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In this paper we experimentally investigate how the allocation of inventory risk in a two-stage supply chain
affects channel efficiency and profit distribution. We first evaluate two common wholesale price contracts that

differ in which party incurs the risk associated with unsold inventory: a push contract in which the retailer
incurs the risk and a pull contract in which the supplier incurs the risk. Our experimental results show that a
pull contract achieves higher channel efficiency than that of a push contract, and that behavior systematically
deviates from the standard theory in three ways: (1) stocking quantities are set too low, (2) wholesale prices are
more favorable to the party stocking the inventory, and (3) some contracts are erroneously accepted or rejected.
To account for these systematic regularities, we extend the existing theory and structurally estimate a number of
behavioral models. The estimates suggest that a combination of loss aversion with errors organizes our data
remarkably well. We apply our behavioral model to the advance purchase discount (APD) contract, which
combines features of push and pull by allowing both parties to share the inventory risk, in a separate experiment
as an out-of-sample test, and we find that it accurately predicts channel efficiency and qualitatively matches
decisions. Two practical implications of our work are that (1) the push contract performs close to standard
theoretical benchmarks, which implies that it is robust to behavioral biases, and (2) the APD contract weakly
Pareto dominates the push contract; retailers are better off and suppliers are no worse off under the APD contract.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2014.1940.
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1. Introduction
Location and ownership of inventory is one of the
key drivers of supply chain performance. Even in a
simple supply channel—single retailer, single supplier,
and full information—researchers and companies have
found that common wholesale price contracts with
different inventory allocations affect channel efficiency
(e.g., Lariviere and Porteus 2001, Cachon 2003, Kaya
and Özer 2012). Determining the best channel design
and inventory allocation in supply chains involves
difficult trade-offs that can have a direct effect on
a firm’s survival. For instance, Randall et al. (2002)
provide examples of companies in which the difference
between success and bankruptcy may be attributed
to different inventory allocation strategies, whereas
Randall et al. (2006) identify empirical relationships
between a firm’s decision to own the inventory and
several key performance indicators.

Traditional channels use a push structure in which
the retailer makes stocking decisions, owns the inven-
tory, and thus incurs the holding cost, as well as
the cost of any unsold product. However, Internet-
enabled technologies now permit other supply chain
arrangements for allocating inventory ownership and
risk (the cost of unsold inventory), which may affect
channel profitability (see Cachon 2004, Netessine and
Rudi 2006).

One such arrangement is the pull inventory system.
Under this system the supplier makes the stocking (pro-
duction) decision and therefore incurs the holding costs
and inventory risk. The retailer provides a storefront
(real or virtual), but products flow from the supplier to
the end customer with minimal exposure of the retailer
to inventory risk. One practical implementation of the
pull inventory system is a drop-shipping arrangement—
the retailer is never exposed to the inventory at all; the
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supplier ships to customers directly. Such arrangements
are prevalent in e-commerce; Randall et al. (2006) report
that between 23% and 33% of Internet retailers use
drop-shipping exclusively, and the U.S. Census esti-
mates that e-commerce sales by retailers totaled $194
billion in 2011, up 16.4% compared with 2010 (U.S. Cen-
sus Bureau 2013). Additionally, supply chains selling
specialty products utilize pull structures (Klein 2009).
The popularity of these contracts has even created
opportunities for companies to specialize in providing
drop-shipping services for businesses (Davis 2014 pro-
vides the example of CommerceHub). Less extreme
pull arrangements exist as well, including just-in-time
delivery, where the supplier delivers in small batches,
thus becoming effectively responsible for holding cost
and inventory risk; and vendor-managed inventory, in
which the supplier makes stocking decisions but the
retailer may hold the physical inventory.

Another inventory structure, often referred to as
an advance purchase discount (APD) contract, combines
aspects of the push and the pull systems so that both
parties share the inventory risk (Cachon 2004). Cachon
(2004) provides the example of O’Neill Inc., a manu-
facturer of water-sports apparel, which successfully
uses the APD contract. In another study, Tang and
Girotra (2010) evaluate how an APD structure impacts
Costume Gallery, a privately owned wholesaler of
dance costumes, and estimate that the company could
increase its net profits by 17% if it adopted an APD
contract.

The question of how to structure the channel to best
allocate inventory risk, and the effect of inventory risk
on channel performance, has been extensively studied
analytically (Cachon 2004, Netessine and Rudi 2006,
Özer and Wei 2006, Özer et al. 2007). Because in practice
these channel design decisions are strategic, involve
difficult trade-offs, and cannot be automated, senior
managers must rely on their judgment and experience
when they make these decisions. Consequently, it is
important to understand how decisions—made by
humans under different inventory risk structures—
affect profits.

To gain insight into the role human judgment plays
in channel design decisions, we conduct a set of labo-
ratory experiments to explore human behavior in push
and pull settings. We find that the pull contract delivers
higher efficiency than does the push contract. Although
this finding is in line with the standard theory, we also
identify three ways in which behavior deviates from
the normative prediction: (1) stocking quantities are
lower than they should be, (2) wholesale prices sys-
tematically favor the party stocking the inventory, and
(3) some profitable contracts are rejected, and vice versa.
Therefore, we extend the standard model to account for
these three behavioral regularities. We characterize and
derive the equilibrium predictions for three behavioral

models that have been identified in the more recent
literature (Cui et al. 2007, Ho and Zhang 2008, Su 2008,
Ho et al. 2010), structurally estimate their parameters,
and find that a simple model of loss aversion with
random errors fits the data remarkably well.

We proceed to further investigate the loss aversion
with a random errors model in the context of the
APD contract, which includes push and pull features,
and find that it accurately predicts channel efficiency
and qualitatively matches decisions. We consider this
an important contribution to the literature, because
identifying systematic deviations from standard the-
ory, and incorporating these behavioral regularities
into analytical models, helps us to understand their
causes and provides insights that result in designing
contracting mechanisms that are behaviorally robust.
Therefore, using our model, managers can make better
decisions when designing channel structures.

We test the robustness of the loss aversion model by
fitting it to two data sets from the literature, Katok and
Wu (2009) and Becker-Peth et al. (2013), and we find
that the estimated loss aversion parameters are of a
similar magnitude to those in our data. We also conduct
an additional APD treatment, with more symmetric
bargaining power of the two players, and observe
that the loss aversion parameter estimates are some-
what sensitive to the relative bargaining power in the
channel.

Our experimental results highlight a number of
managerial insights. First, we find that the performance
of the push contract is closest to standard theoretical
predictions. In that sense, one might say that of the
three contracts we study, the push contract is most
robust to behavioral biases. Second, we find that the
APD contract, contrary to theory, fails to deliver higher
supply chain efficiency than the pull contract. Our third
practical finding is that the APD contract results in the
most equitable profit distribution of the three contracts—
under the APD contract, the supplier is as well off as
under push, but the retailer is significantly better off.
Thus, the APD contract Pareto weakly dominates the
traditional push contract. This indicates that in supply
chain settings with powerful suppliers, suppliers may
wish to consider using an APD arrangement in favor
of the simple push contract because it does not damage
their own profitability but generally improves the
retailer’s profit. Furthermore, fairer profit distribution
may well result in additional benefits stemming from
more cooperative long-term relationships.

2. Experimental Design and
Standard Theory

2.1. Experimental Design
We evaluate three supply chain contracts, each in
a separate between-subjects experimental treatment.
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Figure 1 Decision Sequence for Each Contract in the Experiment

Retailer rejects or
accepts and sets a

quantity

Demand is
realized

Supplier sets a
wholesale price

Push

Supplier rejects or
accepts and sets a

quantity

Demand is
realized

Retailer sets a
wholesale price

Pull

Demand is
realized

Supplier sets a
wholesale price and
discount wholesale

price

APD

Retailer rejects or
accepts and sets a

prebook

Supplier sets
production

In the push and pull contracts, one party offers the
wholesale price and the other party sets the stocking
quantity (or rejects the contract). To be consistent with
this structure, in our push treatment, the supplier offers
the wholesale price and the retailer decides on the
order quantity. Conversely, in our pull treatment, the
retailer offers the wholesale price and the supplier
decides on the quantity.

The APD contract differs from the push and pull
contracts in that it includes two wholesale prices (the
regular wholesale and discount wholesale prices), and
both parties may share the inventory risk. The retailer
incurs the inventory risk for a quantity ordered in
advance of realized demand (called the prebook), and
the supplier incurs the inventory risk on the differ-
ence between its production amount and the retailer’s
prebook quantity. Specifically, in the APD treatment,
the supplier moves first and proposes the two whole-
sale prices. After observing these prices, the retailer
commits to paying for the prebook quantity (or rejects
the contract). Next, the supplier sets the production
quantity. Finally, demand and profits are realized for
both players. We discuss more details of the APD
contract in §4. Figure 1 depicts the decision sequence
for all three treatments in our study.

