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� The process of program development is considered as iterative whereby 
an initial version of the program is refinedby making simple, or a 
combination of simple changes, towards the final version.

� Mutation testing is a code-based test assessment and improvement 
technique.
– Can be extended to architecture (e.g., Statecharts) and design (e.g., SDL)

Mutation Testing  Mutation Testing  Mutation Testing  Mutation Testing  (1)
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Mutation Testing  Mutation Testing  Mutation Testing  Mutation Testing  (2)
� It relies on the competent programmer hypothesis which is the following 

assumption:
– Given a specification a programmer develops a program that is either correct 

or differs from the correct program by a combination of simple errors

� It also relies on “coupling effect” which suggests that
– Test cases that detect simple types of faults are sensitive enough to detect 

more complex types of faults.
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Mutant  Mutant  Mutant  Mutant  (1)
� Given a program P, a mutantof P is obtained by making a simple change

in P
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Example  Example  Example  Example  (1)
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a := b + c

a := c + c a := b − c
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Example  Example  Example  Example  (2)
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1. int x, y;
2. if (x != 0) 
3. y = 5;
4. else  z = z − x;
5. if (z > 1)
6. z = z/x; 
7. else
8. z = y;

Program

1. int x, y;
2. if (x! = 0) 
3. y = 5;
4. else   z = z − x;
5. if (z > 1)
6. z = z/&x; 
7. else
8. z = y;

Mutant
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Example  Example  Example  Example  (3)
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1. int x, y;
2. if (x! = 0) 
3. y = 5;
4. else z = z − x;
5. if (z > 1)
6. z = z/x; 
7. else
8. z = y;

Program

1. int x, y;
2. if (x! = 0) 
3. y = 5;
4. else  z = z − x;
5. if (z < 1)
6. z = z/x;
7. else
8. z = y;

Mutant
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Order of MutantsOrder of MutantsOrder of MutantsOrder of Mutants

� First order mutants

– One syntactic change

� Higher order mutants

– Multiple syntactic changes

� Coupling effect
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Type of Mutants  Type of Mutants  Type of Mutants  Type of Mutants  (1)
� Distinguished mutants

� Live mutants

� Equivalent mutants

� Non-equivalent mutants
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Type of Mutants  Type of Mutants  Type of Mutants  Type of Mutants  (2)
� A mutant m is considered distinguished(or killed) by a test caset ∈T if

P(t) ≠ m(t)
where P(t) and m(t) denote, respectively, the observed behavior of P and 
m when executed on test input t

� A mutant m is considered equivalentto P if

P(t) = m(t) 

for any test case in the input domain
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Distinguish a Mutant  Distinguish a Mutant  Distinguish a Mutant  Distinguish a Mutant  (1)
� Reachability

– Execute the mutated statement

� Necessity

– Make a state change

� Sufficiency

– Propagate the change to output
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Distinguish a Mutant  Distinguish a Mutant  Distinguish a Mutant  Distinguish a Mutant  (2)
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Program P

read a

if (a > 3)

then

x = 5

else

x = 2

endif

print x

Program m

read a

if (a ≥ 3)

then

x = 5

else

x = 2

endif

print x

Mutant m is distinguished by a = 3
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Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  (1)
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Program P

read a, b

a = b

x = a + b

print x

Program m

read a, b

a = b

x = a + a

print x

P is equivalent to m
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Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  (2)
� Consider the following program P

int x, y, z;

scanf (&x, &y);

if (x>0)

x = x + 1; z = x × (y − 1);

else

x = x − 1; z = x × (y − 1);

� Here z is considered the output of P
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Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  Equivalent Mutant  (3)
� Now suppose that a mutant of P is obtained by changing x = x + 1 to 

x = abs(x) + 1

� This mutant is equivalentto P as no test case can distinguish it from P
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Mutation Score Mutation Score Mutation Score Mutation Score (1)
� During testing a mutant is considered live if it has not been distinguished 

or proven equivalent.

