
111

Mutation Testing

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

3

� The process of program development is considered as iterative whereby
an initial version of the program is refinedby making simple, or a
combination of simple changes, towards the final version.

� Mutation testing is a code-based test assessment and improvement
technique.
– Can be extended to architecture (e.g., Statecharts) and design (e.g., SDL)

Mutation Testing Mutation Testing Mutation Testing Mutation Testing (1)

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

4

Mutation Testing Mutation Testing Mutation Testing Mutation Testing (2)
� It relies on the competent programmer hypothesis which is the following

assumption:
– Given a specification a programmer develops a program that is either correct

or differs from the correct program by a combination of simple errors

� It also relies on “coupling effect” which suggests that
– Test cases that detect simple types of faults are sensitive enough to detect

more complex types of faults.

4Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

5

Mutant Mutant Mutant Mutant (1)
� Given a program P, a mutantof P is obtained by making a simple change

in P

5Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

6

Example Example Example Example (1)

6

a := b + c

a := c + c a := b − c

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

7

Example Example Example Example (2)

7

1. int x, y;
2. if (x != 0)
3. y = 5;
4. else z = z − x;
5. if (z > 1)
6. z = z/x;
7. else
8. z = y;

Program

1. int x, y;
2. if (x! = 0)
3. y = 5;
4. else z = z − x;
5. if (z > 1)
6. z = z/&x;
7. else
8. z = y;

Mutant

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

8

Example Example Example Example (3)

8

1. int x, y;
2. if (x! = 0)
3. y = 5;
4. else z = z − x;
5. if (z > 1)
6. z = z/x;
7. else
8. z = y;

Program

1. int x, y;
2. if (x! = 0)
3. y = 5;
4. else z = z − x;
5. if (z < 1)
6. z = z/x;
7. else
8. z = y;

Mutant

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

9

Order of MutantsOrder of MutantsOrder of MutantsOrder of Mutants

� First order mutants

– One syntactic change

� Higher order mutants

– Multiple syntactic changes

� Coupling effect

9Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

10

Type of Mutants Type of Mutants Type of Mutants Type of Mutants (1)
� Distinguished mutants

� Live mutants

� Equivalent mutants

� Non-equivalent mutants

10Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

11

Type of Mutants Type of Mutants Type of Mutants Type of Mutants (2)
� A mutant m is considered distinguished(or killed) by a test caset ∈T if

P(t) ≠ m(t)
where P(t) and m(t) denote, respectively, the observed behavior of P and
m when executed on test input t

� A mutant m is considered equivalentto P if

P(t) = m(t)

for any test case in the input domain

11Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

12

Distinguish a Mutant Distinguish a Mutant Distinguish a Mutant Distinguish a Mutant (1)
� Reachability

– Execute the mutated statement

� Necessity

– Make a state change

� Sufficiency

– Propagate the change to output

12Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

13

Distinguish a Mutant Distinguish a Mutant Distinguish a Mutant Distinguish a Mutant (2)

13

Program P

read a

if (a > 3)

then

x = 5

else

x = 2

endif

print x

Program m

read a

if (a ≥ 3)

then

x = 5

else

x = 2

endif

print x

Mutant m is distinguished by a = 3

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

14

Equivalent Mutant Equivalent Mutant Equivalent Mutant Equivalent Mutant (1)

14

Program P

read a, b

a = b

x = a + b

print x

Program m

read a, b

a = b

x = a + a

print x

P is equivalent to m

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

15

Equivalent Mutant Equivalent Mutant Equivalent Mutant Equivalent Mutant (2)
� Consider the following program P

int x, y, z;

scanf (&x, &y);

if (x>0)

x = x + 1; z = x × (y − 1);

else

x = x − 1; z = x × (y − 1);

� Here z is considered the output of P

15Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

16

Equivalent Mutant Equivalent Mutant Equivalent Mutant Equivalent Mutant (3)
� Now suppose that a mutant of P is obtained by changing x = x + 1 to

x = abs(x) + 1

� This mutant is equivalentto P as no test case can distinguish it from P

16Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

17

Mutation Score Mutation Score Mutation Score Mutation Score (1)
� During testing a mutant is considered live if it has not been distinguished

or proven equivalent.

