AC RL and RC Circuits

- When a sinusoidal AC voltage is applied to an RL or RC circuit, the relationship between voltage and current is altered.
- The voltage and current still have the same frequency and cosine-wave shape, but voltage and current no longer rise and fall together.
- To solve for currents in AC RL/RC circuits, we need some additional mathematical tools:
- Using the complex plane in problem solutions.
- Using transforms to solve for AC sinusoidal currents.

Imaginary Numbers

- Solutions to science and engineering problems often involve $\sqrt{-1}$.
- Scientists define $i=-\sqrt{-1}$.
- As we EE's use i for AC current, we define $j=+\sqrt{-1}$.
- Thus technically, $\boldsymbol{j}=-\boldsymbol{i}$, but that does not affect the math.
- Solutions that involve \boldsymbol{j} are said to use "imaginary numbers."
- Imaginary numbers can be envisioned as existing with real numbers in a two-dimensional plane called the "Complex Plane."

The Complex Plane

The Complex Plane

- In the complex plane, imaginary numbers lie on the y-axis, real numbers on the x-axis, and complex numbers (mixed real and imaginary) lie off-axis.
- For example, 4 is on the $+x$ axis, -8 is on the $-x$ axis, $j 6$ is on the $+y$ axis, and $-j 14$ is on the $-y$ axis.
- Complex numbers like 6+j4, or $-12-j 3$ lie off-axis, the first in the first quadrant, and the second in
 the third quadrant.

Erik Jonsson School of Engineering and Computer Science

Why Transforms?

- Transforms move a problem from the real-world domain, where it is hard to solve, to an alternate domain where the solution is easier.
- Sinusoidal AC problems involving R-L-C circuits are hard to solve in the "real" time domain but easier to solve in the ω-domain.

The ω Domain

- In the time domain, RLC circuit problems must be solved using calculus.
- However, by transforming them to the ω domain (a radian frequency domain, $\omega=2 \pi f$), the problems become algebra problems.
- A catch: We need transforms to get the problem to the ω domain, and inverse transforms to get the solutions back to the time domain!

A Review of Euler's Formula

- You should remember Euler's formula from trigonometry (if not, get out your old trig textbook and review): $e^{ \pm j x}=\cos x \pm j \sin x$.
- The alternate expression for $e^{ \pm x}$ is a complex number. The real part is $\cos x$ and the imaginary part is $\pm j \sin x$.
- We can say that $\cos x=\operatorname{Re}\left\{e^{ \pm j x}\right\}$ and $\pm j \sin x=\operatorname{Im}\left\{e^{ \pm j x}\right\}$, where $\operatorname{Re}=$ "real part" and Im = "imaginary part."
- We usually express AC voltage as a cosine function. That is, an AC voltage $v(t)$ and be expressed as $v(t)=V_{p} \cos \omega t$, where V_{p} is the peak AC voltage.
- Therefore we can say that $v(t)=V_{p} \cos \omega t=V_{p} \operatorname{Re}\left\{e^{ \pm j \omega t}\right\}$. This relation is important in developing inverse transforms.

Erik Jonsson School of Engineering and Computer Science

Transforms into the ω Domain

Element	Time Domain	ω Domain Transform
AC Voltage	$V_{p} \cos \omega t$	V_{p}
Resistance	R	R
Inductance	L	$j \omega L$
Capacitance	C	$1 / j \omega C$

- The time-domain, sinusoidal AC voltage is normally represented as a cosine function, as shown above.
- $\quad R, L$ and C are in Ohms, Henrys and Farads.
- Skipping some long derivations (which you will get in EE 3301), transforms for the ω domain are shown above.
- Notice that the AC voltage ω-transform has no frequency information. However, frequency information is carried in the L and C transforms.

Comments on ω Transforms

Element	Time Domain	ω Domain Transform
AC Voltage	$V_{p} \cos \omega t$	V_{p}
Resistance	R	\boldsymbol{R}
Inductance	L	$\boldsymbol{j} \omega L$
Capacitance	C	$1 / j \omega C$

- Because we are studying constant-frequency sinusoidal AC circuits, the ω-domain transforms are constants.
- This is a considerable advantage over the time-domain situation, where t varies constantly (which is why solving for sinusoidal currents in the time domain is a calculus problem).
- Two other items:
- In the ω-domain, the units of $R, j \omega L$, and $1 / j \omega C$ are $\underline{\text { Ohms. }}$
- In the ω-domain, Ohm's Law and Kirchoff's voltage and current laws still hold.