In all three treatments a rejection results in both
parties earning 60. In theory, this outside option is
not binding for the push and pull contracts given our
parameters,1 but it is binding under the APD contract,
because the supplier has the ability to extract the entire
channel profit (which we will show when we outline
the APD theory). Our setting makes the APD prediction
somewhat more realistic because the proposer should
now extract most but not all of the channel profit.

1 This value is slightly below the minimum of any party’s profits, in
any contract, in equilibrium. The experimental profit predictions will
be illustrated in the next section.

We used the same demand distribution, per-unit
revenue, and cost parameters in all three treatments,
which were common knowledge to all participants.
Specifically, customer demand is an integer uniformly
distributed from 0 to 100, U6011007; the retailer receives
revenue of r = 15 for each unit sold; and the supplier
incurs a cost of c = 3 for each unit produced.

In each treatment, we provided participants with a
decision support tool. The player in the proposer role
could test wholesale prices between 3 and 15 (the unit
cost and revenue per unit) using a scroll bar. For each
test wholesale price, the computer would show the
proposer the stocking quantity that would maximize
the other player’s expected profit. We made it clear that
this quantity was best in terms of average profit for the
other player for this test wholesale price but that they
were playing with a human who may not necessarily
stock this amount. Similarly, for the player setting a
stocking quantity, once a wholesale price was offered,
he or she could test different stocking quantities using
a scroll bar (from 0 to 100). Each time the player moved
the scroll bar, a line graph would display his or her
profit, given the proposed wholesale price; this was
calculated for every realization of demand (from 0
to 100).2 We provided this decision support tool to
ensure that participants could comprehend the task
and also allow the standard theory a viable chance
of being confirmed. Screenshots of the participants’
decisions are included in the sample instructions and
are available from the authors upon request.

In total, 120 human subjects participated in the study,
40 in each treatment. We randomly assigned subjects
to a role (retailer or supplier) at the beginning of each
treatment. To reduce the complexity of the game, roles
remained fixed for the duration of each session. Subjects
made decisions in 30 rounds. Retailers and suppliers
were placed into a cohort of six to eight participants,
and a single retailer was randomly rematched with
a single supplier within the cohort in each round,
replicating a one-shot game. To mitigate reputation
effects, subjects were unaware that their cohort size
was six to eight participants; they were simply told
that they would be randomly rematched with another
person each round. Each experimental treatment had
six cohorts. Because subjects were placed into a fixed
cohort for an entire session, we use the cohort as the
main statistical unit of analysis.

We conducted the experiment at the Laboratory for
Economics, Management and Auctions (LEMA) at Penn
State University in 2010. Participants in all treatments
were students, mostly undergraduates, from a variety

2 In the APD treatment this support was similar. Suppliers had
to set two wholesale prices, then retailers could test the prebook
quantity with a graph, and finally suppliers could also test production
amounts with a graph.
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of majors. Before each session, the subjects read the
instructions themselves for a few minutes. Following
this, we read the instructions orally and answered
any questions to ensure common knowledge about
the rules of the game. Each individual participated
in a single session. We recruited subjects through an
online system, offering cash participation. Subjects
earned a $5 show-up fee plus an additional amount
that was proportional to their total profits from the
experiment. Average compensation for the participants,
including the show-up fee, was $25. Each session lasted
approximately 1 to 1.5 hours, and we programmed the
software using the z-Tree system (Fischbacher 2007).

2.2. Theoretical Benchmarks
In all treatments, a retailer R receives revenue r for
each unit sold, incurs no fixed ordering costs, and
loses sales if demand exceeds inventory. A supplier S
produces inventory at a fixed per-unit cost of c. Cus-
tomer demand D is a continuous uniform random
variable between 0 and D̄. Note that in our experi-
ment, values are actually integers drawn uniformly
(between 0 and 100). We assume that the application of
the continuous theory to a discrete implementation is
sufficiently precise. There is full information of all cost
parameters, and we assume that retailers and suppliers
are risk-neutral expected-profit maximizers. Finally,
we measure efficiency by the percent ratio between
the decentralized supply chain expected profit and the
centralized supply chain expected profit. To distinguish
between push and pull contracts, we mark the push
contract by a caret (∧).

For the push contract, a supplier offers a per-unit
wholesale price w to a retailer. The retailer sets a stock-
ing quantity q for a given w that maximizes its expected
profit, �̂R4q5= rS4q5−wq. Let S4q5= Ɛ6min4q1D57=
q − q2/42D̄5 represent the expected sales for a stocking
quantity q, and let q̂∗ be the quantity that maximizes
the retailer’s expected profit under the push contract.
In this case, the best-response stocking quantity for the
retailer must satisfy the critical fractile

q̂∗
= D̄

(

r −w

r

)

0

The supplier’s decision under a push contract is the
wholesale price w, where ŵ∗ maximizes the supplier’s
push contract profit �̂S4w5= 4w− c5q and simplifies to

ŵ∗
=

r + c

2
0

Under the pull contract, the decisions of the retailer
and supplier are reversed; the retailer offers a per-
unit wholesale price w, and the supplier then sets a
stocking quantity q that maximizes its expected profit,
�S4q5=wS4q5− cq. Let q∗ be the stocking quantity that

Table 1 Predicted Decisions and Outcomes for the Push and Pull
Contracts

Push Pull

Wholesale price (ŵ ∗ and w ∗) 9000 6000
Quantity (q̂∗ and q∗) 40000 50000
Retailer profit (�̂R and �R) 120000 337050
Supplier profit (�̂S and �S) 240000 75000
Channel efficiency (%) 75000 85094

maximizes the supplier’s expected profit. Then q∗ must
satisfy the critical fractile

q∗
= D̄

(

w− c

w

)

0

The retailer’s decision under the pull contract is the
wholesale price. Let w∗ be defined as the wholesale
price that maximizes the retailer’s expected profit in
the pull contract, where �R4w5= 4r −w5S4q5; �R4w5 is
unimodal in w if demand has the increasing generalized
failure rate property (Cachon 2004), so the optimal
solution can be characterized using the first-order
condition. Therefore, w∗ must satisfy 4w∗53 = c242r−w∗5.

Note that the push and pull contracts not only differ
in who incurs the risk of unsold inventory but also in
how the demand risk is shared. Under a push contract,
a retailer makes an order from a supplier in advance
of demand, where a supplier can determine exactly
what the retailer will order, produce that amount, and
avoid any demand uncertainty. However, under a pull
setting, the retailer pulls product from the supplier as
demand is realized. Therefore, in a pull context, both
parties share the risk associated with random demand.

2.3. Experimental Predictions
Table 1 summarizes the theoretical predictions for
expected retailer and supplier profits and supply chain
efficiency given our experimental parameters (r = 15,
c = 13, demand U6011007, and the outside option of 60).
For wholesale prices, in the push contract, it is clear
that 415+35/2 = 9000. In the pull contract, the first-order
condition w3 = 270 − 9w is satisfied at a wholesale price
of 6.00. Substituting these wholesale prices into the
critical fractile solutions from the previous section leads
to integer valued stocking quantities of 40 in the push
contract and 50 in the pull contract. These predictions
work well because, in our experiment, participants
were allowed to enter their decisions up to two decimal
places for the wholesale prices and integers for stocking
quantities.

3. Results of the Push and
Pull Contracts

We begin by presenting the results from the push and
pull treatments separately. Following this, we present a
number of behavioral models and structurally estimate
their parameters.
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Table 2 Average Profits for the Channel, Retailers, and Suppliers

Push Pull

Profit Predicted Observed Predicted Observed

Channel profit 360000 336085 412050 402037
(Efficiency in %) 4750005 6170547 4850945 660797

4700185 4830835
Retailer profit 120000 130014 337050 257032∗∗

670377 6120357
Supplier profit 240000 206071∗ 75000 145004∗∗

6150967 6100307

Note. Standard errors are reported in square brackets.
∗∗p < 0005; ∗p < 0010 (indicates significance of Wilcoxon signed-rank test

compared with the predictions).

3.1. Channel Efficiency and Expected Profits
We calculate the expected profit for each decision and
report it as the “observed profit.” Table 2 displays the
predicted and observed supply chain profits along
with the corresponding channel efficiency for the push
and pull contracts. There is no significant difference
between observed and predicted supply chain profits
(p = 00173 for both push and pull).3 The observed
supply chain profits increase as the channel switches
from the push contract to the pull contract (p = 00025).
These results suggest that the normative prediction of
improving channel efficiency by shifting the inventory
risk from the retailer to the supplier, for a simple
wholesale price contract, is correct.

Moving to each party’s profits, we see that retailers
in the pull contract earn significantly less than theory
predicts (p = 00028). However, retailers earn the same
as theory predicts in the push contract (p = 00463).
Directionally consistent with the standard theory, when
selecting between the two contracts, a retailer earns
the most profit in the pull contract (p < 0001).

