the necessary and sufficient conditions for these
two quantities to be equal.

A statistical description of λn(C) also has been obtained from the previously
mentioned database containing 130 matrices. This description exploits the following
three known properties of the minimum eigenvalue:

(1) λn(C) � − 1
2 − 1

2

√
1 + 4(n − 3)/(n − 1), an upper bound [28];

(2) −λ1(C) � λn(C), a lower bound [5]; and,
(3) λ1(C)/(1 − (1/e1,max)) � λn(C), after some algebraic manipulations of a result

reported by Fiol [13], where e1,max is the maximum value of the normalized
principal eigenvector, a positive quantity by the Perron–Frobinius theorem.

A reasonably good statistical description of the minimum eigenvalue of matrix C,
obtained with nonlinear regression, and casting λn(C) as a weighted average of its
bounds and the Fiol-based measure, is given by

λ̂n(C) = 20.50694 − 0.19973

5.7 − e
−1.05

(
−0.5−0.5

√
1+4 n−3

n−1

)
+ 0.03992[λ1(C) − 1]2 − 0.28036

λ1(C)

1 − 1
e1,max

− 6.55956 LN

MAX

 n∑
j=1

cij

 + 29

 . (5)

Diagnostic statistics for Eq. (5) include 84.54% of the variance in λn(C) being ac-
counted for, implying a respectably good fit (which is confirmed by a λn(C)-ver-
sus-̂λn(C) plot), a Shapiro–Wilk statistic of 0.94157 for the regression residuals,
implying a failure for conformity with a bell-shaped curve, and a residuals-versus-
predicted plot that is less than ideal. Eq. (5) furnishes model-based inferential support
weaker than that associated with Eq. (3) for generalizing its results to the wider pop-
ulation of graphs used in empirical spatial statistical analyses. In addition, the trans-

formed version of variable MAX
(∑n

j=1 cij

)
accounts for 73.46% of the variance in

λn(C), the transformed version of the upper bound term,

e
1
2 + 1

2

√
1+4 n−3

n−1 ,

accounts for 7.30% of this variance, the lower bound term, [λ1(C) − 1]2, accounts
for 2.64% of this variance, and λ1(C)/(1 − (1/e1,max)) accounts for 1.14% of this
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variance. Of note is that for the case of a minimally connected G with n = 4 (a graph
not contained in the database), where

C =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


for which λn(C) = 2 COS(4π/5) = −1.61803 and e1,max = (

√
2/5) SIN(2π/5) =

0.60150 are known analytically [4], Eq. (5) predicts a value of −1.84957, which
contains a 14.3% error. Thus, while Eq. (5) helps identify important descriptors of
the variation in λn(C), it should not be considered a reliable predictor of this quantity.
Of note is that the preceding algorithm iteratively renders λ̂∗

n(C) = −1.61803, and
that the lower bound of −√

2n − 4 presented by Hong and Shu [22], which needed to
be transformed to −LN(2n − 13) to optimize its linear relationship with the λn(C)

in the database, failed to improve the statistical description once the other terms were
entered into Eq. (5).

As an aside, the maximum value of the normalized principal eigenvector, e1,max,
tends to be exactly estimated by the maximum value, ê1,max, of the normalized vector
Ck1, where k denotes the power of matrix C for which convergence of the Rayleigh
quotient (1′Cτ+11)/(1′Cτ 1) has occurred. When C is a periodic matrix, then this
value can be well-approximated by the maximum value of vector[

Ck1√
1′Ck1

+ Ck+11√
1′Ck+11

]
2

,

using the same principle as mentioned before for estimating λ1(C) for a periodic
matrix C. The two cases in the database for which matrix C is periodic, namely
the Archimedean tilings labeled 3.4.6.4 (triangles, squares and hexagons, with n =
39) and 3.6.3.6 (triangles and hexagons, with n = 36) in the notation of Ahuja and
Schachter [1, p. 7], respectively have ê1,max = 0.32062 for e1,max = 0.32222, and
ê1,max = 0.36604 for e1,max = 0.37186. Nevertheless, the intercept and slope regres-
sion coefficient estimates obtained by regressing e1,max on ê1,max respectively are
statistically indistinguishable from 0 and 1.

4.2. The smallest eigenvalue of matrix W

While λ1(W) ≡ 1 for all planar tessellations (all rows sum to 1), and λn(W) al-
most always lies in the interval [−1, −0.5], except for the regular square tessellation,
for which λn(W) = −1, this quantity is unknown. But while matrix W virtually
always is asymmetric, it has a symmetric counterpart that is an algebraically similar
matrix. A special case of Theorem 2.3 in Griffith [15] identifies a property of this
similarity matrix that can be used to modify the preceding algorithm in order to
estimate λn(W), namely that the normalized version of vector D1/21 is the principal
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eigenvector of matrix W. Exploiting this result to modify the previous minimum
eigenvalue estimation algorithm enables it iteratively to converge on λn(W) rather
than λn(C).

