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Technical Report: Annotated Semantic Markov
Utterance Random Fields for Information Extraction

Richard M. Golden,Senior Member, IEEE

Abstract—This technical report presents the mathemat-
ical foundations of the ASMURF (Annotated Semantic
Markov Utterance Random Field) methodology for in-
formation extraction. The ASMURF semantic annotation
system is presented, and key theorems establishing the
computational adequacy of the methodology are presented.

Index Terms— Information Extraction, Natural Lan-
guage Understanding, Hidden Markov Models, Markov
Random Fields, Semantic Annotation, Gibbs Distribution

I. INTRODUCTION

INFORMATION extraction (IE) technology has
received increasing amounts of attention over the

past several years. In contrast to information re-
trieval (IR) technology which is concerned with the
problem of automated document retrieval, IE tech-
nology is concerned with the problem of automated
information retrieval. IE technology also differs
fundamentally from the problem of solving the full-
blown natural language understanding problem. The
general natural language understanding problem is
concerned with developing computer systems which
have a ”deep” understanding of a text. In contrast,
IE technology is not concerned with the problem
of trying to understand all information conveyed
in a text. IE technology is concerned with simply
attaining a ”partial understanding” of a text for
the purpose of extracting specific information. IE
technology can be applied in a range of situations.
Examples of IE technology include interpreting nat-
ural language queries for web searches, improving
the performance of speech recognition systems,
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developing natural language interfaces for medical
and travel applications, and the analysis of student
essay data.

Hidden Markov Models (HMMs) have been used
for several decades in areas such as speech per-
ception (e.g., Baum et al., 1970; Annals of Math-
ematical Statistics, 41, 164-171; Rabiner, 1989,
Proc.IEEE, 77, 1989, 257-285). However only re-
cently have HMM models been applied in the con-
text of IE applications. In the past five years, HMM
Information Extraction (IE) methods have been used
for topic detection and tracking (Yamron et al.,
1998), dialog act modeling (Stolcke et al., 1998),
search scientific documents for gene names and
gene locations (Leek, 1997), extracting information
from document headers (Seymore, McCallum, and
Rosenfeld, 1999; Freitag and McCallum, 1999),
student essay analysis (Burstein, Marcu, and Knight,
2000), and recall data (Durbin et al., 2000), and
document summarization (Schlesinger et al., 2000).
Moreover, the formulation of previous HMM meth-
ods have been based upon Markov Chain modeling
methods in contrast to the more general Markov
Random Field (MRF) methodology. Hidden Markov
Random Fields have been extensively applied in
image processing applications but this technology
has not yet been applied to solve real-world com-
putational linguistics engineering problems.

The specific IE problem considered in this pa-
per is concerned with situations where: (1) large
amounts of semantically annotated training data
are not available, (2) the documents to be auto-
matically semantically annotated consist of highly
ungrammatical sentence fragments and misspelled
words, (3) a detailed semantic annotation of the
data is desired, and (4) considerable detailed domain
knowledge regarding document content is available
in advance. An important application area associated
with this type of IE problem is the extraction
of information from surveys consisting of open-
response items and essay exams.
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This paper is organized in the following man-
ner. First, the proposed semantic annotation system.
Second, the probabilistic knowledge representation
assumptions are formulated within a novel Hidden
MRF framework. Third, the use of the novel MRF
framework for inferring the Maximum A Posteriori
(MAP) semantic annotation is described. Fourth,
efficient methods for Maximum A Posteriori pa-
rameter estimation using the MRF framework are
formulated as well. The computational performance
of the resulting system is then evaluated with respect
to the experimental data set.