The observed supplier profits are below theory in
the push contract (p = 00075). For the pull contract, we
observe that suppliers earn significantly more than
the theoretical prediction (p = 00028). Comparing the
supplier profits between the two contracts, the profits
under the push contract are significantly higher than
under the pull contract (p = 000104).

These initial results indicate that channel efficiency
increases when moving from a push to a pull contract,
and retailers prefer pull contracts whereas suppliers
prefer push contracts. Both of these observations quali-
tatively agree with standard theory. However, actual
levels of profits for both parties systematically deviate
from the predicted values in that the profit split is
somewhat more equitable. Our results for the push
contract are similar to Keser and Paleologo (2004), one
of the few other papers that reports on lab experiments

3 All one-sample tests are Wilcoxon signed-rank tests, and all two-
sample tests are Mann-Whitney U -tests.

with uncertain demand (they have only a push contract)
in which both sides are human. They, too, find that the
profit distribution is more equitable than the standard
theory predicts. In a more recent paper, Kalkancı et al.
(2014) also conduct an all-human study but focus on
contract complexity involving asymmetric information.

3.2. Decisions
Table 3 summarizes the average wholesale prices and
stocking quantities for the push and pull contracts for
agreements. For both contracts, proposers set wholesale
prices that are significantly different from the theo-
retical predictions (p = 00028 for both push and pull).
Specifically, for both contracts, the party setting the
wholesale price made offers that were more generous
than theory predicts. In the push contract, the average
wholesale price is below the prediction; in the pull
contract, it is above the prediction.

To interpret the observed stocking quantities correctly,
we calculate the optimal stocking quantities conditioned
on the proposers’ wholesale prices, and we then average
them for the predicted values. The second row of values
in Table 3 shows these results. There are significant
differences between observed and best-reply values
in the pull contract (p= 00046). In the push contract
we find that the observed quantity is not statistically
different from predicted (p = 00463).

Recall that the party setting the stocking quantity,
when receiving a wholesale price, had the option to
reject the contract so that both parties earn an outside
option of 60. In Table 3 we provide the predicted
rejection rates, conditioned on the observed wholesale
prices, along with the observed rejection rates. In the
push contract, retailers rejected significantly more than
predicted (p = 00028), whereas in the pull contract,
there are no significant differences in the predicted and
observed rejections rates. Overall, the party stocking
the inventory made the correct accept/reject decision
92.8% of the time in the push contract and 94.7% of
the time in the pull contract. Moreover, rejection rates
do not appear to change over time in either contract
(based on a logit regression with random effects with

Table 3 Average Wholesale Prices and Quantities for Agreements, and
Average Rejection Rates

Push Pull

Predicted Observed Predicted Observed

Wholesale price 9000∗∗ 8026 6000∗∗ 8002
600167 600287

Quantity � w 44093 42060 61026∗∗ 55034
610047 620867 610307 610727

Rejection rate � w 00020∗∗ 00082 00048 00032
6000117 6000207 6000197 6000097

Notes. Standard errors are reported in square brackets. Predicted quantities
and rejections are conditioned on observed wholesale prices.

∗∗p < 0005 (indicates significance of Wilcoxon signed-rank test).



Davis, Katok, and Santamaría: How the Allocation of Inventory Risk Affects Channel Efficiency
Management Science 60(11), pp. 2666–2683, © 2014 INFORMS 2671

Table 4 Efficiency Impacts in the Push and Pull Contracts

Push Pull

%

Efficiency given correct accept/reject and quantity 78065 90096
Efficiency lost from incorrect rejection 3015 0094
Efficiency lost from incorrect acceptance −0016 −1040
Efficiency lost from incorrect quantity 5049 7059
Observed efficiency 70018 83083

the decision period as the independent variable). These
results suggest that, with the provided decision support
tools, subjects were generally able to comprehend
the task.

Focusing only on the players who set the stock-
ing quantity, Table 4 shows how much supply chain
efficiency was lost based on (1) incorrect rejections,
(2) incorrect acceptances, and (3) incorrect stocking
quantities, with respect to the standard theoretical
predictions. In the push contract, 3.15% of the pre-
dicted efficiency was lost from rejecting favorable offers,
whereas 5.49% was lost from suboptimal stocking
quantities. In the pull contract, only 0.94% efficiency
was lost as a result of rejecting favorable offers, but
7.59% was lost as a result of low stocking quantities.

We emphasize that the numbers in Table 4 are
calculated against the normative benchmark. It is
possible that an incorrect rejection might actually be
correct if decision makers know that they will not stock
in line with the standard theory. With this in mind, it
still appears that accept/reject decisions and quantities
play a role in efficiency losses; therefore, we consider
both of these effects in our behavioral models that we
develop in the next section.

3.3. Behavioral Models
Our goal in this section is to formulate a parsimonious
behavioral model that can explain the deviations we
observe in our data. These deviations are (1) order
quantities that are below predicted levels in both
contracts, (2) wholesale prices that are below predicted
in the push contract and above predicted in the pull
contract, and (3) incorrect responder accept/reject
decisions. We consider behavioral models that have
been proposed in recent literature: loss aversion from
leftover inventory (Ho et al. 2010, Becker-Peth et al.
2013), inequality aversion (Cui et al. 2007), anchoring
toward the mean (Schweitzer and Cachon 2000, Benzion
et al. 2008), and random errors in accept/reject decisions
(Su 2008).

Because of the nature of these behavioral regularities,
it is natural to assume that the proposer may have
none of these biases. In particular, losses and anchoring
cannot happen since proposers do not hold inventory,
and inequality aversion is unlikely to play a major role
because proposers work under advantageous inequality

(it has been shown that advantageous inequality aver-
sion is virtually nonexistent in the laboratory; see
De Bruyn and Bolton 2008, Katok and Pavlov 2013).
Also, Katok and Wu (2009) find that when suppliers in
a push wholesale contract are matched with automated
retailers programmed to place optimal orders, suppliers
quickly learn to set wholesale prices optimally. Consid-
ering that the behavioral regularities we investigate
are unlikely to be present for proposers, we begin by
making an assumption that proposers are fully rational.
We introduce the following notation for our behavioral
parameters:

• �≥ 1: The degree of loss aversion that the party
stocking the inventory experiences from having left-
over inventory. Note that �> 1 implies loss aversion,
and �= 1 corresponds to rational behavior (see Ho
et al. 2010 and Becker-Peth et al. 2013 for related
formulations).

• �≥ 0: The degree of disadvantageous inequality
aversion (see Cui et al. 2007). We assume that decision
makers do not have disutility from advantageous
inequality.

• 0 ≤ � ≤ 1: The degree of anchoring toward the
mean (see Benzion et al. 2008 and Becker-Peth et al.
2013 for a similar approach).

We consider each of the above behavioral issues
separately but will add random errors in accept/reject
decisions when we discuss our parameter estimation.

3.3.1. Push Behavioral Models. In Table 5 we out-
line each of the behavioral models for the push setting
and demand following a continuous uniform distribu-
tion between 0 and D̄. We relegate the derivations to
the appendix.

In Table 5, � = 50, ûR4q5 denotes the retailer’s
expected utility, �̂S4w5= 4w− c5q, �̂R4q5= rS4q5−wq,
¯̂w = 4r41 +�5+ c42 +�55/43 + 2�5, and ŵ = 4r + 2c5/3.

The three cases in the inequality aversion model stem

Table 5 Push Contract: Retailer Expected Utility Functions and Optimal
Stocking Quantities

Loss aversion ûR4q5= 4r −w5S4q5− �w4q −S4q553

q̂∗ = D̄

(

r −w

r +w4�− 15

)

.

Inequality aversion ûR4q5= rS4q5−wq − �4�̂S4w5− �̂R4q55
+;

q̂∗ =







































D̄

(

r −w + �4r + c− 2w5
r 41 + �5

)

w ≥ ¯̂w1

D̄

(

24r + c− 2w5
r − 2w

)

ŵ < w < ¯̂w1

D̄

(

r −w

r

)

w ≤ ŵ 0

Anchoring ûR4q5= rS4q5−wq;

q̂∗ = 41 − �5

(

D̄

(

r −w

r

))

+ ��0
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from the final term in the retailer’s expected util-
ity function, 4�̂S4w5− �̂R4q55

+. When w ≥ ¯̂w, the retailer
stocks in a way that earns him less than (or the same
as) the supplier in terms of expected profit; hence
4�̂S4w5− �̂R4q55≥ 0. When ŵ < w < ¯̂w, the retailer stocks
so that the two parties make the same expected profit,
and 4�̂S4w5−�̂R4q55= 0. Finally, when w ≤ŵ, the retailer
stocks so that supplier earns less than (or the same as)
the retailer; therefore 4�̂S4w5− �̂R4q55≤ 0. Note that in
this last case, the retailer has no inequality concerns,
and the optimal quantity corresponds to the critical
fractile from §2.2.