Solving for Currents in the ω Domain

- Solving problems in the frequency domain:
- Given a circuit with the AC voltage shown, and only a resistor in the circuit, then the transform of the voltage is $10 . R$ transforms directly as 100 .

- Solving for the circuit current, $I=V / R$, or $I=10 / 100=0.1 \mathrm{~A}$.

$$
\omega \text {-domain voltage }=V_{p}=10
$$

- This current is the ω-domain answer. It must be inversetransformed to the time domain to

$$
\omega \text {-domain current }=V_{p} / R
$$

$$
=10 / 100=0.1 \text { ampere }
$$ obtain a usable answer.

An ω Domain Solution for an L Circuit

- The ω-domain voltage is still 10.
- The ω-domain transform of $L=j \omega L=$ $j(1000) 10(10)^{-3} .=j 10$.
- The units of the L transform is in Ohms (Ω), i.e., the ω-domain transform of L is $j 10 \Omega$.
- The value ωL is called inductive reactance (X). The quantity $j \omega L$ is $\quad \omega$-domain voltage $=V_{p}=10$ called impedance (Z).
- Finding the current: $I=V / Z=10 / j 10=\omega$-domain current $=V_{p} / j \omega L$ $1 / j=-j$ (rationalizing).

> AC Voltage
> $=10 \cos (1000 t)$
$=10 / j 10=-j 1=-j$ ampere

- Time-domain answer in a few slides!

An ω Domain Solution for a C Circuit

- The ω-domain voltage still $=10$.
- The ω-domain transform of $C=1 / j \omega C$ $=1 / j(1000) 100(10)^{-6} .=1 / j 0.1=-j 10$.
- The units of the C transform is in Ohms (Ω), i.e., the ω-domain transform of C is -j10 Ω.
- The value $1 / \omega C$ is called capacitive reactance, and $1 / j \omega C$ is also called impedance (here, capacitive impedance).
- Finding the current: $I=V / Z=10 /-j 10=$ $1 /-j=j 1$ (rationalizing) $=j$.
- Time-domain answer coming up!

An RL ω-Domain Solution

- The ω-domain voltage still $=10$.
- The ω-domain impedance is $\mathbf{1 0 + \mathbf { j } 1 0}$.
- Resistance is still called resistance in the ω-domain. The R and L transforms are called impedance, and a combination of resistance and imaginary impedances is also called impedance.
- Note: all series impedances add directly in the ω-domain.
- Finding the current: $I=V / Z=$ $10 /(10+j 10)=$ (rationalizing) $(100-j 100) / 200=0.5-j 0.5$.

ω-domain voltage $=V_{p}=10$
ω-domain current $=V_{p} /(R+j \omega L)$
$=10 /(10+j 10)=0.5-j 0.5$ ampere

Inverse Transforms

- Our ω-domain solutions do us no good, since we are inhabitants of the time domain.
- We required a methodology for inverse transforms, mathematical expressions that can convert the frequency domain currents we have produced into their time-domain counterparts.
- It turns out that there is a fairly straightforward inverse transform methodology which we can employ.
- First, some preliminary considerations.

Cartesian-to-Polar Transformations

- Our ω-domain answers are complex numbers - currents expressed in the $X-Y$ coordinates of the complex plane.
- Coordinates in a two-dimensional plane may also be expressed in $\underline{R-\theta}$ coordinates: a radius length R plus a counterclockwise angle θ from the positive X -axis (at right).
- That is, there is a coordinate R, θ that can express an equivalent position to an X, Y coordinate.

Cartesian-to-Polar Transformations (2)

- The R, θ coordinate is equivalent to the X, Y coordinate if $\theta=\arctan (Y / X)$ and $R=\sqrt{X^{2}+Y^{2}}$.
- In our X - Y plane, the X axis is the real axis, and the Y axis is the imaginary axis. Thus the coordinates of a point in the complex plane with (for example) X coordinate A and Y coordinate $+B$ is A+jB.
- Now, remember Euler's formula:

$$
e^{ \pm j x}=\cos x \pm j \sin x
$$

Erik Jonsson School of Engineering and Computer Science

Cartesian-to-Polar Transformations (3)

- If $e^{ \pm j x}=\cos x \pm j \sin x$, then $\boldsymbol{R e}^{ \pm j x}=R \cos x \pm R j \sin x$.
- But in our figure, $R \cos \theta=X$, and $R \sin \theta=Y$.
- Or, $\operatorname{Re}^{ \pm j \theta}=X \pm j Y$!
- What this says is that when we convert our ω-domain AC current answers into polar coordinates, we can express the values in $\boldsymbol{R e}{ }^{ \pm j \theta}$ format as well as $R, \boldsymbol{\theta}$ format.