� Suppose that a total of Mt mutants are generated for program P

� The mutation scoreof a test set T, designed to test P, is computed as:

– Mk – number of mutants killed

– Mq – number of equivalent mutants

– Mt – total number of mutants

17
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Mutation Score Mutation Score Mutation Score Mutation Score (2)
� Mutation score:

Number of mutants distinguished

Total number of non-equivalent mutants

� Data flow score:
Number of blocks (decisions, p-uses, c-uses, all-uses) covered

Total number of feasible blocks (decisions, p-uses, c-uses, all-uses)
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Test Adequacy CriterionTest Adequacy CriterionTest Adequacy CriterionTest Adequacy Criterion

� A test T is considered adequatewith respect to the mutation criterion if its 
mutation score is 1
– Equivalent mutants?

– Which mutant operators are used?

� The number of mutants generated depends on P and the 
mutant operatorsapplied on P

� A mutant operatoris a rule that when applied to the program under test 
generates zero or more mutants
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Mutant Operator  Mutant Operator  Mutant Operator  Mutant Operator  (1)
� Consider the following program:

int abs (x);

int x;

{

if (x ≥ 0) x = 0 −x;

return x;

}
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Mutant Operator  Mutant Operator  Mutant Operator  Mutant Operator  (2)
� Consider the following rule:

– Replace each relational operator in P by all possible relational operators 
excluding the one that is being replaced. 

� Assuming the set of relational operators to be: {<,  >,  ≤,  ≥, = =,  !=}, 
the above mutant operator will generate a total of 5 mutants of P
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Mutant Operator  Mutant Operator  Mutant Operator  Mutant Operator  (3)
� Mutation operators are language dependent

� For Fortran a total of 22 operators were proposed

� For C a total of 77 operators were proposed 
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Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran (1)
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Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran (2)
� san: replace each statement by TRAP 

(an instruction that causes the program to halt, killing the mutant)
– Which code coverage-based criterion will also be satisfied by killing all the 

san mutants?

• rsr: replace each statement in a subprogram by RETURN
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Mutant Operators for C Mutant Operators for C Mutant Operators for C Mutant Operators for C (1)
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Mutant Operators for C Mutant Operators for C Mutant Operators for C Mutant Operators for C (2)
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Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (1)
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� Given P and a test set T
– Generate mutants

– Compile P and the mutants

– Execute P and the mutants on each test case

– Determine equivalent mutants

– Determine mutation score

– If mutation score is not 1 then improve the test case and repeat from Step 3

Mutation Testing (© 2013  Professor W. Eric Wong, The University of Texas at Dallas)

28

Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (2)
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� In practice the above procedure is implemented incrementally

� One applies a few selected mutant operators to P and computes the 
mutation score with respect to the mutants generated

� Once these mutants have been distinguished or proven equivalent,
another set of mutant operators is applied
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Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (3)
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� This procedure is repeated until either all the mutantshave been 
exhausted or some external condition forces testing to stop
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Tools for Mutation TestingTools for Mutation TestingTools for Mutation TestingTools for Mutation Testing
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� Mothra: for Fortran, developed at Purdue, 1990

� Proteum: for C, developed at the University of São Paulo at São Paulo in 
Brazil.
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Comparison CriterionComparison CriterionComparison CriterionComparison Criterion
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Mutation HypothesisMutation HypothesisMutation HypothesisMutation Hypothesis

32

� More difficulty to satisfy

� More expensive

� More effective in fault detection
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SubsumptionSubsumptionSubsumptionSubsumption
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Program ClassificationProgram ClassificationProgram ClassificationProgram Classification

34

� SDSU (single definition, single use)

� SDMU (single definition, multiple uses)

� MDSU (multiple definitions, single use)

� MDMU (multiple definitions, multiple uses)
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Program ClassificationProgram ClassificationProgram ClassificationProgram Classification
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� SDSU
– M (Mothra) subsumes AU, CU, and PU

� SDMU
– M (Mothra) subsumes AU, CU, and PU

� MDSU (multiple definitions, single use)
– M (Mothra) subsumes CU, but not PU, and AU

� MDMU
– M (Mothra) does not subsume CU, PU, and AU
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SDSU SDSU SDSU SDSU (1)
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SDSU SDSU SDSU SDSU (2)
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SDMU SDMU SDMU SDMU (1)
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SDMU SDMU SDMU SDMU (2)
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SDMU SDMU SDMU SDMU (3)
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MDSU MDSU MDSU MDSU (1)
� Lemma 1 For Category III, MR subsumes CU

� Proof: The proof follows from the arguments used in Case I of the proof 
of Theorem 1 applied to all c-use pairs 
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MDSU MDSU MDSU MDSU (2)