In terms of the supplier’s optimal wholesale price,
the supplier takes into account the retailer’s stocking
quantity bias (and errors in accept/reject decisions,
outlined in §3.4) and sets the wholesale price in a way
that maximizes his expected profit. We compute this
optimal wholesale price numerically.

3.3.2. Pull Behavioral Models. As with the push
contract, we outline each of the behavioral models for
the pull setting and demand following a continu-
ous uniform distribution between 0 and D̄, as shown
in Table 6. Please see the appendix for details.

In Table 6, � = 50, �R4w5 = 4r − w5S4q5, �S4q5 =

wS4q5− cq, w̄ = 4r +
√
r2 + 8cr5/4, and

w =
1

441 + 2�5

[

4�r + r + 2�c

+
√

44�r + r + 2�c52 + 8r41 + 2�54c41 −�5−�r5
]

0

The three cases in the inequality aversion model for the
pull contract, as with the push contract, come from the
final term in the supplier’s expected utility function,
4�R4w5−�S4q55

+. When w ≤w, the supplier stocks in a
way that earns him less than (or the same as) the retailer
in terms of expected profit; hence 4�R4w5 − �S4q55
≥ 0. When w<w< w̄, the supplier stocks such that

Table 6 Pull Contract: Supplier Expected Utility Functions and Optimal
Stocking Quantities

Loss aversion uS4q5= 4w − c5S4q5− �c4q −S4q55;

q∗ = D̄

(

w − c

w + c4�− 15

)

.

Inequality aversion uS4q5= wS4q5− cq − �4�R4w5−�S4q55
+;

q∗ =







































D̄

(

w − c

w

)

w ≥ w̄ 1

D̄

(

24r + c− 2w5
r − 2w

)

w <w < w̄1

D̄

(

w − c− �4r + c− 2w5
w − �4r − 2w5

)

w ≤ w0

Anchoring uS4q5= wS4q5− cq;

q∗ = 41 − �5

(

D̄

(

w − c

w

))

+ ��0

the two parties make the same expected profit, and
4�R4w5−�S4q55= 0. Finally, when w ≥ w̄, the supplier
stocks so that the retailer earns less than (or the same
as) the supplier, 4�R4w5−�S4q55≤ 0; in this case, the
supplier has no inequality concerns, and the optimal
quantity is the same as the standard critical fractile
in §2.2.

In terms of the retailer’s optimal wholesale price,
the retailer takes into account the supplier’s stocking
quantity bias (and errors in accept/reject decisions,
outlined later) and sets the wholesale price in a way
that maximizes his expected profit, where we compute
this optimal wholesale price numerically.

3.4. Structural Estimation of the
Behavioral Models

We fit the stocking quantities, accept/reject decisions,
and wholesale prices to find the levels of loss aversion,
inequality aversion, and anchoring that match our
data best using maximum likelihood estimation (MLE).
This allows us to compare the overall model fits and
determine which behavioral factors are likely driving
the regularities we observe.

For stocking quantities, we assume errors follow a
normal distribution with left-side truncation 0 and
right-side truncation 100. Let �4 · 5 denote the density
of the truncated normal distribution for quantities,
with the optimal quantity as the mean and variance �2

q .
Also, as previously noted, subjects exhibited errors
with respect to their accept/reject decisions. Therefore,
we assume that the utility of the party stocking the
inventory has an extreme value error term so that the
probability of accepting a wholesale price follows a
logistic form with precision parameter � :

exp8uV 4q5/�9

exp8uV 4q5/�9+ exp8uo
V /�9

0

Let Vdenote the party setting the stocking quantity, and
let uo

V reflect the outside option (60 in our experiment).
As � → 0, the party stocking the inventory accepts
any wholesale price that results in his expected utility
exceeding the outside option. Similarly, as � → �, the
party stocking the inventory accepts with probability
1/2. As mentioned previously, for wholesale prices, we
assume that a proposer takes the responder’s stocking
bias and noisy accept/rejection decision into account
and sets the wholesale price in a way that maximizes
his expected profit. For the estimation of wholesale
prices, we assume errors follow a normal distribution
with left-side truncation c = 3 and right-side truncation
r = 15. Let �4 · 5 denote the density of the truncated
normal distribution for wholesale prices, with the
optimal wholesale price as the mean and variance �2

w.
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Table 7 Results of the Structural Estimations for Each of the Outlined Behavioral Models on the Aggregated Push and Pull Data

Baseline Errors Errors + Loss aversion Errors + Inequality aversion Errors + Anchoring

Fit
LL −7178304 −6195406 −6192504 −6193505 −6194603

Push predictions
w̃ 9000 8021 8013 8016 8032
q̃ 44093 44093 41006 43032 45061

Pull predictions
w̃ 6000 7051 7055 7064 7055
q̃ 61026 61026 57030 59005 59035

Estimates
� — — 1017 — —

600027
� — — — 0005 —

600017
� — — — — 0015

600047
� — 2903 2403 2500 3205

610067 610057 610377 610267
�q 1702 1702 1606 1609 1607

600447 600537 600497 600507 600517
�w 2017 1038 1038 1036 1037

600077 600047 600047 600047 600047

Notes. Standard errors are reported in square brackets. The prediction rows calculate the optimal wholesale prices w̃ and quantities q̃, given the maximum-likelihood
estimates. The predicted quantities also consider the observed wholesale prices.

The joint-likelihood function, where t is a single
decision period and T denotes the total number of
periods, is given by

L4�1�1�1 �1�q1�w5 =

T
∏

t∈T

�4qt5
At�4wt5

At Pr4Accept5At

· 41 − Pr4Accept551−At1

where At = 1 if the proposed wholesale price was
accepted in period t and 0 otherwise.

In Table 7 we present the estimates for a base-
line model, an errors model, and three errors models
with loss aversion, inequality aversion, or anchor-
ing, respectively. The baseline model assumes that
quantities are set according to the normative critical
fractiles outlined in §2.2, and the wholesale prices that
best reply to this behavior, and estimates �q and �w.4

According to the log-likelihood values (LL), allowing
errors in the accept/reject decision improves the fit a
great deal over the baseline model, as does errors plus
loss aversion (a likelihood ratio test yields �2 = 1674021
between the baseline model and errors model, and
�2 = 58036 between the errors model and errors plus
loss aversion model, both p < 00001). This is in line with

4 All standard errors were generated through bootstrapping the
data on a 52-core grid computer with 96 GB RAM. Total runtime
was approximately 700 core hours. Also, for the baseline estima-
tions, we set � as low as possible (� = 402) to emulate a rational
accept/reject decision, which also avoids convergence problems in
the log-likelihood calculation, which appear when � → 0.

our experimental data in that subjects did not always
make correct accept/reject decisions, and parties set
stocking quantities too low, as if the cost of unsold
inventory was greater than its true value.

To compare the three behavioral models with errors
more rigorously, we conducted a Vuong (1989) test. The
Vuong test results show that the loss aversion model
is significantly better than both the anchoring model
(p= 00004) and inequality aversion model (p= 0002),
though the inequality aversion model is a marginally
better fit than the anchoring model (p = 00056). We
focus on the errors plus loss aversion model in the
out-of-sample test section (presented in §4) because it
provides the best overall fit.

Table 7 also shows the predicted order quantities
(and wholesale prices) given the maximum-likelihood
estimates for each model. One can see that the pre-
dictions for most all of the models evaluated, when
compared with the observed values in Table 3, are
a substantial improvement over the baseline, which
assumes the standard theoretical predictions. In regard
to the best-fitting model, errors plus loss aversion, we
find that it matches our data well. We denote predic-
tions with a tilde (∼); q̃ = 41006 versus q = 42060 for the
push contract and q̃ = 57030 versus q = 55034 for the
pull contract. We also evaluated whether the errors
and loss aversion model fit the observed rejections
rates. Figure 2 plots the predicted rejection rates along
with the observed rejection data for the push and
pull contracts. Although there are some deviations in



Davis, Katok, and Santamaría: How the Allocation of Inventory Risk Affects Channel Efficiency
2674 Management Science 60(11), pp. 2666–2683, © 2014 INFORMS

Figure 2 Predicted and Observed Probability of Rejection Given
Different Wholesale Prices
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both directions, it appears that the model provides a
reasonable fit.

Finally, recall that we assumed wholesale prices were
offered by fully rational parties who have beliefs about
the party stocking the inventory and best reply to this
behavior. We can test how close this assumption is to
reality by comparing the predicted best reply wholesale
prices, given the estimates, with the average observed
wholesale prices in Table 3. First, it is worth noting that
the errors model greatly improves wholesale prices by
adding only a single parameter, � . Second, in terms
of the errors plus loss aversion model, we observe
accurate predictions as well: w̃ = 8013 versus w = 8026
for push and w̃ = 7055 versus w = 8002 for pull. As with
the stocking quantities and accept/reject decisions, the
predicted wholesale prices are remarkably close to our
data, indicating that an errors plus loss aversion model
is useful in organizing all the decisions.

