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Mutation Testing (1)

* The process of program development is considerédrasive whereby
an initial version of the programiisfinedby making simple, or a
combination of simple changes, towards the finasion.

* Mutation testing is @ode-based test assessmamd improvement
technique.
— Can be extended to architecture (e.g., Statectartsjlesign (e.g., SDL)

— —
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Mutation Testing (2)
= —

* It relies on thecompetent programmer hypothewikich is the following
assumption:

— Given a specification a programmer develops a mroghat is either correct
or differs from the correct program by a combinatid simple errors

* |t also relies onc¢oupling effectwhich suggests that

— Test cases that detect simple types of faultsearsitive enough to detect
more complex types of faults.
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Mutant (1) - -

 Given a progran®, amutantof P is obtainedoy making asimple change
in P

m : syntactically correct

Co— —
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Example (2)
Program Mutant
1. intx, y; 1 intx,y;
2. if (x 1= 0) 2 if (x! =0)
3. y=35; 3 y=5;
4, elsez=z-x; 4 else z=z-x;
5, if (> 1) 5 if (z> 1)
7. else 7 else
8. Z=Y, 8 =Y,
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Example (3)
Program Mutant
1. int X, y; 1. int x, y;
2. if (x! =0) 2. if (x! = 0)
3. y=5 3. y=5;
4. elsez=2z-x; 4, elsez=7z-x;
5. if (z>1) 5. if (< 1) |e—
6. z=17x; 6. z=17x;
7. else 7. else
8. Z=Y, 8. zZ=Y,
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Order of Mutants

e First order mutants
—One syntactic change

* Higher order mutants
—Multiple syntactic changes

* Coupling effect

o —
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Type of Mutants (1)

¢ Distinguished mutants
* Live mutants

* Equivalent mutants

* Non-equivalent mutants
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Type of Mutants (2)

* A mutantmis consideredlistinguishedor killed) by a test caseT if
P(t) # m(t)
whereP(t) andm(t) denote, respectively, the observed behavidt afid
mwhen executed on test ingut

* A mutantmis considereequivalento P if
P(t) = m(t)
for any test case in the input domain

— —
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Distinguish a Mutant (1)

* Reachability
—Execute the mutated statement

* Necessity
—Make a state change

« Sufficiency
—Propagate the change to output
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(Distinguis/i a Mutant (2)

ProgramP Programm
reada reada
if (a> 3) if (2> 3)
then then
X=5 Xx=5
else else
X=2 X=2
endif endif
print x print X
Mutantmis distinguished by = 3
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Equivalent Mutant (1)

ProgramP Programm
reada, b reada, b
a=b a=b
x=a+b Xx=a+a
print x print x

P is equivalent tan
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Equivalent Mutant (2)

* Consider the following prograi

intx,y,z

scanf (&, &y);

if (x>0)
Xx=x+1;z=xx(y-1);

else
X=x-1;z=xx(y-1);

* Herezis considered the output Bf
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Equivalént Mutant (3)

* Now suppose that a mutant®is obtained by changing=x + 1 to
x =abgx)+ 1
* This mutant issquivalentto P as no test case can distinguish it frBm
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Mutation Score (1)

* During testing a mutant is considedeg if it has not been distinguished
or proven equivalent.

* Suppose that a total af, mutants are generated for progrBm

* Themutation scoref a test seT, designed to te®, is computed as:

MS(P, T)= — 2%
M, =M,
- M, — number of mutants killed
- M, — number of equivalent mutants

— M, — total number of mutants

— —
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Mutation Score (2)

* Mutation score:
Number of mutants distinguished
Total number of non-equivalent mutants

* Data flow score:
Number of blocks (decisions, p-uses, c-uses, &aéusovered
Total number of feasible blocks (decisions, p-usasses, all-uses)
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Test Adequacy Criterion

* AtestT is considerecddequatewith respect to the mutation criterion if its
mutation score is 1
— Equivalent mutants?
— Which mutant operators are used?

* The number of mutants generated depend? and the
mutant operatorapplied onP

* A mutant operatois a rule that when applied to the program undslr te
generates zero or more mutants

— —
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Mutant Operator (1)
= —

* Consider the following program:
int abs );
int x;
{
if (xZ20)x=0-Xx;
returnx;
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Mutant Operator (2)

* Consider the following rule:

— Replace each relational operatoPiby all possible relational operators
excluding the one that is being replaced.

