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Technical Report: Annotated Semantic Markov
Utterance Random Fields for Information Extraction

Richard M. GoldenSenior Member, IEEE

Abstract— This technical report presents the mathemat- developing natural language interfaces for medical
ical foundations of the ASMURF (Annotated Semantic and travel applications, and the analysis of student
Markov Utterance Random Field) methodology for in- essay data.
formathn extraction. The ASMURF semantic a_lnn_otatlon Hidden Markov Models (HMMs) have been used
system is presented, and key theorems establishing the f | d d . h h
computational adequacy of the methodology are presented. or S_evera ecades In areas such as speech per-

ception (e.g., Baum et al., 1970; Annals of Math-
: : ematical Statistics, 41, 164-171; Rabiner, 1989,

Index Terms— Information Extraction, Natural Lan- P IEEE. 77 1989. 257-285). H |
guage Understanding, Hidden Markov Models, Markov roc. ’ ’ ’ -285). owever only re-
Random Fields, Semantic Annotation, Gibbs Digtribution ~ C€ntly have HMM_ models been ap_plled in the con-
text of IE applications. In the past five years, HMM
Information Extraction (IE) methods have been used

|. INTRODUCTION : . )
for topic detection and tracking (Yamron et al.,

I NFORMATION extraction (IE) technology hasyggg) dialog act modeling (Stolcke et al., 1998),
received increasing amounts of attention over th@ s ch scientific documents for gene names and
past several years. In contrast to information reane |ocations (Leek, 1997), extracting information
trieval (IR) technology which is concerned with th‘?rom document headers (Seymore, McCallum, and
problem of automated document retrieval, IE tec*l‘-?osenfeld 1999; Freitag and McCallum, 1999)
nology is concerned with the problem of automateg,qent essay analysis (Burstein, Marcu, and Knight,
information retrieval. IE technology also dn‘ferszooo) and recall data (Durbin et al., 2000), and
fundamentally from the problem of solving the full-y,cment summarization (Schlesinger et al., 2000).
blown natural language understanding problem. T%reover, the formulation of previous HMM meth-

general natural language understanding problemgigs have been based upon Markov Chain modeling
concerned with developing computer systems Whighaihods in contrast to the more general Markov
have a "deep” understanding of a text. In contraghangom Field (MRF) methodology. Hidden Markov

IE technology is not concerned with the problefangom Fields have been extensively applied in
of trying to understand all information conveyeqlm‘,ige processing applications but this technology

in a text. IE technology is concerned with Simply,aq™hot vet been applied to solve real-world com-
attaining a “partial understanding” of a text for

_ Y _ £utational linguistics engineering problems.
the purpose of extracting specific information. IE 14 specific IE problem considered in this pa-
technology can be applied in a range of situatio

) : _ er is concerned with situations where: (1) large
Examples of |E technology include interpreting nalyy o nts of semantically annotated training data

ural language queries for web searches, improvigs ot available, (2) the documents to be auto-
the performance of speech recognition systemMgatically semantically annotated consist of highly
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This paper is organized in the following man- 1) Word-Concepts:A word-concept is a label
ner. First, the proposed semantic annotation systefior. a set of words which are considered to
Second, the probabilistic knowledge representatibe approximately semantically equivalent for
assumptions are formulated within a novel Hiddea particular semantic annotation application.
MRF framework. Third, the use of the novel MRA-or example, in one application, the words
framework for inferring the Maximum A Posterioricanteen, cafeteria, and restaurant might
(MAP) semantic annotation is described. Fourtbe considered to be semantically equivalent
efficient methods for Maximum A Posteriori paand assigned the common  word-concept
rameter estimation using the MRF framework al€AFETERIA. In other applications, however,
formulated as well. The computational performanaeaking semantic distinctions betweefa feteria
of the resulting system is then evaluated with respeantd restaurant might be essential for an

to the experimental data set. appropriate semantic annotation. Word-concept
_ _ categories are useful for clarifying semantic
A. Semantic Annotation System distinctions among word-concepts. The word-

The semantic annotation system which is usedncept categories used in the current semantic
involves three basic forms of concepts: (1) "wordannotation system are ACTION-MODIFIER,
concepts”, (2) "atomic propositions”, and (3AGENT, ATTRIBUTE, COMMUNICATIVE-
"molecular propositions”. The objective of the seACTION, EXPERIENCER, INSTRUMENT,
mantic annotation process is formally defined ihOCATION, MENTAL-ACTION, OBJECT, and
terms of molecular propositions. Specifically, th®eHYSICAL-ACTION.