A. Semantic Annotation System

The semantic annotation system which is used
involves three basic forms of concepts: (1) ”word-
concepts”, (2) ”atomic propositions”, and (3)
”molecular propositions”. The objective of the se-
mantic annotation process is formally defined in
terms of molecular propositions. Specifically, the
goal of the semantic annotation process is to map a
word sequence (e.g., free response data generated
by a student in response to an essay question)
into an ordered sequence of molecular propositions.
This ultimate objective is achieved by first semanti-
cally annotating key words with their unambiguous
semantic ”word-concept” interpretations, and then
annotating sequences of word-concepts with their
unambiguous ”atomic proposition” interpretations.
It is assumed that some words (particularly words
which have especially ambiguous and subtle gram-
matical functions) will be ignored. Such words
are assigned to a ”skip word list”. The semantic
annotation system is always problem-specific which
means that an entirely new semantic annotation
system must be developed for each application.

In a practical application, a sample of training
data is used to identify an initial set of molecu-
lar propositions. These molecular propositions, in
turn, are used to specify an initial set of atomic
propositions which, in turn, are used to specify an
initial set of word-concepts. This initial concept dic-
tionary is then embedded within an interactive user-
friendly graphical user-interface intended to solicit
refinements of the semantic annotation scheme from
human semantic annotators or ”coders”. An example
of the user-interface is shown in Figure 1. Specific
details of the semantic annotation system embodied
in the software are provided in the remainder of this
section.

1) Word-Concepts:A word-concept is a label
for a set of words which are considered to
be approximately semantically equivalent for
a particular semantic annotation application.
For example, in one application, the words
canteen, cafeteria, and restaurant might
be considered to be semantically equivalent
and assigned the common word-concept
CAFETERIA. In other applications, however,
making semantic distinctions betweencafeteria
and restaurant might be essential for an
appropriate semantic annotation. Word-concept
categories are useful for clarifying semantic
distinctions among word-concepts. The word-
concept categories used in the current semantic
annotation system are:ACTION-MODIFIER,
AGENT, ATTRIBUTE, COMMUNICATIVE-
ACTION, EXPERIENCER, INSTRUMENT,
LOCATION, MENTAL-ACTION, OBJECT, and
PHYSICAL-ACTION.

Assume there aredc word-concepts to be rep-
resented in the semantic annotation system and
that themth word-concept is denoted by themth
column,c(m), of theword-concept dictionary which
is a dc-dimensional identity matrix,m = 1, . . . , dc.
Similarly, assume there aredw words to be repre-
sented in the semantic annotation system and that
the mth word is denoted by themth column,w(m),
of the word dictionary which is adw-dimensional
identity matrix,m = 1, . . . , dw.

A word − concept random vector is a discrete
dw-dimensional random vector which takes on the
value of themth column of the word-dictionary with
a strictly positive probability form = 1, . . . , dw.
The notationct,i,j denotes thejth word-concept
within the ith atomic proposition located within the
tth molecular proposition.

2) Atomic Propositions:An atomic proposition
is a label for a set whose elements are approximately
semantically equivalent sequences of one or more
word-concepts for a particular semantic annotation
application. Just as semantic annotation decisions
regarding equivalence classes of words associated
with word-concepts must be made, semantic
annotation decisions regarding equivalence classes
of sequences of word-concepts must be made as
well. For example, the word-concept sequences:

{ AGENT:ESPERANZA, ACTION:EAT ,
OBJECT:LUNCH }
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and

{ AGENT:FEMALE, ACTION:EAT, OBJECT:LUNCH }

might be considered to be members of the same
equivalence class if it is known that the discourse
context is constrained such that the only female
person who eats lunch in the discourse context is
in fact ”Esperanza”.

In other applications, where multiple agents
might be catching the ball, however, these two
word-concept sequences would not be considered to
be semantically equivalent. Atomic propositions are
defined in the current semantic annotation system as
propositions which either: (1) refer to exactly one
action word-concept (i.e., mental action, commu-
nicative action, or physical action), or (2) describe
a state of the environment using attribute word-
concepts. Assume there areda word-concepts to be
represented in the semantic annotation system and
that themth word-concept is denoted by themth
column,a(m), of the atomic proposition dictionary
which is a da-dimensional identity matrix,m =
1, . . . , da.