Two modifications are necessary in order to convert the preceding algorithm to
one that estimates λn(W). First, the cij = 1 entries in matrix C need to be replaced by

wij = 1
/(√(∑n

i=1 cij

) (∑n
j=1 cij

))
. Second, in computing λ̂n(W), the estimated

eigenvector undergoes centering in order to have a mean of zero (i.e., Phase 2, Step
2; Phase 3, Step 2; and Phase 4, Step 3). This step needs to be replaced with one that
orthogonalizes En,τ , as follows:

(1) compute o = E′
n,τ

D1/21√
1′D1/21

,

(2) ei,n,τ+1 = ei,n,τ − o

n

∑n
j=1 cij√∑n

i=1
∑n

j=1 cij

.

This second modification reduces to subtracting the mean of the vector when ortho-
gonalization is done with respect to vector 1, which characterizes matrix expression
(4). These two modifications of the algorithm render a set of estimates λ̂n(W) for
λn(W) that never deviate more than 0.00001 for the 130 cases in the database. In
addition, the algorithm quickly calculates λ̂n(W) = 0.92485 (λn = 0.92506) in 32.4
seconds (using a FORTRAN 77 program) for the case of n = 45,974; accuracy can
be improved by changing the stopping rule (10−6 here), but with a cost of increased
execution time.

A moderately good statistical description of the minimum eigenvalue of matrix
W, obtained with nonlinear regression, is given by

λ̂n(W) = −0.4000 − 0.5800

1 + 7.5644e
0.5502Lp+7.1387 λn

λ1
+2.2809e1,max

, (6)

where Lp = p

√∑n
i=1

(∑n
j=1 cij

)p/
n with p = −9. Diagnostic statistics for this

estimated equation include 66.73% of the variance in λn(W) being accounted for,
implying a modestly good fit (which is confirmed by a λn(W)-versus-̂λn(W) plot),
a Shapiro–Wilk statistic of 0.95572 for the regression residuals, implying a failure
for conformity with a bell-shaped curve, and a residuals-versus-predicted plot that
is less than ideal. Eq. (6) furnishes model-based inferential support far weaker than
that associated with Eq. (3) for generalizing its results to the wider population of
graphs used in empirical spatial statistical analyses. Furthermore, eight of the λ̂n(W)

values deviate from their corresponding λn(W) values by less than 1%, 45 deviate by
between 1% and 5%, 44 deviate by between 5% and 10%, and 32 deviate by between
10% and 34%. Of note is that for the case of a minimally connected G with n = 4,
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λn(W) = −1, Eq. (6) yields an estimate of −0.95613, and the algorithm renders an
estimate of −1. As with Eq. (5), Eq. (6) reveals important covariates of λn(W) but
may not necessarily furnish reliable predictions of this quantity.

Eq. (6) reflects a substantially different specification than the one reported by
Diaconis and Stroock [12].

5. Selected evaluations of small, medium and large G

Analysis results for the 20 possible irreducible adjacency matrices based upon
n = 5––a set of graphs not contained in the database––are presented here; a complete
enumeration of the planar graphs appears in [10, pp. 236–238]. Of note is that figures
#26, #28, #29, and #30 are periodic, resulting in imprecise estimates for λ1(C) and
e1,max. The quantities yielded by the algorithm for λn(C) and λn(W) are correct
for all Gs but #13. Both of these problems appear to relate to graphs that have a
pronounced star structure [27]. A new complication arising in this set of adjacency
matrices is associated with the torus tessellation, graph #27. Because E1 for matrix
C of this G is a constant, centering it can result in division by zero. This problem was
circumvented by adding a pseudo-random error term (a perturbation) to each element
of the resulting vector of zeroes that is normally distributed with a mean of zero and
a variance of (1/100)2. In all cases, the values for λn(C) and λ∗

n(C) continue to be
close. Finally, the value of p for the set of Lp values ranges from 1 to 3.40462. As
Eq. (7) demonstrates, of note is that a number of these complications may well be
due to how small n is, namely 5, and may disappear for larger values of n.