goal of the semantic annotation process is to map aassume there arel, Word_concepts to be rep-
word sequence (e.g., free response data genergifénted in the semantic annotation system and
by a student in response to an essay questigRjt themth word-concept is denoted by theth

into an ordered sequence of molecular propositionglumn,c(™, of theword-concept dictionary which
This ultimate objective is achieved by first semantjs g ( -dimensional identity matrixyn = 1, ..., d..
cally annotating key words with their unambiguousimilarly, assume there aw&, words to be repre-
semantic "word-concept” interpretations, and thesented in the semantic annotation system and that
annotating sequences of word-concepts with theke ,th word is denoted by the:th column,w(™,

unambiguous "atomic proposition” interpretationssf the word dictionary which is ad,,-dimensional
It is assumed that some words (particularly wordgentity matrix,m = 1,...,d

which have especially ambiguous and subtle gram-
matical functions) will be ignored. Such wordsd
are assigned to a "skip word list”. The semanti
annotation system is always problem-specific whic
means that an entirely new semantic annotati
system ;;?;sttu faﬁ ‘;ﬁ“’)‘fi'cc’;"tfodnf"; eszcr;]p?gpcilfc?rt;?r:]i.n s\évithin the ith atomic proposition located within the
i . ) th molecular pr ition.
data is used to identify an initial set of molecu- olecuiar propositio

lar propositions. These molecular propositions, in g)laﬁtglr%?apsrcé?Svsr:gggsey?\gmaéﬁ?;Zgrzérgg%?g)z(?rﬁately
turn, are used to specify an initial set of atomigg o iically equivalent sequences of one or more

propositions which, in turn, are used to specify agord-concepts for a particular semantic annotation
initial set of word-concepts. This initial concept dicapplication. Just as semantic annotation decisions
tionary is then embedded within an interactive useregarding equivalence classes of words associated
friendly graphical user-interface intended to soliciith word-concepts must be made, semantic

refinements of the semantic annotation scheme fr%fnotation decisions regarding equivalence classes

A word — concept random vector is a discrete
w-dimensional random vector which takes on the
alue of thenth column of the word-dictionary with
strictly positive probability form = 1,...,d,.
Yhe notationc,; ; denotes thejth word-concept

human semantic annotators or "coders”. An examits Séauences of word-concepts must be made as

of the user-interface is shown in Figure 1. Speciflce”' For example, the word-concept sequences:
details of the semantic annotation system embodied

in the software are provided in the remainder of this { AGENT:ESPERANZA, ACTION:EAT ,

section. OBJECT:LUNCH }
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and m=1,...,dy.
A molecular proposition random vector IS a
{ AGENT:FEMALE, ACTION:EAT, OBJECT:LUNCH } discreted;-dimensional random vector which takes

_ _ on the value of themth column of the molecu-
might be considered to be members of the samg proposition dictionary with a strictly positive

equivalence class if it is known that the discoursgopability for m = 1,... ,ds. The notationf;
context is constrained such that the only femaignotes theth molecular proposition in a sequence
person who eats lunch in the discourse context d¢ molecular propositions generated by a participant

in fact "Esperanza”. _ (or group of participants) within the essay question
In other applications, where multiple agentfee response paradigm.