An atomic proposition random vector is a
discreteda-dimensional random vector which takes
on the value of themth column of the atomic propo-
sition dictionary with a strictly positive probability
for m = 1, . . . , da. The notationat,i denotes theith
atomic proposition in a sequence of atomic propo-
sitions which expresses a representative molecular
proposition.

3) Molecular Propositions: A molecular
proposition is a label for a set whose
elements are approximately semantically
equivalent sequences consisting of one or
more atomic propositions for a particular
semantic annotation application. For example,
in one application, the sequence of two atomic
propositions: REQUEST(AGENT:ESPERANZA),
EAT(AGENT:ESPERANZA,OBJ:FOOD) might
be considered to be semantically equivalent
to the atomic proposition sequence:
EAT(AGENT:ESPERANZA,OBJ:FOOD) RE-
QUEST(AGENT:ESPERANZA),

Assume there aredf molecular propositions to be
represented in the semantic annotation system and
that themth molecular proposition is denoted by the
mth column,f (m), of themolecular proposition dic-
tionary which is adf -dimensional identity matrix,

m = 1, . . . , df .
A molecular proposition random vector is a

discretedf -dimensional random vector which takes
on the value of themth column of the molecu-
lar proposition dictionary with a strictly positive
probability for m = 1, . . . , df . The notationft
denotes thetth molecular proposition in a sequence
of molecular propositions generated by a participant
(or group of participants) within the essay question
free response paradigm.

II. M ARKOV RANDOM FIELD FORMULATION

Referring to Figure 1, consider an example where
a sequence of words mentioned by the student is:

esperanza wanted to eat in the canteen

and assume it is known that this word sequence
corresponds the third molecular proposition men-
tioned by student 1 in Table 2. In this example,
the words to, in, and the are on theskip word
list and thus will be ignored. Thus, the remaining
words in the word sequenceesperanza wanted
eat canteen must be assigned word-concepts. Also
assume that it is known that the word subsequences
esperanza wanted andeat canteen are associated
with two distinct atomic propositions. The semantic
annotation problem is to assign word-concepts to the
4 words which are not on the skip list, assign atomic
propositions to the 2 subsequences of words, and
assign a molecular proposition to the entire word
sequence. The system’s performance will be evalu-
ated primarily with respect to the appropriateness of
the system’s choice for the molecular proposition.

The molecular proposition random vectorf̃3 has a
probability distribution which is functionally depen-
dent upon the previously assigned values to molec-
ular propositions̃f2 and f̃1 as well as the sequence
of atomic propositions̃a3,1 and ã3,2. The probabil-
ity distribution of the atomic proposition random
vector ã3,2 is functionally dependent upon atomic
proposition ã3,1, molecular propositioñf3, and the
sequence of word-conceptsc̃3,2,1 followed by c̃3,2,2.
The probability distribution of word-concept ran-
dom vector̃c3,1,2 is functionally dependent upon the
word random vector̃w3,1,2.

The probabilistic modeling assumptions of the
proposed solution to the semantic annotation prob-
lem are naturally formulated within a Markov Ran-
dom Field framework.
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Fig. 1. MRF representation for analyzing sentence:’ ’Esperanza
wanted to eat at the canteen.”

A. Markov Random Fields

An undirected graph is defined as a setG =
(S,E) consisting of: (1) a set ofnodes S, and (2) a
set ofedges E ⊆ S ×S. A MRF (Markov Random
Field) is a pair(X̃, G) where X̃ = {x̃1, . . . , x̃d})
and G is an undirected graph called the MRF’s
neighborhood graph. MRF’s are assumed to satisfy
thepositivity condition that the probability of every
possible realization of the field is strictly positive
(i.e., p(X̃) > 0). The positivity condition ensures
that all conditional probability distributions defined
with respect to the MRF exist.