Analysis results for two medium size tessellations (not contained in the data-
base) are presented next. The first is from the incomplete regular square tessel-
lation for the coal ash data presented in [8], for which n = 209. The second is
from a Thiessen polygon surface partitioning of Pennsylvania toxic release inventory
sites, for which n = 1040. The coal ash tessellation has the anomalous feature of a
dominant negative eigenvalue for matrix expression (4). The preceding algorithm
is able to compute correctly λ1(C) = 3.87977, λ∗

n(C) = −3.87977––which exactly
equals λn(C)––and λn(W) = −1; the estimate of ê1,max = 0.13968 it produces dif-
fers slightly from e1,max = 0.13951. Meanwhile, the toxic release inventory tessel-
lation has no anomalies. The preceding algorithm is able to compute all quantities
correctly for it: λ1(C) = 6.43152, λ∗

n(C) = −3.42483––which differs slightly from
λn(C) = −3.42499––λn(W) = −0.56192, and e1,max = 0.18982.

The principal eigenvalue, λ1(C), for selected patterned matrices can be used to
evaluate Eq. (3) for very large G. The first evaluation is for the star graph, which
often is denoted by K1,n−1, and for which λ1(C) = √

n − 1 [27, p. 15]. Letting n

span the interval [2, 50,000] and pooling these cases results in the estimate for Lp

of p = 2, the correct value. The second evaluation is for the minimally connected
G, for which λ1(C) = 2 COS(π/(n + 1)). Letting n span the interval [3, 9800], and
again pooling these cases, results in the estimate
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p = 1.58092[1 + 0.28924(n − 2)],
which yields estimates that never deviate from the actual values by more than 0.2%.
The third evaluation is for G constructed from a triangular tessellation covering a
U -by-V rectangular region, where U denotes the horizontal axis and V denotes the
vertical axis, and n = UV . Once more, letting n span the interval [3, 9800] and
pooling these cases results in the estimate

p = 27.6686

[
1 − 14.4229

U + 12
− 14.4229

V + 12
+ 236.016

(U + 12)(V + 12)

]
,

which yields 326 estimates that deviate from their actual value counterparts by no
more than 1%, and 28 that deviate between 1% and 5%. The fourth evaluation is
for G constructed from a regular square tessellation covering a U -by-V rectangular
region, for which

λ1(C) = 2

[
COS

(
π

U + 1

)
+ COS

(
π

V + 1

)]
.

Letting n span the interval [2-by-2, 1000-by-1000] and again pooling these cases
results in the estimate

p = 65.6175

{
1 − 4.72644

LN(U + 10)
− 4.72644

LN(V + 10)

+ 13.8800

LN[(U + 12)(V + 12)]

}
,

which yields estimates that never deviate from the actual values by more than 0.7%.
The fifth evaluation is for G constructed from a regular hexagonal tessellation cov-
ering a U -by-V rectangular region, for which Griffith [15] reports a very good ap-
proximation equation. Letting n span the interval [3-by-3, 99-by-93] and, as before,
pooling these cases results in the estimate

p = 39.7119

{
1 − 15.6857

U + 14
− 15.6857

V + 14
+ 271.592

[(U + 14)(V + 14)]
}

,

which yields 710 estimates that do not deviate from their actual value counterparts
by more than 1%, and 11 estimates that deviate between 1% and 5%. The sixth, and
final, evaluation is for matrix C constructed from a maximally connected G [6], for
which Griffith and Sone [20] report a very good approximation equation. Letting n

span the interval [4, 46,000] and once more pooling these cases results in the estimate

p = 2

[
1 + 0.61265

(n − 1)0.60163

]
,

which yields estimates that never deviate from the actual values by more than 0.2%.
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Table 1
The principal eigenvalue for selected very large adjacency matrices

Graph G configuration n λ1(C) Estimate for Lp Estimate from Eq. (3)

Star 50,000 223.61 223.61 3179.17
Minimally connected 9800 2.00000 2.00000 2.14333
Triangular 9800 2.99842 2.99565 3.15150
Square 1,000,000 3.99998 3.99962 4.13226
Hexagon 9207 5.99623 5.99138 5.89586
Maximally connected 46,000 304.809 304.798 2988.75

Comparisons of results for these estimates of p and Eq. (3) appear in Table 1, for
selected graphs not in the database; these comparisons indicate that those p values
for the special cases reported here lead to very good estimates of λ1(C). These com-
parisons also indicate that Eq. (3) performs best for surface partitionings resembling
a mixture of the square and hexagonal tessellations, which for the most part is what
is found in practice. In addition, Eq. (3) performs very poorly for tessellations where

MAX
(∑n

j=1 cij

)
becomes too large. Moreover, while Eq. (3) serves to identify

prominent features of G that help to describe variation in λ1(C), in general it should
not be relied upon for accurate estimates of this principal eigenvalue. Of interest here
is the potential that formulae for p can be established for patterned matrices.