42

Definition of x

Definition of x

P-use of x
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MDSU MDSU MDSU MDSU (3)

� Proof: Figure 3 shows a program that has two p-use pairs for variable x. 
Table 1 lists a mutation adequate test set which does not cover the p-use
pair consisting of the definition x:=2 and its use in the predicate x=b
because the successor print y is not executed.
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Empirical Study Empirical Study Empirical Study Empirical Study : SubsumptionSubsumptionSubsumptionSubsumption

� All-uses scores using mutation adequate test sets are, in general, higher 
than the mutation scores using all-uses adequate test sets.
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Conclusion on Conclusion on Conclusion on Conclusion on SubsumptionSubsumptionSubsumptionSubsumption
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Cost MetricsCost MetricsCost MetricsCost Metrics
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� Number of executions

� Number of test cases

� Test case generation

� Learning testing tools

� Identifying equivalent mutants & infeasible all-uses
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Reducing Mutation CostReducing Mutation CostReducing Mutation CostReducing Mutation Cost
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� The cost of mutation testing can be reduced if the number of mutants to 
be examined is reduced
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Selection MutationSelection MutationSelection MutationSelection Mutation
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� Select proper mutant operators
– ror: relational operator replacement

– lcr: logical connector replacement

– abs: absolute value insertion

– sdl: statement deletion
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abs  Mutant Operator  abs  Mutant Operator  abs  Mutant Operator  abs  Mutant Operator  
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a := b + c

a := |b| + c

a := −|b| + c

a := 0 + c
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rorrorrorror Mutant Operator  Mutant Operator  Mutant Operator  Mutant Operator  
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Random x% MutationRandom x% MutationRandom x% MutationRandom x% Mutation

51

� Randomly select a small percentage of mutants from each mutant type
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Weak Mutation Weak Mutation Weak Mutation Weak Mutation (1)
� Reachability

– Execute the mutated statement

� Necessity 
– Make a state change

� Sufficiency 
– Propagate the change to output
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Weak Mutation Weak Mutation Weak Mutation Weak Mutation ---- AdvantageAdvantageAdvantageAdvantage

� Weak mutation reduces the amount of execution for distinguishing each 
mutant
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Weak Mutation Weak Mutation Weak Mutation Weak Mutation ---- DisadvantageDisadvantageDisadvantageDisadvantage

� The disadvantage of weak mutation testing is that there is no guarantee 
that the different immediate effect will cause a different final result. 
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Weak Mutation Weak Mutation Weak Mutation Weak Mutation (2)
� Weakmutation is as effective as strongmutation if the weak mutation 

hypothesis is true:
– (reachability and necessity) � sufficiency

� Experiments have shown that this is true for 61% of all the cases studied
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Weak Mutation Weak Mutation Weak Mutation Weak Mutation (3)
� Suppose that the weak mutation hypothesis does not hold for a particular 

fault (say F). That is, there exists a non–empty input setthat satisfies the 
reachability and necessity conditions while not producing a detectable 
failure. 

� But in the code under test, there will be many locations with potential 
faults, each with its own reachability and necessity conditions. It may be 
that satisfying those other conditions will force the execution of this fault  
(i.e., F) in a way that must produce a detectable failure (namely to satisfy 
the sufficiency condition). 

� Thus, the weak mutation hypothesis may not hold when a single fault is 
considered alone, but may hold when the fault is considered as part of a 
larger program (which has many faults).
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Reduction Measurement Reduction Measurement Reduction Measurement Reduction Measurement (1)
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� Size reduction:

� Expense reduction:

Average size of test sets adequate with respect to alternate mutation
1

Average size of mutation adequate test sets
−

Total number of mutants examined when using alternate mutation
1

Total number of mutants examined in mutation
−
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Reduction Measurement Reduction Measurement Reduction Measurement Reduction Measurement (2)
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� Mutation score reduction

� All-uses scores reduction
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Observation Observation Observation Observation 
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� Compared to mutation, randomly selected x% mutation and abs/ror
mutation provide:
– Significant size reduction

– Significant expense reduction

– Small reduction on mutation scores

– Small reduction on all-uses scores
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Alternate Mutation Alternate Mutation Alternate Mutation Alternate Mutation 
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Incremental Testing StrategyIncremental Testing StrategyIncremental Testing StrategyIncremental Testing Strategy
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