
Statistics & Probability Letters 58 (2002) 245–251

A spatial �ltering speci�cation for the auto-Poisson model�

Daniel A. Gri'th

Department of Geography and Interdisciplinary Statistics Program, Syracuse University, 144 Eggers Hall,
N.Y. 13244-1020, USA

Received March 2001; received in revised form January 2002

Abstract

The auto-Poisson model describes georeferenced data consisting of counts exhibiting spatial dependence. Its
conventional speci�cation is plagued by being restricted to only situations involving negative spatial autocor-
relation, and an intractable normalizing constant. Work summarized here accounts for spatial autocorrelation
in the mean response speci�cation by incorporating latent map pattern components. Results are reported for
seven empirical datasets available in the literature. c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

“The central role of the Poisson distribution with respect to the analysis of counts is analogous
to the position of the normal distribution in the context of models for continuous data” (Upton and
Fingleton, 1989, p. 71). Accordingly, when spatial data comprise counts, especially for rare events,
the probability model that �rst comes to mind for describing these data is one based upon an
auto-Poisson speci�cation, which may be written in the form of approximations. The auto-log-
Gaussian approximation circumvents the auto-Poisson’s intractable normalizing factor, and both it and
the auto-logistic approximation circumvent the auto-Poisson’s restriction to only situations involving
negative spatial autocorrelation, a restriction at odds with the real world where most all georeferenced
data exhibit positive spatial autocorrelation. The intractable normalizing constant can be resolved us-
ing Markov Chain Monte Carlo (MCMC) procedures. The negative autocorrelation restriction can
be resolved through Windsorizing (Kaiser and Cressie, 1997), whose primary drawback is that “the
k most extreme observations on each end of the ordered sample are replaced by the nearest retained
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observation” (Tietjen, 1986, p. 91) strictly to accommodate a model requirement. This paper departs
from these practices by demonstrating that spatial autocorrelation can be accounted for in the mean
response speci�cation of an auto-Poisson model, extending the spatial �ltering concept promoted by
Getis and Gri'th (2002).

1. Poisson regression

Poisson regression assumes independent counts, say ni, taken at locations i = 1; 2; : : : ; n, where
each of these counts is from a Poisson distribution, and these counts can be described by a set
of explanatory variables denoted by matrix Xi, a 1 × p vector of covariate values for location
i. The expected value of these data is given by �i(Xi) = ni(Xi) exp(XiR), where R is the vector
of non-redundant parameters, and the Poisson rates parameter is given by �i(Xi) = �i(Xi)=ni(Xi);
the rates parameter �i(Xi) is both the mean and the variance of the Poisson distribution for lo-
cation i.

Pairwise-only spatial dependence often is assumed when specifying auto-models, which renders
the estimation problem here of evaluating the log-probability mass function term

n∑

i=1


ini −
n∑

i=1

log(ni!) + �
n∑

i=1

n∑

j=1

cijninj; (1)

where 
i is the parameter capturing large-scale variation (and hence could be speci�ed in terms of
vector Xi), � is the spatial autocorrelation parameter, and cij is the geographic con�guration weight
associated with the pair of locations i and j. The n2 set of cij values form a geographic connectivity
or weights matrix, C; if these cij values are binary 0–1, then C is the matrix used to calculate a
Moran Coe'cient (MC) and a Geary Ratio (GR) index of spatial autocorrelation.

The proposition promoted in this paper is that by including variables in matrix X—the n ×
p concatenation of the n Xi vectors—that account for the spatial autocorrelation observed in the
associated geographic distribution of counts, ni, the third term in Eq. (1) can be dispensed with;
in other words, spatial dependence eOects are shifted from a small-scale variation term to the mean
response term. This shift can occur by introducing synthetic variables into matrix X that are the
eigenvectors of matrix (I − 11′=n)C(I − 11′=n), where I is the identity matrix, 1 is an n× 1 vector
of ones, ′ denotes the operation of matrix transpose, and n is the number of areal units; this matrix
expression appears in the numerator of the MC. These eigenvectors may be interpreted in the context
of map pattern as orthogonal sets of geographically distributed numerical values that sequentially
maximize the MC value, beginning with the largest positive MC value possible and ending with
the largest negative MC value achievable. Hence, these n eigenvectors describe the full range of all
possible mutually orthogonal map patterns. In the presence of positive spatial autocorrelation, then,
an analysis can employ those eigenvectors depicting map patterns exhibiting consequential levels of
positive spatial autocorrelation (e.g., MC¿ 0:25).