4. Advance Purchase Discount Contract
The push and pull wholesale price contracts cannot
coordinate the channel because of double marginal-
ization. However, Cachon (2004) shows that the APD
contract can coordinate the channel by distributing
inventory risk between the supplier and the retailer.

Next we will review the theory for the APD contract
under our behavioral model, and we develop a number
of experimental hypotheses that we will proceed to
test in a separate, out-of-sample experiment.

4.1. APD Behavioral Model
Under the APD contract, a supplier begins by proposing
two wholesale prices, a regular wholesale price w
and a discount wholesale price wd. It is reasonable,
although not necessary, to assume w ≥wd (see Özer
and Wei 2006 for a slightly different setting where this
is relaxed). A retailer then sets a prebook quantity y,
where the retailer commits to purchasing the entire
prebook quantity regardless of demand and pays wd

for each unit of the prebook quantity. Following this, a
supplier sets a production amount q, where q ≥ y. We
will outline the APD contract for our behavioral model,
noting that the standard theory is the special case of
�R = �S = 1, where �R represents the retailer’s loss
aversion and �S represents the supplier’s loss aversion.
Table 8 shows the expected utility functions and the
corresponding optimal order quantities when demand
is uniformly distributed between 0 and D̄ (please see
the appendix for corresponding derivations).

In Table 8, K4y1 q5 corresponds to the expected num-
ber of units the supplier sells when the retailer prebooks
y units and the supplier produces q units,

K4y1 q5= Ɛ6min6max4y1D51 q77= q −

(

q2 − y2

2D̄

)

0

The first term in the expected utility function for
the supplier represents immediate revenue from the
retailer’s prebook quantity, the second term represents
the additional revenue from selling any units above
the prebook quantity, the third term is the supplier’s
production cost for units sold, and the last term repre-
sents the cost and disutility from any potential leftover
units. Similarly, the first term in the expected utility for
the retailer represents the profits from prebook sales,
the second term the additional profits from units sold

Table 8 APD Contract: Expected Utility Functions for Suppliers and
Retailers, and Their Optimal Stocking Quantities

Supplier uS4y 1 q5= wdy +w4K4y 1 q5− y 5

−cK4y 1 q5− �Sc4q −K4y 1 q55;

q∗ =























D̄

(

w − c

w + c4�S − 15

)

w ≥
c4D̄ + y 4�S − 155

D̄ − y
1

y w <
c4D̄ + y 4�S − 155

D̄ − y
0

Retailer uR4y 1 q5= 4r −wd 5S4y 5+ 4r −w5

·4S4q5−S4y 55− �Rwd 4y −S4y 55;

y ∗ = D̄

(

w −wd

w +wd 4�R − 15

)

.
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beyond the prebook order, and the third term is the
cost and disutility of any leftover prebooked units.

Finally, we allow errors to affect the APD contract the
same way that they affect the push and pull contracts.
The retailer, faced with a proposed set of wholesale
prices w and wd, accepts with probability

exp8uR4y1 q5/�9

exp8uR4y1 q5/�9+ exp8uo
R/�9

1

where uo
R is the retailer’s outside option profit.

A few comments are in order regarding the wholesale
prices in the APD contract. Consider the special case of
the standard theory, such that �R = �S = 1 and � → 0.
Under this setting, the supplier can achieve 100%
channel efficiency by setting w = r and producing the
first-best order. If the retailer plays the best response,
wd determines the division of channel profits. For
example, if both parties set y = y∗ and q = q∗, then the
supplier can extract 100% of the channel profits by
setting wd =w. On the other hand, if the supplier sets
wd = c, the retailer would earn 100% of the channel
profits because the retailer would be induced to set
y to the first-best order quantity, which the supplier
would produce.

For our experimental setting, the standard theory
predicts y∗ = 28030, q∗ = 80000, and optimal wholesale
prices of w∗ = 15000 and w∗

d = 10075. It also predicts
100% channel efficiency, where the split of profits
is 419.79 for the supplier and 60.21 for the retailer.
Note that the standard theory results in r > w∗

d for
our experiment, as retailers will accept only if their
expected profit is greater than 60, the value of the
outside option.

4.2. Out-of-Sample Test
We now formulate several hypotheses for the APD
contract that follow from the behavioral model. Our
goal here is not to identify the best-fitting model for
the APD contract but instead to evaluate how a model
that fits the push and pull contracts performs under
alternative structures, such as an APD contract. This
leads to our first hypothesis.

Hypothesis 1 (Model). The loss aversion with errors
model will fit the data better than the baseline model.

In some ways the APD contract can be considered
a combination of the push and pull contracts; the
retailer’s prebook, and its associated cost of unsold
inventory, is essentially a push contract. Addition-
ally, the difference between the supplier’s production
amount and the prebook, and its cost of unsold inven-
tory, is similar to a pull contract. To further develop
a hypothesis about the APD contract’s performance,
we use the push and pull data to estimate the loss
aversion parameter under the two contracts separately.
It turns out that under push, �= 1008 (SE = 0003), but

under pull, �= 1026 (SE = 0004).5 And the rationality
parameters under the two contracts are similar to one
another: � = 2305 under push and � = 2403 under pull.
Combining the difference in loss aversion estimates
with the fact that under the APD contract the optimal
prebook quantity is decreasing in �R and the optimal
production amount is decreasing in �S (see Table 8)
leads to our second formal hypothesis.

Hypothesis 2 (Quantities). Retailers will set prebook
quantities only slightly below the standard theoretical bench-
mark, and suppliers will set production levels below the
standard theoretical benchmark, where the standard theoreti-
cal benchmarks are conditioned on the observed wholesale
prices.

Given predictions about prebook quantities and
production amounts, we can determine the optimal
wholesale prices for the supplier. Cachon (2004) notes
that in a fully rational model, the supplier maximizes
his expected utility by coordinating the channel. There-
fore, in this case he sets w = r and then sets wd in a
way that splits the channel profits between the two
parties (higher wd leads to more profit for the sup-
plier, and vice versa). However, when the party setting
the stocking quantity is loss averse and makes errors,
w = r may not maximize the supplier’s expected utility.
Therefore, the supplier’s optimal wholesale prices w
and wd can be computed by replacing the optimal
order quantities in his utility function and using the
first-order conditions to solve for the two wholesale
prices simultaneously. The resulting expression is a
third-degree polynomial, and therefore closed-form
solutions cannot be readily interpretable. However,
for any specific set of parameters and demand dis-
tributions, one can compute the optimal wholesale
prices.

Figure 3, panel (a) plots the optimal wholesale prices
given our experimental parameters, when loss aversion
is equal for both parties and cases of � = 1 and � = 24,
we chose these levels of � to illustrate how prices
behaved when there is minimal noise and noise that
is similar to the estimates from the push and pull
data. Figure 3, panel (b) depicts a similar plot for
� = 24 but fixes the retailer’s loss aversion parameter at
�R = 1008 (the estimate from the push data) and allows
the supplier’s loss aversion parameter to vary.

In Figure 3, panel (a), when the loss aversion is
restricted to be the same across both parties, the optimal
wholesale prices converge for small levels of loss

5 We also fit the errors plus anchoring and errors plus inequality
aversion plus models to the push and pull data separately (four
estimations). We find that the errors plus loss aversion model
generates a higher log-likelihood than both models for either data
set, although the difference is not significant in two of the four
comparisons.
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Figure 3 The Effect of Loss Aversion and Precision Parameters on
Optimal Wholesale Prices in the APD Contract

(a) Optimal wholesale prices for a range of �R = �S
and � = 1 and � = 24

(b) Optimal wholesale prices for � = 24, �R = 1.08,
and a range of �S
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aversion.6 Panel (a) also illustrates that for larger � ,
the two wholesale prices may converge at slightly
higher levels of loss aversion. However, even for � = 24
the level of loss aversion required for convergence
(approximately 1.05) is significantly below the level of
loss aversion we observe in our push and pull data.

In Figure 3, panel (b) we see that the wholesale
prices also converge when the retailer’s level of loss
aversion exceeds that of the supplier’s. Intuitively, if the
retailer is sufficiently loss averse, he will be reluctant to
stock a large prebook amount. As a result, the supplier
will operate much like a pull contract with a single
wholesale price. However, panel (b) also shows that
when the supplier’s level of loss aversion becomes
somewhat larger than the retailer’s, the wholesale prices
split, with w = 15 again, but the discount wholesale
price goes below standard theory prediction of 10.75.
Intuitively, by setting a lower discount wholesale price,
a loss-averse supplier attempts to shift more of the
inventory risk onto the retailer. This dynamic also leads
to a more equitable split of channel profits.