might be catching the ball, however, these two
word-concept sequences would not be considered to
be semantically equivalent. Atomic propositions are Il. MARKOV RANDOM FIELD FORMULATION
defined in the current semantic annotation system a
propositions which either: (1) refer to exactly ong
action word-concept (i.e., mental action, commu-
nicative action, or physical action), or (2) describe  €speranza wanted to eat in the canteen
a state of the environment using attribute wordnd assume it is known that this word sequence
concepts. Assume there afg word-concepts to be corresponds the third molecular proposition men-
represented in the semantic annotation system dmhed by student 1 in Table 2. In this example,
that the mth word-concept is denoted by theth the wordsto, in, and the are on theskip word
column, a™, of the atomic proposition dictionary list and thus will be ignored. Thus, the remaining
which is a d,-dimensional identity matrixyn = words in the word sequencesperanza wanted
1,...,d,. eat canteen must be assigned word-concepts. Also
An atomic proposition random vector is a assume that it is known that the word subsequences
discreted,-dimensional random vector which takessperanza wanted andeat canteen are associated
on the value of thenth column of the atomic propo-with two distinct atomic propositions. The semantic
sition dictionary with a strictly positive probability annotation problem is to assign word-concepts to the
form =1,...,d,. The notatioma,; denotes theth 4 words which are not on the skip list, assign atomic
atomic proposition in a sequence of atomic propgropositions to the 2 subsequences of words, and
sitions which expresses a representative molecuéssign a molecular proposition to the entire word
proposition. sequence. The system’s performance will be evalu-
3) Molecular Propositions: A  molecular ated primarily with respect to the appropriateness of
proposition is a label for a set whosethe system’s choice for the molecular prgposition.
elements are  approximately  semantically The molecular proposition random vecfgrhas a
equivalent sequences consisting of one @robability distribution which is functionally depen-
more atomic propositions for a particuladent upon the previously assigned values to molec-
semantic annotation application. For examplglar propositions; andf; as well as the sequence
in one application, the sequence of two atomief atomic propositions;; andas,. The probabil-
propositions: REQUEST(AGENT:ESPERANZA), ity distribution of the atomic proposition random
EAT(AGENT:ESPERANZA,0BJ:FOOD) might vector a;, is functionally dependent upon atomic
be considered to be semantically equivaleptopositionas;, molecular propositiorf;, and the
to the atomic proposition sequencesequence of word-concepts. ; followed by c; o 5.
EAT(AGENT:ESPERANZA,OBJ:FOOD) RE- The probability distribution of word-concept ran-
QUEST(AGENT:ESPERANZA), dom vectorcs ; - is functionally dependent upon the
Assume there aré; molecular propositions to beword random vecto&vs ; .
represented in the semantic annotation system and’he probabilistic modeling assumptions of the
that themth molecular proposition is denoted by th@roposed solution to the semantic annotation prob-
mth column,£(™) of themolecular proposition dic- lem are naturally formulated within a Markov Ran-
tionary which is ad;-dimensional identity matrix, dom Field framework.

%?eferring to Figure 1, consider an example where
sequence of words mentioned by the student is:
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Definition 2: ASMURF A Annotated Semantic
Markov Utterance Random Fieldr (ASMURF) is
a MRF comprised of the following random vectors.

. A random vectorf, comprised ofd molecular
proposition random subvectofs, . . ., f;.

« A random vector,a, comprised ofd random
subvectors such that théh random subvector,
a;, consists of thel; atomic proposition random
subvectorsq, 1, . . ., &; 4, associated withf;, : =
1,...,d.

« A random vector ¢, comprised of a fi-
nite set of word-concept random subvectors
Cij1,---,Cija,, associated with eacha;,
wherei=1,...,dandj=1,...,d;.

Esperanza  wanted (o cat at canteen. . Arandom vectow, comprised of a finite set of
Fig. 1. MRF representation for analyzing senten¢Esperanza word random SUbveCtng"J”? for each Wprd-
wanted to eat at the canteen.” concept random vectd; ;, i = 1,...,d, j =

1,...,d;, andk = 17---7di,j,k-
The graphGG associated with a ASMUREF is called
the segmentation strategy for the ASMURF.

A. Markov Random Fields

An undirected graph is defined as a seti =
(S, E') consisting of: (1) a set afodes S, and (2) a L
set ofedges F C S x S. A MRF (Markov Random C. ASI.VIURF.Spemflcatlons o
Field) is a pair(X,G) whereX = {%i,...,%q In this section, the global and local specifications
and G is an undirected graph called the MRFSf @ ASMURF are provided. o
neighborhood graph. MRF’s are assumed to satisf)é_l_) ASMUREF Joint Distribution:The joint prob-
the positivity condition that the probability of everyability mass functionp : S — [0, 1] of the random
possible realization of the field is strictly positive/ariables in a SA-MRF whose parameter vector
(i.e., p(X) > 0). The positivity condition ensuresiS given by:
that all conditional probability distributions defined ¢ 5 ¢ w|3) = Z Yexpl-V(f,a,c,w)] (1)
with respect to the MRF exist.