- The $\boldsymbol{R e}^{ \pm j \theta}$ is very important in the inverse transforms.

Inverse Transform Methodology

- We seek a time-domain current solution of the form $i(t)=I_{p} \cos (\omega t)$. where I_{p} is some peak current.
- This is difficult to do with the ω-domain answer in Cartesian ($\mathrm{A} \pm j \mathrm{~B}$) form.
- So, we convert the ω-domain current solution to $\boldsymbol{R}, \boldsymbol{\theta}$ format, then convert that form to the $\operatorname{Re}^{ \pm j \theta}$ form, where we know that $\theta=\arctan (Y / X)$, and $R=\sqrt{X^{2}+Y^{2}}$.
- Once the ω-domain current is in $\operatorname{Re}^{ \pm j \theta}$ form (and skipping a lot of derivation), we can get the timedomain current as follows:

Inverse Transform Methodology (2)

- Given the $R e^{ \pm j \theta}$ expression of the ω-domain current, we have only to do two things:
- Multiply the $\boldsymbol{R} \boldsymbol{e}^{ \pm j \theta}$ expression by $\boldsymbol{e}^{\boldsymbol{j} \omega t}$.
- Take the real part.
- This may seem a little magical at this point, but remember, $\operatorname{Re}\left(e^{j \omega t}\right)$ is cos ωt, and we are looking for a current that is a cosine function of time.
- We can see examples of this methodology by converting our four ω-domain current solutions to real timedomain answers.

Transforming Solutions

- In the resistor case, our ω-domain current is a real number, 0.1 A . Then $X=0.1, Y=0$.
- Then $R=\sqrt{X^{2}+Y^{2}}=\sqrt{(0.1)^{2}}=0.1$, and $\theta=\arctan Y / X=\arctan 0=0$.

$$
\text { = 10/100 = } 0.1 \text { ampere }
$$

- Thus current $=\operatorname{Re}\left\{0.1 e^{j \omega t} e^{j 0}\right\}=$ $0.1 \operatorname{Re}\left\{0.1 e^{j \omega t}\right\}=0.1 \cos 1000 t \mathrm{~A}$.
- Physically, this means that the AC current is cosinusoidal, like the voltage. It rises and falls in lock step with the voltages, and has a maximum value of 0.1 A (figure at right).

$$
\omega \text {-domain current }=V_{p} / R
$$

Erik Jonsson School of Engineering and Computer Science

Transforming Solutions (2)

- For the inductor circuit, $I=-j 1=-j$.
- Converting to polar: $R=\sqrt{X^{2}+Y^{2}}=\sqrt{(1)^{2}}=1$
- $\theta=\arctan Y / X=\arctan -1 / 0=\arctan -\infty=-90^{\circ}$.
- $I_{\omega}=1,-90^{\circ}=1 e^{-j 90^{\circ}}=e^{-j 90^{\circ}}$.
- Multiplying by $e^{j \omega t}$ and taking the real part: $i(t)$ $=\operatorname{Re}\left\{e^{j \omega t} \cdot e^{-j 90^{\circ}}\right\}=\operatorname{Re}\left\{e^{j\left(\omega t-90^{\circ}\right)}\right\}=(1) \cos \left(\omega t-90^{\circ}\right)=$ $\cos \left(\omega t-90^{\circ}\right) \mathrm{A}$.
- Physical interpretation: $i(t)$ is a maximum of 1 A, is cosinusoidal like the voltage, but lags the voltage by exactly 90° (plot at right).
- The angle θ between voltage and current is called the phase angle. Cos θ is called the power factor, a measure of power dissipation in
 an inductor or capacitor circuit.