Given a neighborhood graphG = (S,E) for a
MRF, theneighborhood for theith random variable,
x̃i, in the MRF is defined as the set

Ni = {x̃j ∈ X̃ : (x̃i, x̃j) ∈ E}.

Conditional independence assumptions in the MRF
are specified by the choice ofE since it is assumed
that:

p(x̃i|Ni) = p(x̃i|x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃d).

B. Annotated Semantic Markov Utterance Random
Field (ASMURF) Problem Representation

1) Segmentation Strategy Graph:
Definition 1: Clique LetG be a finite undirected

graph. Aclique of G is defined as a non-empty set
C such that either: (1)C contains exactly one node
of G, or (2) every pair of nodes inC is an edge of
G.

Definition 2: ASMURF A Annotated Semantic
Markov Utterance Random Fieldor (ASMURF) is
a MRF comprised of the following random vectors.

• A random vector,̃f , comprised ofd molecular
proposition random subvectors̃f1, . . . , f̃d.

• A random vector,̃a, comprised ofd random
subvectors such that theith random subvector,
ãi, consists of thedi atomic proposition random
subvectors̃ai,1, . . . , ãi,di associated with̃fi, i =
1, . . . , d.

• A random vector c̃, comprised of a fi-
nite set of word-concept random subvectors
c̃i,j,1, . . . , c̃i,j,di,j associated with each̃ai,j ,
wherei = 1, . . . , d andj = 1, . . . , di.

• A random vector̃w, comprised of a finite set of
word random subvectors̃wi,j,k for each word-
concept random vector̃ci,j,k, i = 1, . . . , d, j =
1, . . . , di, andk = 1, . . . , di,j,k.

The graphG associated with a ASMURF is called
the segmentation strategy for the ASMURF.

C. ASMURF Specifications

In this section, the global and local specifications
of a ASMURF are provided.

1) ASMURF Joint Distribution:The joint prob-
ability mass function,p : S → [0, 1] of the random
variables in a SA-MRF whose parameter vectorβ
is given by:

p(f ,a, c,w|β) = Z−1exp[−V (f ,a, c,w)] (1)

where

Z =
∑

[f ,a,c,w]∈S

exp[−V (f ,a, c,w)]

and where

V (f ,a, c,w) = βf(1/d)
d∑

t=1

Vf (ft−2, ft−1, ft)+

d∑

t=1

dt∑

i=1

Va(at,i−2,at,i−1,at,i, ft)+

d∑

t=1

dt∑

j=1

dt,j∑

k=1

Vc(ct,j,k−2, ct,j,k−1, ct,j,k,at,j)+

d∑

t=1

dt∑

j=1

dt,j∑

k=1

dt,j∑

k=1

Vw(ct,j,k,wt,j,k).

The functionsVf , Va, Vc, andVw are local poten-
tial functions of the ASMURF and are defined in the
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following sections. The vectorsf0, f−1, at,0, at,−1,
are defined to be vectors of zeros. It will also be
convenient to definefd+1 and fd+2 equal to vectors
of zeros.

2) Molecular Potential Function:Themolecular
proposition potential functionVf : Df ×Df ×Df →
R for the MRF is defined by the formula:

Vf (ft−2, ft−1, ft) = fT
t [bf

0 + Bf
−1ft−1+

Bf
−2ft−2 + Bf

−1,−2(ft−1 ⊗ ft−2)] (2)

where the matricesBf
−1,B

f
−2,B

f
−1,−2 and vectorbf

0

are constants which specify the functional form of
Vf . The notation⊗ denotes the Kronecker tensor
product which is defined such that:A⊗B is a matrix
of submatrices where theijth submatrix is defined
by aijB.

The local molecular probability mass function
pf : Df → [0, 1] for the ASMURF is defined such
that:

pf (ft|ft+1, ft+2, ft−1, ft−2,at,1, . . . ,at,dt) =

exp[φft]∑
f∈Df

exp[φf ]

where

φft = Vf (ft−2, ft−1, ft) + Vf (ft−1, ft, ft+1)+

Vf (ft, ft+1, ft+2) +
dt∑

i=1

Va(at,i−2,at,i−1,at,i, ft).