Given this result, the research problem becomes one of determining for expression (1) whether∑n
i=1 
ini can be replaced by

∑n
i=1 EiRini, dispensing with �

∑n
i=1

∑n
j=1 cijninj by shifting spatial

dependence eOects to the large-scale variation term represented by EiR.
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Fig. 1. Histograms for counts of the presence of phenomena in areal units for selected empirical data sets found in the
literature.

2. Selected empirical demonstrations

Seven datasets available in the literature, ranging in size from n = 35 to n = 1600, are ex-
plored here: the number of bitterbrush plants contained in 100 × 100-foot quadrats forming a
rectangular 5 × 7 region (Lyon, 1968); the distribution of hickory trees in Lansing Woods,
Michigan (Diggle, 1979) post-strati�ed into a 6×6 square region; tornado occurrences in Illinois, for
n= 83 70× 70-mile quadrats superimposed upon the state and “touch downs” counted (Wilson and
Changnon, 1971); the number of balsam-�r seedlings in a 10×10 square region covered by �ve-foot
square quadrats (Ghent, 1963); grid counts of acorn barnacles on the side of a ship for a 10×10 set of
quadrats (Kooijman, 1976); the number of Atriplex hymenelytra across a 40 m×40 m region of the
Qoor of Death Valley partitioned into a 16×16 grid of quadrats (Gulmon and Mooney, 1977); and, the
herb remains in a 20 m×20 m region of the Nigeria savanna partitioned into a 40×40 grid of quadrats
(Hopkins, 1965). Histograms for these diOerent sets of counts appear in Fig. 1; aggregate Poisson
distribution evaluations of them, using e−��k=k!, appear in Table 1. The simplest evidence, ignoring
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Table 1
Quantitative assessments of conformity with a Poisson frequency distribution

Dataset �2 goodness- �2 probability
�̂
�2

Counts Log-counts Probability

of-�t under H0 for S–W
MC GR MC GR

Michigan hickory trees 48.810 0.06 0.777 0.381 0.551 0.325 0.638 0.0054
Balsam-�r seedlings 131.334 0.01 0.839 0.289 0.721 0.302 0.703 0.0012
Death Valley shrubs 215.094 0.97 1.004 0.064 0.958 0.067 0.953 ≈ 0
Acorn barnacles 240.358 ≈ 0 0.375 0.401 0.566 0.335 0.637 ≈ 0
Bitterbrush plants 549.549 ≈ 0 0.065 0.081 0.877 0.067 0.907 0.0811
Savanna herb remains 2339.708 ≈ 0 0.521 0.198 0.703 0.200 0.837 ≈ 0
Tornado touch downs 240.025 ≈ 0 0.369 0.248 0.718 0.266 0.666 0.0953

latent spatial autocorrelation in these data, suggests that the frequency distribution of Death Valley
shrubs closely conforms to, the frequency distribution of Michigan hickory trees and seedlings nearly
conforms to, and the remaining frequency distributions markedly diOer from a Poisson distribution.

2.1. Initial assessment of latent spatial autocorrelation in the georeferenced counts

The link between a Poisson-distributed variable and its log-normal distribution approximation
permits georeferenced log-counts to be analyzed with the auto-normal model. MC and GR spatial
autocorrelation indices for the count and log-count variables appear in Table 1, as do corresponding
Shapiro–Wilk (S–W) results evaluating conformity to a normal frequency distribution. These statis-
tics reveal that none of the logarithmic transformations su'ciently align the empirical frequency
distributions with a bell-shaped curve, although two come close, all of the spatial autocorrelation
detected is positive, and geographic distributions of both the Death Valley shrubs and the bitterbrush
plants essentially contain only trace amounts of spatial autocorrelation.