* Assuming the set of relational operators to be: ¥.,<, >, = =, 1=},
the above mutant operator will generat®tal of 5 mutants of P
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Mutant Operator (3)

* Mutation operators afdenguage dependent

* For Fortran a total of 22 operators were proposed

* For C a total of 77 operators were proposed
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B el e
Mutant Operators for Fortran (1)
- N |
Type Description Class
aar array reference for array reference replacement  cca
abs absolute value insertion pda
acr array reference for constant replacement cca
aor arithmetic operator replacement cca
asr array reference for scalar variable replacement cca
car constant for array reference replacement cca
cnr  comparable array name replacement cca
crp  constant replacement pda
csr constant for scalar variable replacement cca
der Do statement end replacement sal
dsa DATA statement alterations pda
glr  GOTO label replacement sal
ler  logical connector replacement pda
ror relational operator replacement pda
rst RETURN statement replacement sal
san  stat 1t analysis (repl t by TRAP) sal
sar  scalar variable for array reference replacement cca
ser  scalar for constant replacement cca
sdl  statement deletion sal
src  source constant replacement cca
svr  scalar variable replacement cca
uoi unary operator insertion pda
N |
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Mutant Operators for Fortran (2)

* san replace each statement by TRAP
(an instruction that causes the program to hdlingithe mutant)

—Which code coverage-based criterion will also kisfed by killing all the

san mutants?

rsr: replace each statement in a subprogram by RETURN
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Mutant Operators for C (1)

—
Table 1: Constant Class Operators Table 3: Variable Class Operators
Operator |Description Operator |Description
Ceer Constant for Constant Replacement Varr Mutate Array References
Cesr Constant for Scalar Replacement VDTR  |Domain Traps
CRCR  |Required Constant Replacement Vprr Mutate Pointer References
VSCR  |Structure Component Replacement
Table 2: Statement Class Operators Vstr Mutate Scalar References
Operator |Description Vit Mutate Structure References
SBRC  |break Replacement by continue VITWD  |Twiddle Mutations
SBRn  [break Out to Nth level
SCRB  |continue Replacement by break
SCRn continue Out to Nth level
SDWD  |do-while Replacement by while
SGLR.  |goto Label Replacement
SMTC  |n-trip continue
SMTT  |n-trip continue
SMVB  |Move Brace Up and Down
SRSR  |return Replacement
SSDL Statement Deletion
SSWM  |switch Statement Murtation
STRI Trap on if Condition
STRP Trap on Statement Execution
SWDD |while Replacement by do-while
—
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Mutant Operators for C (2)
= —
Table 4: Operator Class Operators
Operator |Description OLAN  |Logical Operator by Arithmetic Operator
OAAA  |Arithmetic Assignment Mutation OLBN  |Logical Operater by Bitwise Operator
QAAN  |Arithmetric Operator Mutation OLLN |Logical Operator Mutation
OABA  |Arithmetic Assignment by Bitwise Assignment OLNG |Logical Negation
OABN | Arithmetic by Bitwise Operator OLRN |Logical Operator by Relational Operator
OAEA  |Arithmetic Assignment by Plain Assignment OLSN  |Relational Operator by Shift Operator
OALN  |Arithmetic Operator by Logical Operator ORAN |Relational Operator by Arithmetic Operator
OARN  |Anthmetic Operator by Relational Operator ORBN  |Relational Operator by Bitwise Operator
OASA  |Arithmetic Assignment by Shift Assisnment ORLN |Relational Operator by Logical Operator
QASN  |Anthmetic Operator by Shift Operator ORRN  |Relational Operator Mutation
OBAA  |Bitwise A 1t by Arithmetic Assig 1t ORSN  |Relational Operator by Shift Operator
OBAN  |Bitwise Operator by Arithmetic Assignment OSAA  |Shift Assignment by Arithmetic Assignment
OBBA  |Bitwise Assignment Mutation OSAN  |Shift Operator by Arithmetic Operator
OBBN  |Bitwise Operator Mutation OSBA  |Shift Assignment by Bitwise Assignment
OBEA  |Bitwise Assignment by Plain Assignment OSBN  |Shift Operator by Bitwise Operator
OBLN _ |Bitwise Operator by Logical Operator OSEA  |Shift Assignment by Logical Operator
OBNG  |Bitwise Negation OSLN  |Shift Operator by Logical Operator
OBRN  |Bitwise Operator by Relational Operator OSRN  |Shift Operator by Relational Operator
OBSA  |Bitwise Assignment by Shift Assig OSSN |Shift Operator Mutation
OBSN  |Bitwise Operator by Shift Operator OSSA  |Shift Assignment Mutation
OCNG  |Logical Context Negation
OCOR  |Cast Operator by Cast Operator
OEAA  |Plain assignment by Arithmetic Assipnment
QEBA  |Plain assignment by Bitwise Assignment
OESA  |Plain assignment by Shift Assignment
Qido Increment/Decrement Mutation
OIPM  |Indirection Operator Precedence Mutation
| —
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Mutation Testing Procedure (1)

