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AC RL and RC Circuits 

• When a sinusoidal AC voltage is applied to an RL or RC 
circuit, the relationship between voltage and current is 
altered.   

• The voltage and current still have the same frequency and 
cosine-wave shape, but voltage and current no longer rise 
and fall together.   

• To solve for currents in AC RL/RC circuits, we need 
some additional mathematical tools:     
– Using the complex plane in problem solutions.   
– Using transforms to solve for AC sinusoidal currents.   
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Imaginary Numbers 
• Solutions to science and 

engineering problems often 
involve         .   

• Scientists define                  .   
• As we EE’s use i for AC current, 

we define                   .   
• Thus technically,  j = ‒i, but that 

does not affect the math.   
• Solutions that involve j are said to 

use “imaginary numbers.”   
• Imaginary numbers can be 

envisioned as existing with real 
numbers in a two-dimensional 
plane called the “Complex Plane.”  
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The Complex Plane 

• In the complex plane, imaginary 
numbers lie on the y-axis, real 
numbers on the x-axis, and complex 
numbers (mixed real and 
imaginary) lie off-axis.   

• For example, 4 is on the +x axis, ‒8 
is on the ‒x axis, j6 is on the + y 
axis, and ‒j14 is on the ‒y axis.   

• Complex numbers like 6+j4, or    
‒12 ‒j3 lie off-axis, the first in the 
first quadrant, and the second in 
the third quadrant.   
 

EE 1202 Lab Briefing #5 3 

Real Axis 

Imaginary Axis 

  −3    −2    −1              1       2      3      4   

3j 

2j 

  j 
 

 

 
  −j 

−2j 

−3j 
 

 

 

1st  
Quadrant 

2nd  
Quadrant 

4th  
Quadrant 

3rd  
Quadrant 



Erik Jonsson School of Engineering and 
Computer Science 

The University of Texas at Dallas 

© N. B. Dodge 09/10  

Why Transforms? 

• Transforms move a problem from the real-world domain, where it 
is hard to solve, to an alternate domain where the solution is easier.   

• Sinusoidal AC problems involving R-L-C circuits are hard to solve 
in the “real” time domain but easier to solve in the ω-domain.   
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The ω Domain 

• In the time domain, RLC circuit 
problems must be solved using 
calculus.   

• However, by transforming them to 
the ω domain (a radian frequency 
domain, ω = 2πf), the problems 
become algebra problems.   

• A catch:  We need transforms to 
get the problem to the ω domain, 
and inverse transforms to get the 
solutions back to the time domain!   

EE 1202 Lab Briefing #5 5 

Time 
Domain 

ω 
Domain 

Transform 
Equations Inverse 

Transform 
Equations 



Erik Jonsson School of Engineering and 
Computer Science 

The University of Texas at Dallas 

© N. B. Dodge 09/10  

A Review of Euler’s Formula 

• You should remember Euler’s formula from trigonometry (if not, 
get out your old trig textbook and review):                                    .  

• The alternate expression for e±jx is a complex number.  The real 
part is cos x and the imaginary part is ± jsin x.   

• We can say that cos x  = Re{e±jx} and ±jsin x =Im{e±jx}, where Re = 
“real part” and Im = “imaginary part.”   

• We usually express AC voltage as a cosine function.  That is, an 
AC voltage v(t) and be expressed as v(t) =Vp cos ωt, where Vp is the 
peak AC voltage.   

• Therefore we can say that v(t) =Vp cos ωt = Vp Re{e±jωt}.  This 
relation is important in developing inverse transforms.   
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Transforms into the ω Domain 

• The time-domain, sinusoidal AC voltage is normally represented as a 
cosine function, as shown above.   

• R, L and C are in Ohms, Henrys and Farads.   
• Skipping some long derivations (which you will get in EE 3301), 

transforms for the ω domain are shown above.   
• Notice that the AC voltage ω-transform has no frequency information.  

However, frequency information is carried in the L and C transforms.    
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 Element  Time Domain ω Domain Transform 

AC Voltage V p cos ωt     V p 
Resistance R R 
Inductance L jωL 
Capacitance C 1/jωC 
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Comments on ω Transforms 

• Because we are studying constant-frequency sinusoidal AC circuits, 
the ω-domain transforms are constants.   

• This is a considerable advantage over the time-domain situation, 
where t varies constantly (which is why solving for sinusoidal 
currents in the time domain is a calculus problem).   

• Two other items:   
– In the ω-domain, the units of R, jωL, and 1/jωC are Ohms.    
– In the ω-domain, Ohm’s Law and Kirchoff’s voltage and current laws still hold.   
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AC Voltage V p cos ωt     V p 
Resistance R R 
Inductance L jωL 
Capacitance C 1/jωC 
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Solving for Currents in the ω Domain 
• Solving problems in the frequency 

domain:   
– Given a circuit with the AC voltage 

shown, and only a resistor in the 
circuit, then the transform of the 
voltage is 10.  R transforms directly 
as 100.   

– Solving for the circuit current, 
I=V/R, or I=10/100 = 0.1 A.   