6 We find that this convergence exists for a number of different
demand distributions, such as normal and Beta.

In regard to predicting the wholesale prices of the
APD contract, we can take our structural estimates
from push and pull separately, and those observations
mentioned above on wholesale prices, and articulate
them into our third hypothesis.

Hypothesis 3 (Wholesale Prices). The regular
wholesale price will equal 15.00 and the discount wholesale
price will be less than 10.75.

Our last hypothesis relates to channel efficiency.
Overall supply chain efficiency is driven primarily by
the supplier in setting production quantities and the
retailer’s accept/reject decision. Based on the pull loss
aversion estimate of 1.26, and considering that from
Table 8 optimal production amounts are decreasing in
�S , one would suspect that production quantities will
be set lower than the standard theory predicts, driving
channel efficiency to less than 100%. This reduction
in efficiency will be further exacerbated by a retailer
making erroneous accept/reject decisions.

Hypothesis 4 (Efficiency). The presence of loss
aversion on the supplier’s side, and errors in the re-
tailer’s accept/rejection decision, will drive channel efficiency
below 100%.

4.3. Results of the APD Contract
Before evaluating our formal hypotheses, we find that
in the APD experiment, the channel profit is 403.75
(SE = 5093), which leads to a channel efficiency of
84.11%, significantly below the normative efficiency
prediction of 100%. Unlike the push and pull results,
the APD contract performs far below the standard
theoretical prediction in terms of efficiency. In fact, the
observed supply chain efficiency is virtually identi-
cal between the APD contract and pull contract (see
Table 3). This suggests, counter to standard theory, that
moving from a pull contract to an APD contract does
not improve overall efficiency.

In terms of average profits, we observe first that prof-
its are split in a more equitable way than the standard
theory predicts. The average retailer profit under the
APD contract is 188.33 (SE = 10024)—significantly above
the prediction of 60—and average supplier profit is
215.41 (SE = 10096)—significantly below the prediction
of 420. Second, comparing the APD contract to the push
contract, we observe that the APD contract weakly
Pareto dominates the push contract. Specifically, retail-
ers are better off under the APD contract compared
with the push contract, and suppliers are no worse off.

Unlike the push and pull contracts, we do observe
that prices change with experience in the APD treat-
ment. In Figure 4, we plot average wholesale prices
over time. It is apparent from the figure that both
wholesale prices increase rather quickly—suppliers
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Figure 4 Average Wholesale Prices Over Time
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learn to design more profitable contracts.7 This learning
may be because the APD contract is more complex than
the push and pull contracts. A set of linear regressions
with random effects, with the period as the independent
variable and the two wholesale prices as dependent
variables (in separate regressions), confirms this, with
the coefficient on period being positive and significant.

We now turn to evaluating our formal hypotheses.
Because there are changes in subjects’ decisions over
time, we partition the data into thirds (10 rounds
each) and conduct estimations on the first third and
final third. We repeat this for the baseline model and
the errors plus loss aversion model, and we report
results in Table 9.8 Consistent with Hypothesis 1, we
observe the considerable improvement in fit over the
baseline model, given by the larger log-likelihood
values (a likelihood ratio test yields �2 = 372074 for
the first third and �2 = 379026 for the final third, both
p < 00001).

We can also gain a preliminary sense of the perfor-
mance of the other hypotheses from the estimates in
Table 9. When looking at the first third of the data,
estimated loss aversion parameters are close to those
we estimated from the push and pull data, �R = 1011
and �S = 1022 (compared with 1.08 under push and
1.26 under pull). However, the degree of loss aver-
sion increases throughout the session, and in the last
10 periods we see �R = 1023 and �S = 1053. Comparing
the two players’ estimates, the retailer’s loss aversion
bias is smaller than the supplier’s. One potential reason
for this could be because the retailer is less susceptible
to having leftover inventory than the supplier, as the
prebook quantity is always equal to or smaller than
the supplier’s production amount. In other words, the
retailer observes leftover inventory less frequently than

7 Despite prices changing in the APD contract, efficiency is constant
over time (85.7% for the first third and 84.5% for the final third), and
the APD weakly Pareto dominates the push contract even when
looking at the final third of the data; see the next paragraph for more
details on partitioning. The distribution of profits slightly varies
though, with retailers making around 170 in the final third.
8 Because the supplier sets both prices simultaneously, we assume a
bivariate normal distribution for prices with correlation �4w1wd5

.

Table 9 MLE Results for the Behavioral Model in the APD Contract

First third Final third

Errors + Errors +

Baseline Loss aversion Baseline Loss aversion

LL −2172009 −2153405 −2168001 −2149005
�R — 1011 — 1023

600057 600027
�S — 1022 — 1053

600117 600057
� — 4903 — 3801

640797 630547
�y 2302 2006 2903 2205

610287 610797 610317 610047
�q 2100 2205 1602 1604

610357 610907 600937 600877
�w 4061 3043 3041 2077

600197 600207 600187 600197
�wd 3099 2074 3027 1089

600147 600147 600137 600117
�4w1wd 5 0087 0075 0078 0057

600027 600047 600037 600067

Note. Standard errors are reported in square brackets.

the supplier, which may make the loss aversion bias
less salient. With regard to errors, the estimate of � is
considerably larger than that under the push and pull
contracts, most likely because of the additional com-
plexity of the APD contract. This is further supported
by the fact that the estimate of � diminishes in the final
third of the data, suggesting that subjects made better
accept/reject decisions over time.

The overall fit of our behavioral model is better
when looking at the final third of the data, which
accounts for learning and, more importantly, suggests
that subjects updated their behavior over time in a
way that is more in line with our behavioral model (LL
of −2153405 versus −2149005). Therefore, we will use
the last third of the data (the final column in Table 9)
to generate predicted quantities, wholesale prices, and
profits for the behavioral model.

Table 10 presents these predictions, along with the
observed data, conditional theory, and standard theory.
The column labeled “Standard theory” highlights the
original experimental predictions based on the special
case of �R = �S = 1 outlined in §4.1. The column
labeled “Conditional theory” represents the standard
theory’s best reply when conditioned on decisions.9

Specifically, prebook quantities and production amounts
are conditioned on observed wholesale prices, which
are then used to generate profits. We provide these two

9 This is to ensure a fair comparison between the normative theory
and behavioral model. Specifically, to generate profit predictions
for the behavioral model, we must use the best-response prebook
quantities and production amounts for the observed wholesale
prices.



Davis, Katok, and Santamaría: How the Allocation of Inventory Risk Affects Channel Efficiency
2678 Management Science 60(11), pp. 2666–2683, © 2014 INFORMS

Table 10 Observed, Behavioral Theory, Standard Theory, and
Conditional Theory for the APD Contract’s Final
Third of Decisions

Behavioral Standard Conditional
Observed theory theory theory

Wholesale price 12039 14006∗∗ 15000∗∗ 15000∗∗

600297
Discount price 7090 8092∗∗ 10075∗∗ 10075∗∗

600287
Prebook � 4w1wd 5 34031 31008 28030∗ 35033

620067 610757 610927
Production � 4w1wd 5 59026 66005 80000∗∗ 74067∗∗

640837 610077 600987
Channel efficiency (%) 8405 8401 100∗∗ 9809∗∗

610907 600997 600497
Supplier utility 23409 22001∗ 42000∗∗ 26702∗∗

6120237 690347 6120927
Retailer utility 17009 18304∗∗ 6000∗∗ 20706∗∗

6110317 690757 6100877

Note. Standard errors are reported in square brackets.
∗∗p < 0005; ∗p < 0010 (indicates significance of Wilcoxon signed-rank test

comparing the models to the observed values).

columns for informational purposes, and we point out
that essentially all of the observed decisions and profits
are significantly different from both the standard theory
and conditional theory (the only comparison that is
not significant is the prebook amount).

In regard to our second hypothesis that deals with
stocking quantities, we do in fact observe that prebook
amounts are slightly below predicted (not significantly
so) as a result of the loss aversion parameter for
retailers being close to 1.00. Furthermore, production
amounts are significantly lower than the standard
theory predicts, thus confirming this hypothesis. When
we calculate predicted production levels based on
the MLEs, the behavioral model is relatively accurate
compared with the data (66.05 versus 59.26).

Turning to our third hypothesis, which deals with
wholesale prices, we find that the behavioral model
is an improvement over the standard theory but that
there are still some differences. Given the loss aversion
parameters, the predicted regular wholesale price is
14.06, and the predicted discount wholesale price is
8.92—both significantly above observed prices. There-
fore, we reject our third hypothesis.

Finally, our fourth hypothesis deals with efficiency.
The predicted presence of loss aversion for the supplier,
combined with a retailer’s errors, should drive the
expected supply chain efficiency below 100%, which is
what occurs in the data; thus this is consistent with
the hypothesis. More precisely, the observed supply
chain efficiency for the final third of decisions is 84.5%,
whereas the loss aversion plus errors model predicts
efficiency of 84.1%. To determine whether loss aversion
or errors is the primary driver for lower efficiency,
we find that a model with errors but no loss aversion

(�R = �S = 1) leads to 94.9% efficiency, whereas a model
with loss aversion but no errors generates efficiency
of 88.8%, suggesting that loss aversion is the primary
culprit of efficiency reductions.

