*Note:  The information below can be referenced to:  Carr, J., Practical Antenna Handbook, Tab Books, Blue Ridge Summit, PA, 1989, ISBN:  0-8306-9270-3.  Goeckner, M., (Class Notes).
CHAPTER 7 TRANSMISSION LINES
Introduction
A transmission line is defined as two or more conductors embedded in a dielectric system that transports electromagnetic energy from one point to another. As an example,   transmission lines can be used between an exciter output and a transmitter input, and between the transmitter and an antenna.  Transmission lines are complex networks containing the equivalent of all three basic electrical components: resistance, capacitance and inductance.  So in light of this fact, transmission lines must be analyzed in terms of an RLC network.  
There are several basic types of transmission lines and some are shown in Figure 7.1.The simplest form is the parallel line shown in Figure 7.1a.  The two conductors, of diameter d, are separated by a dielectric by a spacing S.  Parallel lines have been used at VLF, MW, and HF frequencies.  Antennas into the low-VHF have also found use of parallel lines.  Another form of the transmission line, that finds considerable application at microwave frequencies, is the coaxial cable shown in Figure 7.1b.  This form of line consists of two cylindrical conductors sharing the same axis (hence “co-axial”) and separated by a dielectric.  In flexible cables at low frequencies the dielectric may be a polyethylene or polyethylene foam and at higher frequencies Teflon and other materials are used.  Also used in some applications are dry air and dry nitrogen.  Stripline, also called microstripline, is another form of transmission line used at high UHF and microwave frequencies.  This type is shown in Figure 7.1c.The stripline consists of a critically sized conductor over a ground plane conductor, and separated from it by a dielectric.  Some are sandwiched between two ground planes, and are separated from each by a dielectric.  
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Characteristics of Wave Propagation in Transmission Lines
[image: image1]Consider the simplest case using a pair of infinitely long plane conductors separated by a dielectric as shown in Figure 7.2.  
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By applying a bias between the conductors will result in an electric field:
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We can use Maxell’s Equations to further examine the propagation characteristics. 
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Notice:


 (A1) & (B1) contain 
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Why?  They are independent of each other.  The solutions to these independent equations can be found by considering the boundary conditions.
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Let E1 be the field in the dielectric and E2 be the field in the conductor.
Assume a Perfect Conductor 

 
E2, dielectric Tangential = 0 = E1, conductor Tangential
Since the tangential part of E is Ey
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 = 0 (everywhere in the dielectric & this requires ignoring fringing fields-the extension of electric lines of force between the outer edges of capacitor plates,  also known as edging effect.)
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 From equations (A2) & (B2)

 Finally,
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  ρs = ε Ex    *on the surfaces & D1 = 0 (in the conductor)
Now, do the same thing for the magnetic field:
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This will give-

Js = Hy   on the lower conductor (
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Js = -Hy   on the upper conductor (
[image: image21.wmf]n

x

=

-

Ù

)

Now combine the two remaining equations:
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*This is the wave equation!
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 Ex = Ex (t – z/vph) + Ex (t + z/vph)



vph = (με) -1/2
Likewise, you can also show that:
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Hy = Hy (t – z/vph) + Hy (t + z/vph)

Note:  
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 Propagation!  Thus two important things have been found:

1. Electromagnetic waves propagate in a 2-conductor (loss-less) transmission line with a phase velocity determined by the dielectric between the conductors.  This is also true for coaxial.

2. 
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 Propagation- this is known as a transverse electromagnetic wave (TEM).  (Ez = 0 = Hz)  

Voltage can be defined as:

V (z, t) = 
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 And the total current can also be determined through the upper/ (lower) plate:
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  Where ds is just one thin metal line so that,


∫J·ds = I = ωJ (z, t)| plate
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 E·ds = 0 (E = 0, in metal)
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  (Hy = 0, above the plate)
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 I = ω J (z, t) = -ω Hy (z, t)
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Now place these in equations (A1) & (B1):

A1)   
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B1)    
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Calculate-using some algebra-