Given a neighborhood grapti = (S, E) for a where

MREF, theneighborhood for theith random variable
] . X ’ 7 = -V (f
x;, in the MRF is defined as the set [fagv]esexp[ Vi, a,c,w)
Ni={%; € X: (%;,%;) € E}. and where

Conditional independence assumptions in the MRF d
are specified by the choice &f since it is assumed v (f,a,¢,w) = (,(1/d) ; Vi(fio, fi1, f)+
that: -

d di
p(XilNy) = p(XilX1, ... Kic1, Kigr, ..o, XKa). Z Z Va(ari2,ati1,a::,fi)+
t=11i=1
B. Annotated Semantic Markov Utterance Random 4 4, dt,
Field (ASMURF) Problem Representation DD VelCrjk—2s k-1, Crjps Arj)+
1) Segmentation Strategy Graph: ===
Definition 1: Clique LetG be a finite undirected d_di dj dij
graph. Aclique of GG is defined as a non-empty set > Z D> VilCrjm Wijn)-
C such that either: (1’ contains exactly one node =17=1k=1k=1

of G, or (2) every pair of nodes i’ is an edge of  The functionsV;, V,, V., andV,, are local poten-
G. tial functions of the ASMURF and are defined in the
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following sections. The vector§, f_1, a;o, a;_1, Where
are defined to be vectors of zeros. It will also be
convenient to defind, ; andf,,» equal to vectors Ga,, = Valari—o, a1, a,, )+
of zeros.
2) Molecular Potential Function:The molecular Vaagi1,ar, a1, £) + Vi, arivr, agiro, £+
proposition potential functioly : Dy x Dy x Dy —

R for the MRF is defined by the formula: o
Vi(fioa, fi1, £1) = £/ [b) + BL i1+ ; Ve(Crig—2; Crij=1; Ceis At
B]igft—2 + B]iL_Q(ft—l X ft—2)] (2)

4) Word-Concept and Word Potential Functions:
where the matriceB’,, B/,, B/, _, and vectoib) Theword-concept potential functiol. : D, x D, x
are constants which specify the functional form oP. x D, — R for the MRF is defined by the
V;. The notation® denotes the Kronecker tensoformula:
product which is defined such tha&&:® B is a matrix
of submatrices where thgth submatrix is defined Ve(Ct.ij—2, Crij1, Crij, ari) = ¢/, [bG+BC yerij 2+
by az-jB.

The local molecular probability mass functionB¢ c,;;_1 + B““a;; + B ,(c -1 ® crij—2)+
pr : Dy — [0,1] for the ASMUREF is defined such

that: Bl (crij—1 @ ar;) + B (crijo @ ag;)+

pf(ft|ft+1, fio. B0, B0 a1, ., at,dt) =

eaplde] BT 5(Crij—1 ® Crij_2 ® ag;)). 4)
>¢en, eTp|o] where the matriced§, B°,, B¢, B, B°, ,,
where “1, B%3, B®] _, are constants which specify the
functional form ofV/,.
bg, = Vi(fio, fi1, ) + Vit £, frpn)+ The word potential functionV,, : D, x D, — R

dy for the MRF is defined by the formula:
Vi(fy, B, fia2) + ) Va(ari—2, a1, ag, ). .
i=1 Vis(Crigs Weij) = ¢ [BY Wy 4] (5)

3) Atomic Potential FunctionTheatomic propo- _ _ _
sition potential functior, : D, x D, x Dy x Dy — where the matriXB“* contains the constants which
R for the MRF is defined by the formula: specify the functional form ot. _

. . Thelocal word concept probability mass function

Va(ari—z, ario1,ai, f) = a;;[bg + BYai 0+ ) . D, — [0,1] for the ASMURF is defined such

a a a that:
B%,a;; » +B Tf, + B_L_g(at,i—l ® ag o)+ a
Bci’{(at,i_1 ® f) + Bi’g(at,z’_z ® f;)+ Pe(Ctij|Ctiij—25 Chyij—15 Chyij41s Chyij42, Atyis Wi j) =
B(fi_g(at,i—l ®ag -2 @ 1f)). 3) exp(de,., ;)
where the matricedd, B*,, B%,, B/, B?, o, Ycen. €rp(de)

B*{, B“J, andB®{ _, are constants which specify

the functional form ofl/,. w
The local atomic probability mass functiop, :

D, — [0,1] for the ASMUREF is defined such that:

here
Geyi; = Ve(Crij—2,Crij—1,Crij, Ari)+

pa(at,z’|at,z’—1, At j—2, At 41, AE,i42, f;, Ctily-- s ct,i,dt) = Vc(ctm_l, Cti,j>Ctijt+1, am-)—l—

exp(Pa,,)
> acp, €2p(¢a) Ve(Ctigs Crijt1s Crijaas Ani) + Vi (Crigy Weij)
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[1l. THEORETICAL RESULTS frequencies in the language domain tend to follow
A. Representation Problem a log(log) distribution.