– This current is the ω-domain 
answer.  It must be inverse-
transformed to the time domain to 
obtain a usable answer.   
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An ω Domain Solution for an L Circuit 
• The ω-domain voltage is still 10.   
• The ω-domain transform of L = jωL = 

j(1000)10(10)‒3. = j10.     
• The units of the L transform is in Ohms 

(Ω), i.e., the ω-domain transform of L is 
j10 Ω.   

• The value ωL is called inductive 
reactance (X).  The quantity jωL is 
called impedance (Z).   

• Finding the current:  I = V/Z = 10/j10 = 
1/j = ‒j (rationalizing).   

• Time-domain answer in a few slides!   
EE 1202 Lab Briefing #5 10 

AC Voltage  
=10 cos (1000t) 

10 mH 

ω-domain voltage = Vp = 10 

ω-domain current = Vp /jωL  
= 10/j10 = ‒j1 = ‒j ampere 



Erik Jonsson School of Engineering and 
Computer Science 

The University of Texas at Dallas 

© N. B. Dodge 09/10  

An ω Domain Solution for a C Circuit 

• The ω-domain voltage still = 10.   
• The ω-domain transform of C = 1/jωC 

=1/ j(1000)100(10)‒6. = 1/j0.1= ‒j10.     
• The units of the C transform is in Ohms 

(Ω), i.e., the ω-domain transform of C is 
‒j10 Ω.   

• The value 1/ωC is called capacitive 
reactance, and 1/jωC is also called 
impedance (here, capacitive impedance).   

• Finding the current:  I = V/Z = 10/‒j10 = 
1/‒j = j1 (rationalizing) = j.   

• Time-domain answer coming up!   
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An RL ω-Domain Solution  
• The ω-domain voltage still = 10.   
• The ω-domain impedance is 10+j10 .   
• Resistance is still called resistance in 

the ω-domain.  The R and L transforms 
are called impedance, and a 
combination of resistance and 
imaginary impedances is also called 
impedance.   

• Note:  all series impedances add 
directly in the ω-domain.     

• Finding the current:  I = V/Z = 
10/(10+j10) = (rationalizing) 
(100‒j100)/200 = 0.5‒j0.5.   

• Time-domain answers next!   
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Inverse Transforms 

• Our ω-domain solutions do us no good, since we are 
inhabitants of the time domain.   

• We required a methodology for inverse transforms, 
mathematical expressions that can convert the 
frequency domain currents we have produced into 
their time-domain counterparts.   

• It turns out that there is a fairly straightforward 
inverse transform methodology which we can employ.   

• First, some preliminary considerations.   
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Cartesian-to-Polar Transformations 
• Our ω-domain answers are 

complex numbers – currents 
expressed in the X-Y coordinates of 
the complex plane.   

• Coordinates in a two-dimensional 
plane may also be expressed in R-θ 
coordinates:  a radius length R 
plus a counterclockwise angle θ 
from the positive X-axis (at right).   

• That is, there is a coordinate R,θ 
that can express an equivalent 
position to an X,Y coordinate.    
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Cartesian-to-Polar Transformations (2) 
• The R,θ coordinate is equivalent to 

the X,Y coordinate if θ = arctan(Y/X) 
and                        .   

• In our X-Y plane, the X axis is the 
real axis, and the Y axis is the 
imaginary axis.  Thus the 
coordinates of a point in the complex 
plane with (for example) X 
coordinate A and Y coordinate +B is 
A+jB.   

• Now, remember Euler’s formula:   
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Cartesian-to-Polar Transformations (3) 
• If                                   , then  
                                              .    
• But in our figure, Rcosθ = X, 

and Rsinθ = Y.    
• Or,                          !          
• What this says is that when 

we convert our ω-domain AC 
current answers into polar 
coordinates, we can express 
the values in Re±jθ format as 
well as R,θ format.   

• The Re±jθ is very important in 
the inverse transforms.      
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Inverse Transform Methodology 

• We seek a time-domain current solution of the form      
i(t) = Ipcos(ωt). where Ip is some peak current.   

• This is difficult to  do with the ω-domain answer in 
Cartesian (A±jB) form.   

• So, we convert the ω-domain current solution to R,θ 
format, then convert that form to the Re±jθ form, where 
we know that θ = arctan (Y/X), and                   .    

• Once the ω-domain current is in Re±jθ form (and 
skipping a lot of derivation), we can get the time-
domain current as follows:  
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Inverse Transform Methodology (2) 

• Given the Re±jθ expression of the ω-domain current, we 
have only to do two things:  
– Multiply the Re±jθ expression by ejωt .   
– Take the real part.    

• This may seem a little magical at this point, but 
remember, Re (ejωt) is cos ωt, and we are looking for a 
current that is a cosine function of time.   

• We can see examples of this methodology by converting 
our four ω-domain current solutions to real time-
domain answers.   

EE 1202 Lab Briefing #5 18 



Erik Jonsson School of Engineering and 
Computer Science 

The University of Texas at Dallas 

© N. B. Dodge 09/10  

Transforming Solutions 

• In the resistor case, our ω-domain 
current is a real number, 0.1 A.  Then 
X=0.1, Y=0.   