Transforming Solutions (3)

- For the capacitor circuit, $I=-j$ A.
- Converting to polar:

$$
R=\sqrt{X^{2}+Y^{2}}=\sqrt{(-1)^{2}}=1 .
$$

- $\theta=\arctan Y / X=\arctan 1 / 0=\arctan \infty$ $=90^{\circ}$, so that $I_{\omega}=1,90^{\circ}=\boldsymbol{e}^{j 90^{\circ}}$.
- Multiplying by $e^{j \omega t}$ and taking the real part: $i(t)=\operatorname{Re}\left\{e^{j \omega t} \cdot e^{j 90^{\circ}}\right\}=\operatorname{Re}\left\{e^{j\left(\omega t+90^{\circ}\right.}\right\}$ $=\cos \left(\omega t+90^{\circ}\right) \mathrm{A}$.
- Physically, $i(t)$ has a maximum amplitude of 1 A , is cosinusoidal like the voltage, but leads the voltage by exactly 90° (figure at right).
ω-domain current $=V_{p} /(1 / j \omega C)$
$=1 /-j 0.1=j 10$ amperes

Transforming Solutions (4)

- For the $R L$ circuit, $I=0.5-j 0.5$ ampere.
- Converting to polar:
$R=\sqrt{X^{2}+Y^{2}}=\sqrt{(0.5)^{2}+(-0.5)^{2}} \approx 0.707$.
- And $\theta=\arctan Y / X=\arctan -0.5 / 0.5=\arctan$ $-1=-45^{\circ} ; I_{\omega}=0.707,-90^{\circ}=0.707 e^{-j 45^{\circ}}$.
- Multiplying by $e^{j \omega t}$ and taking the real part: $i(t)=\operatorname{Re}\left\{0.707 e^{j \omega t} \cdot e^{-j 45^{\circ}}\right\}=0.707 \operatorname{Re}\left\{e^{j\left(\omega t-45^{\circ}\right.}\right\}=$ $0.707 \cos \left(\omega t-45^{\circ}\right)=0.707 \cos \left(\omega t-45^{\circ}\right) \mathrm{A}$.
- Note the physical interpretation: $i(t)$ has a maximum amplitude of 0.707 A , is

cosinusoidal like the voltage, and lags the voltage by 45°. Lagging current is an inductive characteristic, but it is less than $\mathbf{9 0}^{\circ}$, due to the influence of the resistor.

Summary: Solving for Currents Using © Transforms

- Transform values to the ω-domain:

Element	Time Domain	ω Domain Transform
AC Voltage	$V_{p} \cos \omega t$	V_{p}
Resistance	R	R
Inductance	L	$j \omega L$
Capacitance	C	$1 / j \omega C$

- Solve for I_{ω}, using Ohm's and Kirchoff's laws.
- Solution will be of the form $\mathrm{A} \pm \mathrm{jB}$ (Cartesian complex plane).
- Use inverse transforms to obtain $i(t)$.
- Convert the Cartesian solution ($\mathrm{A} \pm j \mathrm{~B}$) to $\boldsymbol{R}, \boldsymbol{\theta}$ format and thence to $\boldsymbol{R e}^{ \pm j \theta}$ form.
- Multiply by $e^{ \pm j \omega t}$ and take the real part to get a cosineexpression for $i(t)$.

Measuring AC Current Indirectly

- Because we do not have current probes for the oscilloscope, we will use an indirect measurement to find $i(t)$ (reference Figs. 11 and 13 in Exercise 5).
- As the circuit resistance is real, it does not contribute to the phase angle of the current. Then a measure of voltage across the circuit resistance is a direct measure of the phase of $i(t)$.
- Further, a measure of the Δt between the i, v peaks is a direct measure of the phase difference in seconds.
- We will use this method to determine the actual phase angle and magnitude of the current in Lab. 5.

Discovery Exercises

- Lab. 5 includes two exercises that uses inductive and capacitive impedance calculations to allow the discovery of the equivalent inductance of series inductors and the equivalent capacitance of series capacitors.
- Question 7.6 then asks you to infer the equivalent inductance of parallel inductors and the equivalent capacitance of parallel capacitors.
- Although you are really making an educated guess at that point, you can validate your guess using ω-domain circuit theory, with one additional bit of knowledge not covered in the lab text:
- In the ω-domain, parallel impedances add reciprocally, just like resistances in a DC circuit.
- (Remember that in the ω-domain, series impedances add directly).