* GivenP and a test séft
— Generate mutants
— CompileP and the mutants
— ExecuteP and the mutants on each test case
— Determine equivalent mutants
— Determine mutation score
— If mutation score is not 1 then improve the tesecand repeat from Step 3

— —
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Mutation Testing Procedure (2)

* In practice the above procedure is implememedementally

* One applies few selected mutant operattod and computes the
mutation score with respect to the mutants gengrate

* Once these mutants have been distinguished or peyaivalent,
another set of mutant operators is applied
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Mutation Testing Procedure (3)

* This procedure is repeated until eitdirthe mutanthave been
exhausted or some external condition forces testirsgop
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Tools for Mutation Testing

* Mothra: for Fortran, developed at Purdue, 1990

* Proteum for C, developed at the University of Sdo Pauwl8&o Paulo in
Brazil.
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Comparison Criterion

Subsumption

7N

Effectiveness »
B
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Mutation Hypothesis

* More difficulty to satisfy
* More expensive
* More effective in fault detection
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Subsumption

100% o1 Oy —' 100% on €,

106% on €, == 106% on C;
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Program Classification
* SDSU (single definition, single use)
* SDMU (single definition, multiple uses)
* MDSU (multiple definitions, single use)
* MDMU (multiple definitions, multiple uses)
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Program (Classification

* SDSU
— M (Mothra) subsumes AU, CU, and PU
* SDMU
— M (Mothra) subsumes AU, CU, and PU
* MDSU (multiple definitions, single use)
— M (Mothra) subsumes CU, but not PU, and AU
* MDMU
— M (Mothra) does not subsume CU, PU, and AU
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SDSU (1)

a c-use of x at s;

Case I: Suppose that(di{x), u;()) is a c-use pair. For a mutant obtained by mutating the expr
at s to be distinguished, the following three conditions must be satisfied: (1) s is reached
[reachability condition), (2) a state change occurs immediately after some execution of s; (ne-
cessity condition ), and (3) this state change propagates to the output via the only use of 2 at &;
[sufficiency condition). These conditions imply that the c-use (di{x]), u;(x)) pair is also covered
as a consequence of distinguishing a mutant at s;. Hence, the couse must be covered by a test

case that distinguishes such a mutant at s;,
e | —
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SDSU (2)

L ]
[ ]

r = expr
L ]

i

L]
&

joo pred(a, o)

/\

e
o=

-3
P

- -

a p-use of @ at s;

Cuse [I: Next, suppose that (di(x),u;(z)) is a p-use pair. Let s and s, 1 < k.1 < n, denote
the successors of s;. The reachability condition of distinguishing the true mutant at s; requires
85 1o be executed, If & is executed without having s; executed first, then @ is undefined at s;.
A reference to such an « at s; makes P behave incorrectly which is cantrary to our assumption
that P behaves correctly on a mutation adequate test set. Henee s; must have been executed
before s;.

Immediately after execution of s;, either s; or s; must have been executed. Suppose, without
loss of generality, that s; was executed. Thus, distinguishing the true mutant at s; causes the
path containing s;. &, and s; to be executed in that order. Similarly, distinguishing the false
mutant at s; ensures the execution of a path containing s;, s;. and s; in that order. Hence, the
p-use must have been covered by the test cases that distinguished the {rue and folse mutants

at $j.

S
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OMU (1)
SDOM
.
.
o x = exrpr
.
.
s5,0 (in = fAlx, - ))or predy(x, --+)
L
L
550 (g = falx, o= <)) or predy(x, - --)
.
.
85,0 (g = fulz, ) or predu(z, --)
.
.

Figure 2: Structure of programs with one definition and multiple uses of 2. Uses of & in f and

pred are, respectively, comp

Figure 2, let » € V' be defined at statement s; and used at w,u > 1, statements s;, . 8;,....

utational and predicate uses.

Ju

This strueture leads to u defouse pairs any of which could be a c-use or a p-use pair. As before,

helow we distinguish between these two types of pairs.
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SOMU (2)

Case I: Consider the c-use pair (di(x), u; (2)), for some k,1 < & < v, Given that a mutant

at s;, has been distinguished by some test case ¢ in the mutation adequate test set for this

program implies that control must have reached s;,. However, when control reaches s;,. « is
used and hence must have heen defined prior to control reaching s;, . In case it was not then
P(t) would be incorrect which is contrary to our assumption. As there is only one definition of
@, 8; must have heen executed prior to the execution of s;, thereby covering the c-use pair. As
this argument applies to any program variable having a c-use, we have shown that all c-uses in