Overall, we find qualitative support for three of
our four hypotheses but not Hypothesis 3, which
deals with wholesale prices. In this case, the observed
wholesale prices are slightly below predicted. We
offer two informal explanations for the lower prices:
random errors and learning. First, because the optimal
wholesale price is 14.06, which is close to the selling
revenue per unit of 15, if suppliers make random errors,
one would expect the average observed wholesale
price to be below 14.06, because there is more room for
errors below 14.06 than between 14.06 and 15.00.

The second informal explanation relates to Figure 4,
in that both wholesale prices are trending up over time
to the behavioral predictions. There was a substantial
improvement (about 70% in terms of supplier expected
utility) between the first third and last third of the
session. It may be that the wholesale prices would
be closer to the behavioral predictions if given more
decisions.

4.4. Robustness Checks
To check the robustness of the behavioral model, we
conducted two additional analyses: (1) we fit the model
to data sets from two existing research studies, and
(2) we conducted an additional APD contract treatment
in which we balanced the bargaining power of the two
players.

For our first robustness check, we obtained data
from Katok and Wu (2009) and Becker-Peth et al.
(2013). Both of these studies focus exclusively on push
contracts.10 Specifically, Katok and Wu investigate
wholesale price, buyback, and revenue sharing push
contracts, and Becker-Peth et al. study buyback push
contracts. Because there are no accept/reject or pricing
decisions in these experiments, and contract parameters
are exogenously set,11 we took the stocking quantity
data and fit our loss aversion model (without errors)
to these decisions. Despite a number of other differenti-
ating factors between ours and these studies, such as a
lack of decision support, varying feedback, 1 round
or 200 rounds of decisions, different cost and price
parameters, and no accept/reject or price decisions,
we find that the loss aversion model fits both of these
data sets well. The estimates are �= 1045 for the Katok
and Wu data set and �= 1089 for the Becker-Peth et al.

10 There is only one experimental study we are aware of that explores
multiple pull contracts, Davis (2014). However, it focuses on how
people set contract parameters and automates the role setting stocking
quantities.
11 Katok and Wu (2009) also look at how people set contract parame-
ters, but our model is based on a human decision maker setting the
stocking quantity, so we do not fit this subset of the data.
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data set, both significantly greater than 1. Additionally,
in both cases, the fit from the loss aversion model is
statistically better than the normative benchmark (like-
lihood ratio test yields �2 = 62404 and �2 = 17004, both
p < 00001). The loss aversion levels are not identical
to those estimated from the data in this paper, but
when considering the differences between our studies,
these results indicate that the loss aversion model is
generally robust.12

Our second robustness check involved an additional
experiment treatment. In all our previous three treat-
ments, one party has considerable bargaining power
by proposing the wholesale price(s) (i.e., suppliers
set the price in push, retailers set the price in pull,
and suppliers set both prices in APD). To determine
whether our results vary when there is a more equi-
table bargaining split in how parties set prices, we
collected data on a new APD contract, called the APD
alternative, with the same ability to split inventory risk
but different bargaining power structure. Under this
APD alternative, the supplier proposes the discount
wholesale price, then the retailer offers the regular
wholesale price and prebook, and finally the supplier
decides on a production quantity. This way, both parties
set a wholesale price and quantity. The APD alternative
cannot fully coordinate the channel, but given our
experimental parameters, it can achieve roughly 94%
efficiency, with the retailer earning about 78% of the
profits.

Interestingly, under the APD alternative structure,
suppliers set the discount price too high, at a level
nearly identical to the wholesale price observed in
the push contract. The retailers then respond with
a wholesale price that is also too high but is nearly
identical to the wholesale price we observe in the
pull contract. Retailers set the prebook higher than
expected, thus assuming more inventory risk than they
should. Suppliers still produce less than predicted,
agreeing with our earlier APD data. In short, the overall
performance of this alternative APD contract is similar
to the pull and original APD contracts in terms of
efficiency (about 80%) and to pull in terms of the profit
split (the retailer earns 55% of the profit). Also, similar
to the regular APD treatment, we find learning effects
over time.

We fit the loss aversion with errors model to the final
third of the APD alternative data set and find that the

12 There are two other behavioral operations management studies
that use loss aversion to explain behavior in a setting in which
the retailer, who is averse to a fixed fee under the two-part-tariff
contract, is a monopolist rather than a newsvendor. Ho and Zhang
(2008) report the loss aversion parameter of 1.37 under the two-part-
tarriff contract and 1.27 under the mathematically identical quantity
discount contract. Haruvy et al. (2013) report the loss aversion
parameter of 1.44 under the ultimatum bargaining protocol and 1.23
under a structured bargaining protocol.

model fits the data significantly better than the standard
theory. However, the retailer’s level of loss aversion is
higher than under the original APD contract, �R ≈ 205
(but the supplier’s parameter is similar; �S ≈ 103). The
retailer’s estimate is driven largely by including the
wholesale prices in the estimation process, because
the wholesale price is now the retailer’s decision. We
conclude that the errors plus loss aversion model is
an improvement over the standard theory but that
the loss aversion parameter seems quite sensitive to
different bargaining structures, as well as to framing
(Ho and Zhang 2008). We believe that more research
is needed to explore the effect of framing, bargaining
protocols, and relative bargaining power on contract
performance.

5. Conclusion
In this study we evaluate three wholesale price con-
tracts, each differing in how inventory risk is allocated
across the supply chain. Managers, who rely on human
judgment in making these strategic decisions, design
supply chain contracts. Therefore, understanding how
people make decisions that involve inventory risk is
a key step in helping managers design behaviorally
robust contracts.

We begin by testing the performance of the push
and pull contracts in the laboratory and find that,
consistent with the standard theory, the pull contract
results in higher channel efficiency. However, standard
theory fails to capture some important quantitative
predictions—specifically, that orders are lower than
they should be, the wholesale prices are far from
the normative benchmark, and the rejection rates are
incorrect. We proceed to estimate and compare several
behavioral models that have been used in the literature:
random errors alone and random errors combined
with loss aversion, anchoring, and inequality aversion.
Ultimately, a simple model with random errors and
loss aversion fits the data well.

We further test our model through an out-of-sample
test with the APD contract. In this additional exper-
iment, we find that our behavioral model provides
accurate predictions of the most critical decision for
channel efficiency, production amounts. It also makes
the correct qualitative prediction that average discount
wholesale prices should be significantly lower than
average regular wholesale prices. However, it fails to
correctly predict the levels of wholesale prices. There
are two suggestive explanations for this. First, errors
for the regular wholesale price are generally one-sided,
leading to lower wholesale prices; second, wholesale
prices increase throughout the session so that suppliers
are able to increase their expected utility by roughly
70% from the start to the end of the session. Ultimately,
by the end of the session, suppliers’ expected utility is
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close to the utility achieved by the optimal wholesale
prices predicted by our behavioral model.

In an effort to test our model even further, we
obtained data sets from two independent studies. These
studies investigated revenue sharing and buyback
contracts, and they differ from our experiment in a
number of systematic ways (such as decision support
and experimental parameters). Nevertheless, we find
that our model fits the data from both studies well.

A limitation of our work is that our data do not allow
us to separately estimate the effect of the different
behavioral irregularities. This is because many of these
motivations have a similar effect on order quantities and
best-response wholesale prices. Separating the effect of
these behavioral factors is an important direction for
future research. One possibility might be to create a
competitive market where there are an unequal number
of suppliers and retailers and one side is therefore at
a disadvantage, similar to Leider and Lovejoy (2013).
Another opportunity for future research might be to
better understand why the loss aversion estimates differ
between the retailer and supplier in the APD contract.
Finally, one additional limitation stems from our second
robustness check, where we manipulate the bargaining
structure to be more equitable between the two parties.
The results of that experiment and analysis suggest that
our model is sensitive to different bargaining structures.
We feel that identifying a behavioral model for settings
with more equitable bargaining arrangements is an
opportunity for future research.

A key practical implication of our work pertains to
which inventory structure performs best for the supply
chain and the parties involved. Generally speaking,
both bargaining power and the bargaining protocol
play an important role in determining the efficiency and
profit allocation of the various contractual arrangement
(see Leider and Lovejoy 2013 for initial results regarding
the role of bargaining power, and see Haruvy et al.
2013 and Davis and Leider 2013 for studies that allow
more dynamic bargaining structures). As mentioned
previously, our experiments feature extreme levels of
bargaining power, with one powerful party proposing
a take-it-or-leave-it offer. In these types of contexts,
our results indicate that powerful retailers are best
off under pull contracts, and powerful suppliers are
roughly indifferent between push or APD contracts.
The APD contract delivers higher efficiency than the
push contract and weakly Pareto dominates the push
contract. Thus, powerful suppliers who may value long-
term collaborative relationships with their retailers may
favor an APD contract over a push contract because of
its equitable profit distribution.