. In practice, the following two learning rules have

Theorem 1:ASMURF Representation Theoren]) : ;
: = ) . een found to be effective. We define them b
Consider a ASMURF(f,a, ¢, w) with neighbor- y

example. Estimatind3“¢ using the formula:
hood graphG such that: P B g

o {fio,fi1,fi} B =YLy ([Cf,i,j](cf,i,j—1 ® af,z')T)

. {52'71, RN 5i,di7 fl}, and s=1

« {€ijis--esCijay, i) will be referred to as dogic learning rule whose
are the only cliques of for t = 3,....d, i — Minimum cell counts 6. EstimatingB®{ using the
1,...,d, andj = 1,...,d;. The joint distribution of formula: .
f,a,c,w) may be represented by the probability gea 5 1(eS. s \T
Enass fun)ction in (1) without any loss in generality. B ; toglogs ([ct’w](ct””_l @ aL) )

Proof: Inspection of the particular parametriaill be referred to as g log weightedearning rule
form of Vi, Vi, V,, andV,, presented in Theorem lwhoseminimum cell counis §. A useful choice for
shows that any arbitrary choice &f;, V,, V., and the minimum cell count threshold value fis= 2 to
Vw may be represented. The proof of the theoreavoid over-fitting.
then follows directly from the Hammersley-Clifford
Theorem (see Besag, 1974; Geman & Geman, 1984; Inference Problem
Golden, 1996; Winkler, 1991, for relevant reviews). In practice, the segmentation strategy is not

B known but a heuristic algorithm which examines

all possible segmentation strategies for a single

B. Learning Problem molecular proposition may be used. The heuristic al-
gorithm applies all possible segmentation strategies
to the first group of words and selects the segmen-

Stion strategy yielding the most probable molecular

proposition associated with the first word group.

o f U peres 1T Then, the most probable first molecular proposition
B, =n th £ 5] and segmentation strategy generated by the system

Correlation matrices (e.gB’, or B“9) are esti-
mated using the method of moments. For examp
B/, is estimated by:

- _ =t is assumed to be correct and the heuristic algo-
andBZ] is estimated by: rithm only needs to examine all possible segmenta-
A n tion strategies for computing the second molecular

c,a __ —1 s s s T . . . .
-1= Z[ct,i,j](ct,i,j—l ®ay;)". proposition. This incremental process then contin-
s=1 ues until the automatic semantic annotation pro-

From a computational perspective, efficiency igess is complete. Besag's (1986) Iterated Condi-
greatly enhanced because the resulting correlatiional Modes (ICM) algorithm was used to compute
matrices will tend to have many zero element& suboptimal solution to the problem of finding
SO sparse matrix representation and manipulatioraximum a posteriori estimates of the semantic
methods may be fully exploited. annotation label values. The inference problem is

Define thelogical count functionly : R™*" — further simplified through the use of the following
R™" be defined such that théjth element of heuristic. In situations where a word and a word-
Ly(M) is equal tol if the ijth element of M concept never co-occur during the learning process,
exceeds someninimum count threshold and the itis assumed that they can never co-occur. Similarly,
ijth element ofC,(M) is equal to0 otherwise. Let in situations where an atomic proposition and word-
m;; bs theijth element ofM. Now define thdog- concept never co-occur during the learning process,
log count functionloglog, : R™*" — R™ ™ be it is assumed that they can never co-occur. And
defined such that théjth element ofloglog,(M) finally, in situations where a complex proposition
is equal tolog(log(m;;)) whenm;; > 6 and is and atomic proposition never co-occur during the
equal to zero otherwise. The log-log count functiolearning process, it is assumed that they can never
is inspired by Zipf's law which states that counto-occur.