� Suppose that a total of Mt mutants are generated for program P

� The mutation scoreof a test set T, designed to test P, is computed as:

– Mk – number of mutants killed

– Mq – number of equivalent mutants

– Mt – total number of mutants

17

(,) k

t q

MS P T =
−

M

M M

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

18

Mutation Score Mutation Score Mutation Score Mutation Score (2)
� Mutation score:

Number of mutants distinguished

Total number of non-equivalent mutants

� Data flow score:
Number of blocks (decisions, p-uses, c-uses, all-uses) covered

Total number of feasible blocks (decisions, p-uses, c-uses, all-uses)

18Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

19

Test Adequacy CriterionTest Adequacy CriterionTest Adequacy CriterionTest Adequacy Criterion

� A test T is considered adequatewith respect to the mutation criterion if its
mutation score is 1
– Equivalent mutants?

– Which mutant operators are used?

� The number of mutants generated depends on P and the
mutant operatorsapplied on P

� A mutant operatoris a rule that when applied to the program under test
generates zero or more mutants

19Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

20

Mutant Operator Mutant Operator Mutant Operator Mutant Operator (1)
� Consider the following program:

int abs (x);

int x;

{

if (x ≥ 0) x = 0 −x;

return x;

}

20Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

21

Mutant Operator Mutant Operator Mutant Operator Mutant Operator (2)
� Consider the following rule:

– Replace each relational operator in P by all possible relational operators
excluding the one that is being replaced.

� Assuming the set of relational operators to be: {<, >, ≤, ≥, = =, !=},
the above mutant operator will generate a total of 5 mutants of P

21Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

22

Mutant Operator Mutant Operator Mutant Operator Mutant Operator (3)
� Mutation operators are language dependent

� For Fortran a total of 22 operators were proposed

� For C a total of 77 operators were proposed

22Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

23

Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran (1)

23Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

24

Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran Mutant Operators for Fortran (2)
� san: replace each statement by TRAP

(an instruction that causes the program to halt, killing the mutant)
– Which code coverage-based criterion will also be satisfied by killing all the

san mutants?

• rsr: replace each statement in a subprogram by RETURN

24Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

25

Mutant Operators for C Mutant Operators for C Mutant Operators for C Mutant Operators for C (1)

25Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

26

Mutant Operators for C Mutant Operators for C Mutant Operators for C Mutant Operators for C (2)

26Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

27

Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (1)

27

� Given P and a test set T
– Generate mutants

– Compile P and the mutants

– Execute P and the mutants on each test case

– Determine equivalent mutants

– Determine mutation score

– If mutation score is not 1 then improve the test case and repeat from Step 3

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

28

Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (2)

28

� In practice the above procedure is implemented incrementally

� One applies a few selected mutant operators to P and computes the
mutation score with respect to the mutants generated

� Once these mutants have been distinguished or proven equivalent,
another set of mutant operators is applied

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

29

Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure Mutation Testing Procedure (3)

29

� This procedure is repeated until either all the mutantshave been
exhausted or some external condition forces testing to stop

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

30

Tools for Mutation TestingTools for Mutation TestingTools for Mutation TestingTools for Mutation Testing

30

� Mothra: for Fortran, developed at Purdue, 1990

� Proteum: for C, developed at the University of São Paulo at São Paulo in
Brazil.

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

31

Comparison CriterionComparison CriterionComparison CriterionComparison Criterion

31Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

32

Mutation HypothesisMutation HypothesisMutation HypothesisMutation Hypothesis

32

� More difficulty to satisfy

� More expensive

� More effective in fault detection

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

33

SubsumptionSubsumptionSubsumptionSubsumption

33Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

34

Program ClassificationProgram ClassificationProgram ClassificationProgram Classification

34

� SDSU (single definition, single use)

� SDMU (single definition, multiple uses)

� MDSU (multiple definitions, single use)

� MDMU (multiple definitions, multiple uses)

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

35

Program ClassificationProgram ClassificationProgram ClassificationProgram Classification

35

� SDSU
– M (Mothra) subsumes AU, CU, and PU

� SDMU
– M (Mothra) subsumes AU, CU, and PU

� MDSU (multiple definitions, single use)
– M (Mothra) subsumes CU, but not PU, and AU

� MDMU
– M (Mothra) does not subsume CU, PU, and AU

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

36

SDSU SDSU SDSU SDSU (1)

36Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

37

SDSU SDSU SDSU SDSU (2)

37Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

38

SDMU SDMU SDMU SDMU (1)

38Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

39

SDMU SDMU SDMU SDMU (2)

39Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

40

SDMU SDMU SDMU SDMU (3)

40Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

41

MDSU MDSU MDSU MDSU (1)
� Lemma 1 For Category III, MR subsumes CU

� Proof: The proof follows from the arguments used in Case I of the proof
of Theorem 1 applied to all c-use pairs

41Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

42

MDSU MDSU MDSU MDSU (2)

42

Definition of x

Definition of x

P-use of x

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

43

MDSU MDSU MDSU MDSU (3)

� Proof: Figure 3 shows a program that has two p-use pairs for variable x.
Table 1 lists a mutation adequate test set which does not cover the p-use
pair consisting of the definition x:=2 and its use in the predicate x=b
because the successor print y is not executed.

43Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

44

Empirical Study Empirical Study Empirical Study Empirical Study : SubsumptionSubsumptionSubsumptionSubsumption

� All-uses scores using mutation adequate test sets are, in general, higher
than the mutation scores using all-uses adequate test sets.

44Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

45

Conclusion on Conclusion on Conclusion on Conclusion on SubsumptionSubsumptionSubsumptionSubsumption

45Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

46

Cost MetricsCost MetricsCost MetricsCost Metrics

46

� Number of executions

� Number of test cases

� Test case generation

� Learning testing tools

� Identifying equivalent mutants & infeasible all-uses

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

47

Reducing Mutation CostReducing Mutation CostReducing Mutation CostReducing Mutation Cost

47

� The cost of mutation testing can be reduced if the number of mutants to
be examined is reduced

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

48

Selection MutationSelection MutationSelection MutationSelection Mutation

48

� Select proper mutant operators
– ror: relational operator replacement

– lcr: logical connector replacement

– abs: absolute value insertion

– sdl: statement deletion

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

49

abs Mutant Operator abs Mutant Operator abs Mutant Operator abs Mutant Operator

49

a := b + c

a := |b| + c

a := −|b| + c

a := 0 + c

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

50

rorrorrorror Mutant Operator Mutant Operator Mutant Operator Mutant Operator

50Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

51

Random x% MutationRandom x% MutationRandom x% MutationRandom x% Mutation

51

� Randomly select a small percentage of mutants from each mutant type

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

52

Weak Mutation Weak Mutation Weak Mutation Weak Mutation (1)
� Reachability

– Execute the mutated statement

� Necessity
– Make a state change

� Sufficiency
– Propagate the change to output

52Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

53

Weak Mutation Weak Mutation Weak Mutation Weak Mutation ---- AdvantageAdvantageAdvantageAdvantage

� Weak mutation reduces the amount of execution for distinguishing each
mutant

53Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

54

Weak Mutation Weak Mutation Weak Mutation Weak Mutation ---- DisadvantageDisadvantageDisadvantageDisadvantage

� The disadvantage of weak mutation testing is that there is no guarantee
that the different immediate effect will cause a different final result.

54Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

55

Weak Mutation Weak Mutation Weak Mutation Weak Mutation (2)
� Weakmutation is as effective as strongmutation if the weak mutation

hypothesis is true:
– (reachability and necessity) � sufficiency

� Experiments have shown that this is true for 61% of all the cases studied

55Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

56

Weak Mutation Weak Mutation Weak Mutation Weak Mutation (3)
� Suppose that the weak mutation hypothesis does not hold for a particular

fault (say F). That is, there exists a non–empty input setthat satisfies the
reachability and necessity conditions while not producing a detectable
failure.

� But in the code under test, there will be many locations with potential
faults, each with its own reachability and necessity conditions. It may be
that satisfying those other conditions will force the execution of this fault
(i.e., F) in a way that must produce a detectable failure (namely to satisfy
the sufficiency condition).

� Thus, the weak mutation hypothesis may not hold when a single fault is
considered alone, but may hold when the fault is considered as part of a
larger program (which has many faults).

56Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

57

Reduction Measurement Reduction Measurement Reduction Measurement Reduction Measurement (1)

57

� Size reduction:

� Expense reduction:

Average size of test sets adequate with respect to alternate mutation
1

Average size of mutation adequate test sets
−

Total number of mutants examined when using alternate mutation
1

Total number of mutants examined in mutation
−

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

58

Reduction Measurement Reduction Measurement Reduction Measurement Reduction Measurement (2)

58

� Mutation score reduction

� All-uses scores reduction

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

59

Observation Observation Observation Observation

59

� Compared to mutation, randomly selected x% mutation and abs/ror
mutation provide:
– Significant size reduction

– Significant expense reduction

– Small reduction on mutation scores

– Small reduction on all-uses scores

Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

60

Alternate Mutation Alternate Mutation Alternate Mutation Alternate Mutation

60Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

61

Incremental Testing StrategyIncremental Testing StrategyIncremental Testing StrategyIncremental Testing Strategy

61Mutation Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