Many retailers often feel that they must keep physical
product on shelf in their stores. It is important to note
that does not necessarily preclude a brick-and-mortar
retailer from implementing a pull or APD contract. For

example, the retailer may use a pull contract under one
form of vendor-managed inventory, where the retailer
has product on shelf but the supplier retains ownership
of it until the point of sale. Similarly, the APD contract
elegantly addresses this issue by allowing the retailer
to carry the prebook quantity in store while ordering
more only if necessary.

In conclusion, our study suggests that retailers and
suppliers should carefully evaluate their inventory
arrangements because the location of the inventory in
the supply chain can have serious consequences on
profits for both parties and the overall supply chain.
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Appendix. Behavioral Model Derivations
Here, we present the derivation of the optimal quantities
for the push, pull, and APD contracts. Since closed-form
solutions for a general distribution cannot be explicitly stated,
we derive all the optimal quantities assuming demand follows
a continuous uniform distribution between 0 and 1, U60117.

A.1. Push Contract
For the push contract under loss aversion, the problem the
retailer must solve to find the optimal quantity and its
solution is as follows:

max
q≥0

ûR4q5= 4r+w4�−155
(

q−
q2

2

)

−�wq1 q̂∗
=

r−w

r+w4�−15
0

In turn, the problem the retailer must solve in a push contract
under inequality aversion is

max
q≥0

ûR4q5= r

(

q −
q2

2

)

−wq −�4�̂S4w5− �̂R4q55
+0

Under inequality aversion, we need to consider two cases to
find the optimal quantities:

i. When q ≥ 424r + c−2w55/r , �̂S4w5≥ �̂R4q5, implying that
4�̂S4w5− �̂R4q55

+ = 42w− c5q − r4q − q2/25≥ 0.
ii. When q ≤ 424r +c−2w55/r , �̂S4w5≤ �̂R4q5, and therefore

4�̂S4w5− �̂R4q55
+ = 0.

Note that in both cases, when q = 424r + c − 2w55/r , then
�̂S4w5= �̂R4q5.

Using the restriction defined in cases (i) and (ii), we can
solve a separate problem for each condition to find the
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optimal quantities and determine the ranges of wholesale
prices for which the optimal solution corresponds to an
interior solution, or to a boundary solution. This way, given
a wholesale price, we can identify the corresponding optimal
quantity.

The problem defined by condition (i) is

max
8q≥424r+c−2w55/r1 q≥09

ûR4q5 = r

(

q −
q2

2

)

−wq

−�

(

2wq − cq − r

(

q −
q2

2

))

0

When �̂≥w ≥ ¯̂w, where �̂ and ¯̂w are given by Equations (1)
and (2), respectively, �̂ > ¯̂w. Thus the optimal quantity
corresponds to the interior solution defined by Equation (3):

�̂=
r +�4r + c5

1 + 2�
1 (1)

¯̂w =
r41 +�5+ c42 +�5

3 + 2�
1 (2)

q̂∗
=

r −w+�4r + c− 2w5

r41 +�5
0 (3)

If the wholesale price is above the threshold �̂, the optimal
quantity is equal to 0, and if w < ¯̂w, the optimal quan-
tity corresponds to the boundary solution given by q̂∗ =

24r + c− 2w5/r0
The problem defined by condition (ii) is as follows:

max
8q≤424r+c−2w55/r1 q≥09

ûR4q5= r

(

q −
q2

2

)

−wq0

When w ≤ŵ, where ŵ is given by Equation (4), the optimal
quantity corresponds to the interior solution defined by
Equation (5):

ŵ =
r + 2c

3
1 (4)

q̂∗
=

r −w

r
0 (5)

If ŵ <w, the optimal quantity corresponds to the boundary
solution given by q̂∗ = 24r + c− 2w5/r0

In summary, combining the results from above, the optimal
stocking quantity for the push contract, under inequality
aversion, is as follows:

q̂∗
=



































r −w+�4r + c− 2w5

r41 +�5
w ≥ ¯̂w1

24r + c− 2w5

r
ŵ <w < ¯̂w1

r −w

r
w ≤ŵ0

A.2. Pull Contract
For the pull contract under loss aversion, the problem the
supplier must solve to determine the optimal quantity and
its solution is

max
q≥0

uS4q5= 4w+c4�−155
(

q−
q2

2

)

−�cq1 q∗
=

w−c

w+c4�−15
0

In the case of a pull contract under inequality aversion, the
problem the supplier needs to solve is defined as follows:

max
q≥0

uS4q5=w

(

q −
q2

2

)

− cq −�4�R4w5−�S4q55
+0

Similar to the push contract, in the pull contract under
inequality aversion we need to consider two cases to find the
optimal quantities:

i. When q ≤ 424r + c− 2w55/4r − 2w5, �R4w5≥�S4q5, imply-
ing that 4�R4w5−�S4q55

+ = 4r − 2w54q − q2/25+ cq ≥ 0.
ii. When q ≥ 424r + c− 2w55/4r − 2w5, �R4w5≤�S4q5, and

therefore 4�R4w5−�S4q55
+ = 0.

Note that in both cases when q = 424r + c − 2w55/
4r − 2w5, then �R4w5=�S4q5.

As in the push contract, using conditions (i) and (ii) we
can find the optimal quantities and determine the range of
wholesale prices for which they will correspond to interior or
boundary solutions.

The problem corresponding to case (i) is as follows:

max
8q≤424r+c−2w55/4r−2w51q≥09

uS4q5

=w

(

q −
q2

2

)

− cq −�

(

4r − 2w5

(

q −
q2

2

)

+ cq

)

0

When l ≥w ≥w, where l andw are given by Equations (6) and
(7), respectively, l >w. Thus the optimal quantity corresponds
to the interior solution defined by Equation (8):

l =
c+�4r + c5

41 + 2�5
1 (6)

w =
1

441 + 2�5

[

4�r + r + 2�c

+
√

44�r + r + 2�c52 + 8r41 + 2�54c41 −�5−�r5
]

1 (7)

q∗
=

w− c−�4r + c− 2w5

w−�4r − 2w5
0 (8)

If the wholesale price is below the threshold l, the optimal
quantity is equal to 0; ifw<w, the optimal quantity corre-
sponds to the boundary solution q∗ = 424r + c− 2w55/4r − 2w5.
In turn, the problem for case (ii) is as follows:

max
8q≥424r+c−2w55/4r−2w51q≥09

uS4q5=w

(

q −
q2

2

)

− cq0

When w ≥ w̄, where w̄ is given by Equation (9), the opti-
mal quantity corresponds to the interior solution given by
Equation (10):

w̄ =
r +

√
r2 + 8cr
4

1 (9)

q∗
=

w− c

w
0 (10)

If w< w̄, the optimal quantity corresponds to the boundary
solution q∗ = 424r + c− 2w55/4r − 2w5.

In summary, combining the results from above, the optimal
stocking quantity for the pull contract under inequality
aversion is as follows:

q∗
=



































w− c

w
w ≥ w̄1

24r + c− 2w5

r − 2w
w<w< w̄1

w− c−�4r + c− 2w5

w−�4r − 2w5
w ≤w0

Figure A.1 plots the optimal quantities in the push and
pull contracts under the standard theory, loss aversion
with �= 1015, and inequality aversion with � = 1, r = 15,
and c = 3.
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Figure A.1 Optimal Quantities in the Push and Pull Contracts Under the
Standard Theory, Loss Aversion with �= 1015, and
Inequality Aversion with �= 1, r = 15, and c = 3
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A.3. APD Contract
The problem the supplier needs to solve to determine the
optimal quantity q∗ given the retailer’s proposed quantity is
as follows:

maxuS4y1 q5q≥y = wdy+w4K4y1 q5− y5− cK4y1 q5

−�Sc4q −K4y1 q551

where K4y1 q5= Ɛ6min6max4y1D51 q77= yF 4y5+
∫ q

y xf 4x5dx+

q41 − F 4q55= q − 44q2 − y25/25.
The corresponding optimal production quantity is given by

q∗
=



















w− c

w+ c4�S − 15
w ≥

c41 + y4�S − 155
1 − y

1

y w <
c41 + y4�S − 155

1 − y
0

We next consider the problem the retailer must solve to set
the prebook quantity, given the proposed wholesale prices by
the supplier, which can be stated as follows:

max
y≥0

uR4y1 q5 = 4r −wd5S4y5+ 4r −w54S4q5− S4y55

−�Rwd4y− S4y550

The corresponding optimal prebook quantity is given by

y∗
=

w−wd

w+wd4�R − 15
0
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