Results for auto-log-Gaussian approximations estimated with each dataset appear in Table 2, and
corroborate the presence of weak-to-moderate positive spatial autocorrelation. The residuals from
these simultaneous autoregressive (SAR) models better display conformity with a normal distribu-
tion for all but the Michigan hickory trees dataset; especially the Death Valley shrubs frequency
distribution continues to markedly deviate from a bell-shaped curve. The percentage of variance
accounted for by latent spatial autocorrelation ranges from 1.6 to 29.42.

2.2. Spatial autocorrelation 5lters

Eigenvectors were extracted from matrix (I − 11′=n)C(I − 11′=n) for all seven datasets. Only
eigenvectors depicting map patterns displaying moderate-to-strong positive spatial autocorrelation
are considered, since the georeferenced data exhibit only positive spatial autocorrelation.

The log-Gaussian, logistic, and Poisson speci�cations often identify sets of eigenvector covariates
that are very similar: three for the Michigan hickory tree data, with MC values ranging between
0.50761 and 0.91468; �ve for the balsam-�r seedlings data, with MC values ranging between 0.69815
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Table 2
Selected SAR model and �ltered Poisson regression model results

Dataset SAR model Filtered Poisson regression model

�̂ pseudo-R2 S–W No. of prominent Pseudo-R2 MC for residuals
eigenvectors

Michigan hickory trees 0.50686 0.2942 0.88467 5 0.613 −0:09814
Balsam-�r seedlings 0.45637 0.2281 0.98771 5 0.355 −0:03159
Death Valley shrubs 0.12092 0.0158 0.63798 6 0.201 −0:07597
Acorn barnacles 0.51386 0.2914 0.95646 8 0.465 0.00868
Bitterbrush plants 0.17477 0.0388 0.94654 7 0.375 −0:14760
Savanna herb remains 0.26189 0.0704 0.82012 36 0.210 0.00746
Tornado touch downs 0.49221 0.2673 0.98676 7 0.432 −0:05933

and 1.00041; six for the Death Valley shrubs data, with MC values ranging between 0.28653 and
1.02157; six for the acorn barnacles data, with MC values ranging between 0.69815 and 0.92578;
three for the bitterbrush plants data, with MC values ranging between 0.25579 and 0.53265; ten for
the savanna herb remains data, with MC values ranging between 0.61415 and 1.01813; and, seven
for the tornadoes data, with MC values ranging between 0.41932 and 0.86602. These eigenvectors,
uncovered as good �lters, tend to represent map patterns with moderate-to-strong levels of positive
spatial autocorrelation.

MC and GR values calculated for the �ltered Poisson regression residuals, reported in Table 2,
are very close to their corresponding expected values, indicating the presence of only trace spatial
autocorrelation. In other words, the eigenvector �lters capture almost all spatial autocorrelation in
the mean response terms. The bitterbrush plants data, which in their raw form exhibit no spatial
autocorrelation, appear to be slightly overcorrected by the �ltering; but the z-score for the MC is
only −0:9, indicating the absence of signi�cant induced spatial dependence.

Scatterplots of observed-versus-predicted values appearing in Fig. 2 reveal conspicuous trends. The
Death Valley shrubs scatterplot is the poorest, with relatively little trend; the savanna herb remains
scatterplot has several outliers that may be increasing its pseudo-R2 value. Meanwhile, the acorn
barnacles scatterplot has one or two leverage points that may be suppressing its pseudo-R2 value.
Overall, though, the spatial �ltering predicted values appear to be good.

3. Conclusions

The spatial �ltering methodology outlined in this paper furnishes an alternative, successful way of
capturing spatial dependency eOects in the mean response term of a Poisson regression, both avoiding
the complication of an intractable normalizing factor, and allowing positive spatial autocorrelation
to be accounted for. This result is obtained by specifying a Poisson process as being heterogeneous
across a geographic landscape. This heterogeneity is patterned through a set of �xed eOects regressors
that de�ne both the mean and the variance of the Poisson process; these are �xed eOects because
the eigenvectors remain the same regardless of the realization being studied for a given geographic
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Fig. 2. Scatterplots of observed vs. predicted counts of the presence of phenomena in areal units for selected empirical
data sets found in the literature, where the predicted counts are obtained with spatial �lter Poisson regression models.

surface partitioning. This result is important for spatial statistics because the Poisson distribution is
the cornerstone of quadrat-count modeling.
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