P are covered by a mutation adequate test sef.
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SOMU (3) -

Case If: Let (di(x),u; (x)), for some k1 < & < u, be a p-use pair. The arguments used in

Case 1 in the proof of Theorem 1 are applicable to this case also. Thus, distinguishing the

true and false mutants at s;, guarantees the coverage of this p-use. This argument is valid for

all variables in P and hence we have shown that all p-uses in P are covered by a mutation

adequate test set, ]
S E—
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MDSU (1)

* Lemma 1For Category Il Mg subsumes CU

* Proof: The proof follows from the arguments use€ase | of the proof
of Theorem 1 applied to all c-use pairs

—
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adequate

program £

begin

integer a,b.z,y. 2

read a,b,y, 2

if (a > 1) then

else

endif

if (r = b) thene——| P-use ofx_|
print y

else
print z

endif

end

Figure 3: A program in category MDSU that has a mutation adequate test set but not p-use
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MDSV (3)

Table 1: A mutation but not p-use adequate test set of Py

Test case | (a, b, y, z) | Test case | (a, b, y, z)

number values number values
1 {2.3.5,6) 7 (1,5,7.6)
2 (2.1,5,6) 8 (3,3,5,3)
3 (2.5.5,6) 9 (2,-2,5,6)
I (1.6.5,6) 10 (1,1.5.-6)
5 (1.4.5,6) 11 (-3.2,7,6)
6 {1.2.2,6) 12 (1,5,-7,6)

* Proof: Figure 3 shows a program that has two ppades for variablex.
Table 1 lists anutation adequate test set which does not covep-inse
pair consisting of the definitioxr=2 and its use in the predicateb
because the successor psitis not executed.
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Empirical Study : Subsumption

* All-uses scores using mutation adequate test seténageneral, higher
than the mutation scores using all-uses adequsitedts.
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Conclusion on Subsumption

Empirically Theoretically
(with high probability)

No

Yes (except si‘raple
programs,

Subsume? Subsume?

S
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Cost Metrics
S
* Number of executions
* Number of test cases
* Test case generation
* Learning testing tools
* ldentifying equivalent mutants & infeasible all-gse
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Reducing Mutation Cost

* The cost of mutation testing can be reduced ihtlmaber of mutants to
be examined is reduced

— | —
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Selection Mutation
— | —
* Select proper mutant operators
—ror: relational operator replacement
—lcr: logical connector replacement
— abs absolute value insertion
— sdl statement deletion
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abs Mutant Operator

m— —
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ror Mutant Operator
= m— —

relational operator replacement

a<b+c
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Random x% Mutation

* Randomly select a small percentage of mutants &aolm mutant type
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Weak Mutation (1)

* Reachability
— Execute the mutated statement

* Necessity
— Make a state change
7
D o 7/
. Sufnelegcy ,
- Propagéf&th\e change to output
/

NS
0/ ~
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Weak Mutation - Advantage

mutant

* Weak mutatiomeduces the amount of executfon distinguishing each
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Weak Mutation - Disadvantage

* The disadvantage of weak mutation testing is thetetisno guarantee
that the different immediate effect will cause Hedent final result




Weak Mutation (2)

* Weakmutation is as effective asrongmutation if the weak mutation
hypothesis is true:
— (reachability and necessity} sufficiency

* Experiments have shown that thigrise for 61% of all the cases studied
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Weak Mutation (3)

* Suppose that the weak mutation hypothesis doelsaldtfor a particular
fault (say). That is, there exists non—empty input sthat satisfies the
reachability and necessity conditionkile not producing a detectable
failure.

* But in the code under test, there will be many tiocs with potential
faults, each with its own reachability and necessityditions. It may be
that satisfying those other conditions Mitce the execution of this fault
(i.e., F) in a way that must produce a detectable failnearely to satisfy
the sufficiency condition).

* Thus, the weak mutation hypothesis may not holdnahsingle fault is
considered alone, but may hold when the fault issered as part of a
larger program (which has many faults).
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Reduction Measurement (1)

* Size reduction:

1- Average size of test sets adequate wetpect to alternate mutati
Average size of mutation adequate test sets

* Expense reduction:

1- Total number of mutants examined whemgsalternate mutatio

Total number of mutants examined in niida
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Reduction Measurement (2)

¢ Mutation score reduction
e All-uses scores reduction
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Observation
* Compared to mutation, randomly seleckét mutation ancbsgror
mutation provide:

— Significant size reduction

— Significant expense reduction

— Small reduction on mutation scores

— Small reduction on all-uses scores
Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 59
Alternate Mutation

M
subsime:
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Incremental Testing Strategqy

Cost Differential
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Error Detection
Effectiveness
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