Comparative results for other quantities appear in Table 2, again for graphs not in
the database. Of note is that the actual values for the hexagon and maximally con-
nected examples were computed with MATLAB sparse matrix routines. Of note is
that the equations in [15,20] yield results very close to their respective actual values:
5.99647 and −2.99733 for the hexagonal case, and 46.17941 and −43.20280 for
the maximally connected case. Occasionally the algorithm converges upon λn−1(C)

rather than λn(C); but the algorithm usually correctly converges on λn(C). Finally,
for the commonly encountered irregular surface partitions that resemble mixtures of
square and hexagonal tessellations, the algorithm appears to work well.

Table 2
Selected eigenvalues for particular very large adjacency matrices

Graph G n λ1(C) λn(C) λn(W)

configuration Actual Algorithm Actual Algorithm Actual Algorithm

Minimally 1000 1.99999 1.99999 −1.99999 −1.99998 −1 −1
connected

Square 10,000 3.99807 3.99807 −3.99807 −3.99807 −1 −1
Hexagon 10,000 5.99661 5.99661 −2.99831 −2.99831 −0.57309 −0.57309
Maximally 1001 46.20080 46.20080 −43.20280 −1.99931 −0.5 −0.5

connected
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6. Conclusion

Findings summarized in this paper demonstrate that efficient algorithms for com-
puting extreme eigenvalues of adjacency matrices based on planar graphs can be
built with the standard regression procedure. They also furnish good statistical de-
scriptions for the extreme eigenvalues studied in this paper, revealing and assigning
relative degrees of importance to prominent covariates. In addition, Hofmeister’s
[21] specification of Lp shows considerable promise as a basis for developing for-
mulae that render accurate statistical estimates of principal eigenvalues of patterned
matrices.

Numerous out-of-sample evaluations of the statistical results are presented, which
when coupled with model-based inference allow generalizations to be made about
the extreme eigenvalues of the population of graphs used in empirical spatial sta-
tistical analyses, which appear to be some mixture of square and hexagonal tessel-
lations. The specific out-of-sample cases evaluated are: the n = 2 graph, a selected
n = 4 graph, the entire set of n = 5 planar graphs, two moderate sized graphs used
in empirical spatial statistical analyses (n = 209 and n = 1040), and 10 very large,
patterned planar graphs. These assessments suggest that formulae and the algorithm
reported here furnish quick and accurate approximations of extreme eigenvalues for
graphs used in spatial statistical analyses.

The extreme eigenvalues studied here are of particular importance because they
govern calculation of the determinant of large, sparse matrices. With reference to
spatial statistical analyses, they help allow Eq. (1) to be implemented as an approx-
imation for the spatial statistical Jacobian term based upon this determinant. This
approximation is particularly appealing when analyzing massively large geographic
data sets, whose associated graphs and adjacency matrices prevent the full set of n

eigenvalues from being calculated. For example, procedures described in this paper
have been used to successfully complete a spatial statistical analysis based upon the
nearly 225,000 coterminous US 1990 census blockgroups.
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Appendix A

The database comprises 130 graph duals of planar surface partitionings used by
spatial scientists in empirical analyses, converted to binary adjacency matrices, and
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whose n ranges from 7 to 45,974. These graphs are included strictly because of
their availability. Forty-seven were extracted from Canadian census sources: 27 ur-
ban census tracts for 1971, 18 urban census tracts for 1986, and two sets of national
enumeration areas for 1991. Twelve were extracted from Puerto Rico: island-wide
municipios, and municipios for five agricultural regions. Seven were extracted from
US census sources: 1990 census tracts, blockgroups, and blocks for Syracuse, NY;
1980 census tracts for Houston; 1990 census tracts for Chicago and for Washington,
DC; and counties for the coterminous US. Nine were constructed for the Archime-
dean tilings appearing in [1]. Twenty were taken from Griffith and Layne [19]. Six
came from a spatial statistical project undertaken in Peru. Four came from a soil
pollution project and three came from an archaeology project, each being a Thiessen
polygon surface partitioning respectively based upon soil sample and archaeological
site locations. Fifteen were gleaned from the quantitative geography literature. Three
were obtained from conference presenters. And, four were constructed from special
publications.

The Box–Cox transformation (n − 3.40)−0.28, for the size distribution of these
graphs, is approximately normally distributed. The average of the mean number of
graph connections is 4.6, ranging from 2.5 to 5.9. The average of the maximum
number of graph connections is 9.6, ranging from 3 to 52. The average percentage of
nodes with 4, 5 or 6 links is 62.5, ranging from 0% to 94%. The average percentage
of maximum planar connections is 82, ranging from 44% to 100%. Only two graphs
are periodic. This entire set of graphs appears to be representative of those typically
found in geography and regional science work to date. As such they should furnish
a solid foundation for model-based inferences.
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