• Then                                                    , 
and θ = arctanY/X = arctan 0 = 0.   

• Thus current = Re {0.1 ejωtej0} =    
0.1Re {0.1 ejωt} = 0.1 cos1000t A.  

• Physically, this means that the AC 
current is cosinusoidal, like the voltage.  
It rises and falls in lock step with the 
voltages, and has a maximum value of 
0.1 A (figure at right).      
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Transforming Solutions (2) 
• For the inductor circuit, I =  ‒j1 = ‒j.    
• Converting to polar:                                                     
• θ = arctanY/X = arctan ‒1/0 = arctan ‒ ∞ = ‒90°.   
• Iω = 1, ‒90° = 1e‒j90° = e‒j90° .   
• Multiplying by ejωt and taking the real part:   i(t) 

= Re{ejωt·e‒j90°} = Re{ej(ωt‒90°)} = (1)cos(ωt‒90°) = 
cos(ωt‒90°) A.    

• Physical interpretation: i(t) is a maximum of 1 
A, is cosinusoidal like the voltage, but lags the 
voltage by exactly 90° (plot at right).   

• The angle θ between voltage and current is 
called the phase angle.   Cos θ is called the 
power factor, a measure of power dissipation in 
an inductor or capacitor circuit.   
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Transforming Solutions (3) 
• For the capacitor circuit, I =  ‒j A.    
• Converting to polar:   
                                                        .           
• θ = arctanY/X = arctan 1/0 = arctan ∞     

= 90°, so that Iω = 1, 90° = ej90°.     
• Multiplying by ejωt and taking the real 

part:   i(t) = Re{ejωt ·ej90°} = Re{ej(ωt +90°)}   
= cos(ωt+90°) A.   

• Physically, i(t) has a maximum amplitude 
of 1 A, is cosinusoidal like the voltage, 
but leads the voltage by exactly 90° 
(figure at right).   
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Transforming Solutions (4) 
• For the RL circuit, I = 0.5‒j0.5 ampere.    
• Converting to polar:   
                                                                                   .           
• And θ = arctanY/X = arctan ‒0.5/0.5 = arctan 

‒1=  ‒45°;  Iω = 0.707, ‒90° = 0.707e‒j45° .   
• Multiplying by ejωt and taking the real part:   

i(t) = Re{0.707ejωt ·e‒j45°} = 0.707Re{ej(ωt ‒45°)} = 
0.707cos(ωt‒45°) = 0.707cos(ωt‒45°) A.    

• Note the physical interpretation: i(t) has a 
maximum amplitude of 0.707 A, is 
cosinusoidal like the voltage, and lags the 
voltage by 45°.  Lagging current is an 
inductive characteristic, but it is less than 90°, 
due to the influence of the resistor.   

EE 1202 Lab Briefing #5 22 

ω-domain current = Vp /(R+jωL) 
= 10/(10+j10) = 0.5‒j0.5 ampere 

2 2 2 2(0.5) ( 0.5) 0.707R X Y= + = + − ≈



Erik Jonsson School of Engineering and 
Computer Science 

The University of Texas at Dallas 

© N. B. Dodge 09/10  

Summary: Solving for Currents Using ω Transforms 
• Transform values to the ω-domain:   
 
 
 
 
• Solve for Iω, using Ohm’s and Kirchoff’s laws.   

– Solution will be of the form A±jB (Cartesian complex plane).   
• Use inverse transforms to obtain i(t).   

– Convert the Cartesian solution (A±jB) to R,θ format and 
thence to Re±jθ form.   

– Multiply by e±jωt and take the real part to get a cosine-
expression for i(t).   
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 Element  Time Domain ω Domain Transform 
AC Voltage V p cos ωt     V p 
Resistance R R 
Inductance L jωL 

Capacitance C 1/jωC 
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Measuring AC Current Indirectly 
• Because we do not have current probes for the 

oscilloscope, we will use an indirect measurement to 
find i(t) (reference Figs. 11 and 13 in Exercise 5).   

• As the circuit resistance is real, it does not contribute to 
the phase angle of the current.  Then a measure of 
voltage across the circuit resistance is a direct measure 
of the phase of i(t).   

• Further, a measure of the Δt between the i,v peaks is a 
direct measure of the phase difference in seconds.   

• We will use this method to determine the actual phase 
angle and magnitude of the current in Lab. 5.   
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Discovery Exercises 
• Lab. 5 includes two exercises that uses inductive and capacitive 

impedance calculations to allow the discovery of the equivalent 
inductance of series inductors and the equivalent capacitance of 
series capacitors.   

• Question 7.6 then asks you to infer the equivalent inductance of 
parallel inductors and the equivalent capacitance of parallel 
capacitors.   

• Although you are really making an educated guess at that point, you 
can validate your guess using ω-domain circuit theory, with one 
additional bit of knowledge not covered in the lab text:     
– In the ω-domain, parallel impedances add reciprocally, just like 

resistances in a DC circuit.    
– (Remember that in the ω-domain, series impedances add directly).    
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