A1)   
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B2)    
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(Note:  V =
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)  Notice that L΄ is an effective Inductance per unit length and C΄ is an effective capacitance per unit length.  As with E & H fields they can be combined in the equations above to give wave equations:





[image: image44.wmf]¶

¶

z

t

V

L

C

V

2

2

=

¢

¢



And 
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Phase velocity is   νph = (L΄C΄) -1/2 = (εμ) -1/2
*     V (z, t) = V+ (t – z/vph) + V_ (t + z/vph)



**   I (z, t) = I+ (t – z/vph) + I_ (t + z/vph)

                             ↑


↑


(Forward motion +z)  (Backward motion –z)

V & I are lumped by (A1) & (B1)
(A1)     
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   Noting that   vph = (L΄C΄)-1/2   and

 integrating ωrt   (time)
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This looks like standard circuit theory where
Zo =
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Now it is possible to solve for V+ & V_
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V+ (t –z/vph) = 1/2[V (z, t) + Z I (z, t)]


V- (t +z/vph) =1/2 [V (z, t) - Z I (z, t)]

The traveling currents are:

I+ = 1/zo V+
I_ = 1/zo V_

Coaxial Cables
This model can apply to other geometries-the most important is probably co-axial cables.
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So that, 

(Eo = q/2πεL, if a charge is in the center)
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From other Maxell’s Equations:
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 EMBED Equation.2  [image: image61.wmf]=
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(D = 0, in the conductor)



= HΦ 2πr = I
Plug the following into the above equations and solve:
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V (z, t) = V+ + V_


 I (z, t) =  
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For RG-58/u
εr ≈ 2.26

μr ≈ 1

a ≈ 0.406 mm

b ≈ 1.48 mm

And Z ≈ 51.6 Ω

This sort of impedance level is typical for most coaxial cables.  

Reflections & Transmission of Pulses
Reflections occur when a wave hits a barrier.  We see this when water waves hit the shore or light hits a mirror.  In both cases, part of the wave is reflected and part is lost (typically giving up energy to the reflecting surface).  The same thing occurs in a transmission line.  Consider the following in Figure 7.3:


[image: image66]
In Figure 7.3 the transmission line is terminated by a load (Resistance, RL or Impedance ZL).  What is the voltage across the load?  It has been determined that –



V (z, t) = V+ (z, t) + V_ (z, t)

So that at the load (Z = ZL)



V (ZL, t) = VL (t)


 
  
  = V+ (ZL, t) + V_ (ZL, t)

 
 
  = V+ + V_
And likewise – 

  
I (z, t) = I+ (Z, t) + I_ (Z, t) so, that

 
IL (z, t) = I+ (ZL, t) + I_ (ZL, t)

Now VL = RLIL (t) and from before 
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  so that, 
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Rearrange:   V+ + V_ = 
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 EMBED Equation.2  [image: image70.wmf](
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The term on the right hand side of the equation is independent of time so 
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is also time independent.  

The ratio 
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 = ρ tells how much of the forward propagating wave is reflected. 

If we were to use ZL instead of RL, we would get – 
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What happens to the rest of the energy?  It gets ‘passed’ through the load and the transmitted portion of V+ that goes through the load is VL.
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 We want 
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VL =   V+ + V_
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 EMBED Equation.2  [image: image77.wmf]V

V

V

V

R

R

Z

L

L

L

o

+

-

+

=

+

=

+

º

=

+

1

1

2

r

t

And τ is defined as the transmission coefficient.  
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There are several regions that ρ and τ fall into depending on RL & Zo.

*Note:  RL can be ‘ZL’    
	Relationship between RL & ZL
	ρ
	τ
	Comment

	RL = 0    

(shorted  circuit)
	-1
	0
	The forward V+ is all reflected as –V+

[image: image78.wmf]Þ

V =V+ + V_ = 0

	RL = ∞
	1
	2
	The forward V+   is reflected as + V+   

[image: image79.wmf]Þ

V = 2 V+

	RL > Zo
	1> ρ >0
	( )
	Reflected Pulse adds to incident pulse (constructive interference)

	RL<0
	ρ < 0
	( )
	Reflected pulse subtracts from V+
(destructive interference) Can also be thought of as reflecting an inverted wave.