3) Atomic Potential Function:Theatomic propo-
sition potential functionVa : Da×Da×Da×Df →
R for the MRF is defined by the formula:

Va(at,i−2,at,i−1,at,i, ft) = aT
t,i[b

a
0 + Ba

−1at,i−1+

Ba
−2at,i−2 + Ba,fft + Ba

−1,−2(at,i−1 ⊗ at,i−2)+

Ba,f
−1 (at,i−1 ⊗ ft) + Ba,f

−2 (at,i−2 ⊗ ft)+

Ba,f
−1,−2(at,i−1 ⊗ at,i−2 ⊗ ft)). (3)

where the matricesba
0, Ba

−1, Ba
−2, Ba,f , Ba

−1,−2,
Ba,f

−1 , Ba,f
−2 , andBa,f

−1,−2 are constants which specify
the functional form ofVa.

The local atomic probability mass functionpa :
Da → [0, 1] for the ASMURF is defined such that:

pa(at,i|at,i−1,at,i−2,at,i+1,at,i+2, ft, ct,i,1, . . . , ct,i,dt) =

exp(φat,i)∑
a∈Da

exp(φa)

where

φat,i = Va(at,i−2,at,i−1,at,i, ft)+

Va(at,i−1,at,i,at,i+1, ft) + Va(at,i,at,i+1,at,i+2, ft)+

dt,i∑

j=1

Vc(ct,i,j−2, ct,i,j−1, ct,i,j,at,i)

4) Word-Concept and Word Potential Functions:
Theword-concept potential functionVc : Dc×Dc×
Dc × Da → R for the MRF is defined by the
formula:

Vc(ct,i,j−2, ct,i,j−1, ct,i,j,at,i) = cT
t,i,j[b

c
0+Bc

−2ct,i,j−2+

Bc
−1ct,i,j−1 + Bc,aat,i + Bc

−1,−2(ct,i,j−1 ⊗ ct,i,j−2)+

Bc,a
−1(ct,i,j−1 ⊗ at,i) + Bc,a

−2(ct,i,j−2 ⊗ at,i)+

Bc,a
−1,−2(ct,i,j−1 ⊗ ct,i,j−2 ⊗ at,i)]. (4)

where the matricesbc
0, Bc

−2, Bc
−1, Ba, Bc

−1,−2,
Bc,a

−1, Bc,a
−2, Bc,a

−1,−2 are constants which specify the
functional form ofVa.

The word potential functionVw : Dw × Dc → R
for the MRF is defined by the formula:

Vw(ct,i,j,wt,i,j) = cT
t,i,j[B

c,wwt,i,j]. (5)

where the matrixBc,w contains the constants which
specify the functional form ofVa.

The local word concept probability mass function
pc : Dc → [0, 1] for the ASMURF is defined such
that:

pc(ct,i,j|ct,i,j−2, ct,i,j−1, ct,i,j+1, ct,i,j+2,at,i,wt,i,j) =

exp(φct,i,j )∑
c∈Dc

exp(φc)

where

φct,i,j = Vc(ct,i,j−2, ct,i,j−1, ct,i,j,at,i)+

Vc(ct,i,j−1, ct,i,j, ct,i,j+1,at,i)+

Vc(ct,i,j, ct,i,j+1, ct,i,j+2,at,i) + Vw(ct,i,j,wt,i,j)
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III. T HEORETICAL RESULTS

A. Representation Problem

Theorem 1:ASMURF Representation Theorem
Consider a ASMURF(̃f , ã, c̃, w̃) with neighbor-
hood graphG such that:

• {f̃t−2, f̃t−1, f̃t}
• {ãi,1, . . . , ãi,di , f̃i}, and
• {c̃i,j,1, . . . , c̃i,j,di,j , ãi,j}

are the only cliques ofG for t = 3, . . . , d, i =
1, . . . , d, andj = 1, . . . , di. The joint distribution of
(̃f , ã, c̃, w̃) may be represented by the probability
mass function in (1) without any loss in generality.