	RL = Zo
	ρ = 0
	1
	No reflected V+   (matched Load)


Form of Waves-
Take a periodic function and model these waves as sines & cosines (Fourier series).  These are two other temporal variations that are very important to digital signals.  The first important is turning off an applied (steady state) voltage – ‘precharged’; the second is sending a signal pulse down line.

· Turning off a “precharged” line
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[image: image80]
Prior to t = 0 (when we close the switch)  

I (z, t < 0) = 0 = I+ + I_ = 
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V (z, t < 0) = Vo = V+ + V_
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On the side that the load is, the reflection coefficients is 




[image: image84.wmf]r

L

L

o

L

o

Z

Z

Z

Z

=

-

+


On the source side the reflection coefficient is 
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*Note:  (Having ρL ≠ ρs for digital systems can cause problems)

For now, assume Zs = ∞ 
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 all energy (voltages) traveling toward the source is reflected.  Assume now that the switch on 
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 is closed to t = 0.  What is the voltage across 
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ρL = 0 (no reflected wave)

At t = 0 
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is found at the load as V_ is moving toward the source.  This voltage level remains constant until the tail end of V_ traveling from 
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 to Zs, where it is reflected, and back to 
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 where it is transmitted through 
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 the time it takes is 
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= time to make 1 way transit.
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  0 < 
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Now only part of the signal is reflected

[image: image145.wmf]Þ


[image: image102]
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In general:
Finally,
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 reflects inverted wave
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With the same general equation (which in fact holds for all three cases).
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 EMBED Equation.2  [image: image108.wmf]
Now the opposite situation from what we have just looked at is charging the line.
Turning on an uncharged line
Now consider Figure 7.8 – 
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[image: image109]
If we assume ρs = -1 (Zs = 0) and 
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 0 < ρs< 1
Then we see a series of pictures:

0 < t < tloop (Figure 7.9)
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[image: image112]
tloop < t < 2 tloop (Figure 7.10)
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2tloop < t < 3 (Figure 7.11)
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[image: image114]
These examples can be generalized (Figure 7.12)
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[image: image115]
At any point Z  
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  V (z, t) = V+ (z, t) + V (z, t)

Note that the initial wave form becomes distorted by the direct and reflected waves and 
V (z, t) = V+ (0, t = z/v) + 
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   + ……

This is independent of the form V+!  

Two more quick examples;
Connection of two transmission Lines (Figure 7.13)
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Then 

From before 
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Combining the above equations and doing a little algebra for a result of:

[image: image160.wmf]
*Note: Looks like a load impedance

“Damaged” coupled transmission lines 


Notice where we have a loss in Figure 7.13:
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V+ + V_ = V++ = VL

I+ + I_ = I++ = IL
I+= 
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Again some fraction of the voltage wave is repeated.  Running through the algebra we find.
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[image: image131.wmf]
*Zeff is the effective impedance seen by the line #1.

Definition:  Effective Impedance is the sum of the actual impedance of the circuit and the reflected impedance of the load.

Power in Transmission Lines
The power flux is given by the Poynting vector – 
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The total power is 
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 where V (z, t), I (v, t)

All this is from circuit theory…
What do our power (total) equations ‘say’ about reflected/transmitted power?

	Name
	Equation

	Voltage Reflection
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	Voltage Transmission
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	Current Reflection
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	Incident Power
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	Reflected Power
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	Delivered Power
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(b) Coaxial Cable
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(c) Microstrip    Line
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Cut thru here
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→ E = E (z, t)   only!
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Figure 7.2





Figure 7.3
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Figure 7.5
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Figure 7.4
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Figure 7.6
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(Figure 7.7)
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Figure 7.10





Figure 7.11





� EMBED Equation.2 ���





Vo








V





� EMBED Equation.2  ���Vo








Z = 0





Z =� EMBED Equation.2 ���΄





Z =L





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





V+





t = 0





ρs





Time





Figure 7.12
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For now let V_ _ =0 (not always the case)





Figure 7.13





V+ + V_ = V++
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(Figure 7.13)
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