Proof: Inspection of the particular parametric
form of Vf , Va, Vc, andVw presented in Theorem 1
shows that any arbitrary choice ofVf , Va, Vc, and
Vw may be represented. The proof of the theorem
then follows directly from the Hammersley-Clifford
Theorem (see Besag, 1974; Geman & Geman, 1984;
Golden, 1996; Winkler, 1991, for relevant reviews).

B. Learning Problem

Correlation matrices (e.g.,Bf
−2 or Bc,a

−1) are esti-
mated using the method of moments. For example,
Bf

−2 is estimated by:

B̂f
−2 = n−1

n∑

s=1

f s
t [f s

t−2]
T

andBc,a
−1 is estimated by:

B̂c,a
−1 = n−1

n∑

s=1

[cs
t,i,j](c

s
t,i,j−1 ⊗ as

t,i)
T .

From a computational perspective, efficiency is
greatly enhanced because the resulting correlation
matrices will tend to have many zero elements
so sparse matrix representation and manipulation
methods may be fully exploited.

Define thelogical count functionLθ : Rm×n →
Rm×n be defined such that theijth element of
Lθ(M) is equal to 1 if the ijth element ofM
exceeds someminimum count thresholdθ and the
ijth element ofLθ(M) is equal to0 otherwise. Let
mij bs theijth element ofM. Now define thelog-
log count functionlog logθ : Rm×n → Rm×n be
defined such that theijth element oflog logθ(M)
is equal to log(log(mij)) when mij > θ and is
equal to zero otherwise. The log-log count function
is inspired by Zipf’s law which states that count

frequencies in the language domain tend to follow
a log(log) distribution.

In practice, the following two learning rules have
been found to be effective. We define them by
example. EstimatingBc,a

−1 using the formula:

B̂c,a
−1 =

n∑

s=1

Lθ

(
[cs

t,i,j](c
s
t,i,j−1 ⊗ as

t,i)
T

)

will be referred to as alogic learning rule whose
minimum cell countis θ. EstimatingBc,a

−1 using the
formula:

B̂c,a
−1 =

n∑

s=1

log logθ

(
[cs

t,i,j](c
s
t,i,j−1 ⊗ as

t,i)
T

)

will be referred to as alog log weightedlearning rule
whoseminimum cell countis θ. A useful choice for
the minimum cell count threshold value isθ = 2 to
avoid over-fitting.

C. Inference Problem

In practice, the segmentation strategy is not
known but a heuristic algorithm which examines
all possible segmentation strategies for a single
molecular proposition may be used. The heuristic al-
gorithm applies all possible segmentation strategies
to the first group of words and selects the segmen-
tation strategy yielding the most probable molecular
proposition associated with the first word group.
Then, the most probable first molecular proposition
and segmentation strategy generated by the system
is assumed to be correct and the heuristic algo-
rithm only needs to examine all possible segmenta-
tion strategies for computing the second molecular
proposition. This incremental process then contin-
ues until the automatic semantic annotation pro-
cess is complete. Besag’s (1986) Iterated Condi-
tional Modes (ICM) algorithm was used to compute
a suboptimal solution to the problem of finding
maximum a posteriori estimates of the semantic
annotation label values. The inference problem is
further simplified through the use of the following
heuristic. In situations where a word and a word-
concept never co-occur during the learning process,
it is assumed that they can never co-occur. Similarly,
in situations where an atomic proposition and word-
concept never co-occur during the learning process,
it is assumed that they can never co-occur. And
finally, in situations where a complex proposition
and atomic proposition never co-occur during the
learning process, it is assumed that they can never
co-occur.


