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Classical sequential data analysis methods are not typically used for data analysis purposes since they
tend to be better suited for exploratory rather than confirmatory data analysis. In particular, such
methods do not incorporate or explicitly encourage theoretician-imposted constraints upon patterns of
assocative strengths. Golden (1995, 1998) has developed a highly constrained parametric multinomial
time-series regression model for categorical time-series analysis of free response data as an ordered
sequence of propositions. Golden (1998) refers to models of this type as Knowledge Digraph Contribution
(KDC) analysis models since the researcher specifies a collection of directed graphs representing different
types of semantic relations among propositions and then the KDC program estimates a contribution
weight parameter for each directed graph (digraph). The directed graphs are based upon theories of
semantic connectivity. Additionally, KDC analysis has a distinct advantage over classical sequential
data analysis methods because all of the asymptotic statistical tests developed using KDC analysis are
derived within the general theory of model misspecification which permits reliable statistical inferences
even when the theoretical assumptions about the types of semantic relations among propositions are
not entirely correct (see White, 1982, 1994; Golden, 1995, 1996, 2003; for relevant reviews).

The purpose of this technical report is to specify the key mathematical assumptions of KDC (Knowledge
Digraph Contribution) analysis.

1 Mathematical Theory

1.1 Knowledge Digraphs

Data in knowledge digraph analysis consists of observing one or more sequences of ”items”. For example,
an ”item” may be a phoneme, a participant response, a visual image, or an action. Assume there are
a finite number of d items which may be observed in a particular sequence of observations. It will
mathematically convenient to refer to the ith item as si where si is the ith column of a d-dimensional
identity matrix, i = 1, . . . , d.
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Let the set of all possible items Ω ≡ {s1, . . . , sd}. Let 0m×n be a matrix of zeros with m rows and n
columns. Let 0d ≡ 0d×1. It will also be mathematically convenient to define: Γ ≡ Ω ∪ {0d}.

Let v ∈ {1, . . . , q}. Denote a temporal knowledge digraph of knowledge type v as a k-tuplet: (Dv[1], . . . ,Dv[k])
where Dv [m] ∈ Rd×d is called a knowledge digraph of knowledge type v with lag m for m = 1, . . . , k.
The element in row i and column j of Dv[m], Dv [m]ij, is called the ijth digraph link weight for the
knowledge digraph Dv[m] with lag m. A larger value of the digraph link weight Dv [m]ij corresponds
to the hypothesis that: Subsequences where item sj is followed subsequently by m− 1 items, and then
immediately by item si are likely to occur in the observed data.

For example, let Dv[m] be a knowledge digraph of type v with lag m which is defined such that:

Dv[m] = s2(s1)T + s2(s3)T + s5sT
2 + s6usT

2 + s4sT
5 + s4sT

6 .

The digraph Dv[m] is depicted graphically in Figure 1. Referring to Figure 1, suppose that m = 1.
A digraph Dv[1] of type v and lag 1 represents a hypothesis regarding the presence of sequences in
the observed data such as: {1, 2, 6, 4}, {3, 2, 5, 4}, and {3, 2, 6, 4}. Now suppose that the digraph in
Figure 1 was a lag 2 digraph so that m = 2. Then, Dv[2] would correspond to a hypothesis regarding
the presence of sequences in the observed data such as: {1, x4, 2, x5, 6, x6, 4}, {3, x7, 2, x8, 5, x9, 4}, and
{3, x10, 2, x11, 6, x12, 4} where xi ∈ Ω for i = 1, . . . , 12.

Define Dv ≡ (Dv [1], . . . ,Dv[k]) ∈ Rd×dk for v = 1, . . . , q. The set {D1, . . . ,Dq} is called a knowledge
digraph model. The knowledge digraph connection function W : Rq → Rd×dk such that:

W(θ) ≡
q∑

v=1

θvDv

where θ ≡ [θ1, . . . , θq] ∈ Θ ⊆ Rq.

1.2 Data Generating Processes

A stochastic process f̃1, f̃2, . . . is called τ -dependent if f̃i and f̃j are independent for all |i− j| > τ . Thus,
if f̃1, f̃2, . . . is a τ -dependent stochastic process where τ = 0, then f̃i and f̃j are statistically independent
for all i 6= j.

A stochastic process f̃1, f̃2, . . . is called strictly stationary if the joint distribution of f̃1, f̃2, . . . is identical
to the joint distribution of f̃m+1, f̃m+2, . . . for m = 1, 2, . . .. Observations in strictly stationary stochastic
processes are always identically distributed. Note that a strictly stationary stochastic process which is
τ -dependent where τ = 0 is a stochastic process consisting of independent and identically distributed
observations.

A d-dimensional random vector f̃ will be called categorical if the range of f̃ is finite.
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Fig. 1. Figure 1. A lag k knowledge digraph of type v which is denoted by Dv [k] is graphically represented
as six nodes with an arrow connecting node j to node i with a digraph link weight equal to the ijth
element of Dv[k]. By convention, no arrow is drawn for a digraph link weight if that digraph link weight
is equal to zero.

Assumption A1. Data Generating Process Specification. Let τ be a finite non-negative in-
teger. The observed data are a realization of a strictly stationary τ -dependent stochastic process of
d-dimensional categorical random vectors: f̃1, f̃2, . . ..

Assumption A1 is a relatively weak assumption regarding the nature of the stochastic process which
generates the observed categorical time-series data.

In a typical application of KDC analysis, f̃k
t models the tth response from participant k in a group of

n participants, k = 1, . . . , Tk, n = 1, . . . , k. In this situation, it is assumed that between-participant
responses are statistically independent (i.e., f̃k

t and f̃ j
s are statistically independent for all k 6= j and

for all t, s). Observations within a sequence are assumed to be statistically independent if they are
sufficiently separated in time as specified by the τ assumption (i.e., f̃k

t and f̃k
s are statistically independent

if |k− s| > τ).

Finally, let h : Rd → R. Throughout this article, the notation E{h(̃f)} refers to the expected value
of h(̃f) with respect to the distribution of f̃ (when it exists). For strictly stationary stochastic process,
E{h(̃ft)} = E{h(̃fm)} for all t,m = 1, 2, . . ..

1.3 KDC Probability Model

A KDC probability model is a set of specifications which (ideally) contains the specification for the
probability mass function (pmf) which generated the observed data according to Assumption A1. Fol-
lowing White (1982), we make a clear distinction between the assumptions associated with the data
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generating process (DGP) and the assumptions associated with the researcher’s model of the DGP. If
the KDC probability model contains the pmf specification which generated the observed data, then the
KDC probability model is said to be correctly specified with respect to the DGP. If the KDC probability
model does not contain the pmf specification which generated the observed data, then the KDC prob-
ability model is said to be misspecified with respect to the DGP. The asymptotic theory of statistical
inference developed here supports reliable statistical inferences in the presence of model misspecification
(see White, 1982; Golden, 1995, 1996, for relevant reviews).

Let ut ≡ [ft−1, . . . , ft−τ ]. The function exp : Rd → (0,∞)d is defined such that the ith element of the
d-dimensional column vector exp([x1, . . . , xd]T ) is equal to exp(xi), i = 1, . . . , d. For t = 1, 2, . . ., let
ht(ut; θ) ≡ Wθut and

pt(ut; θ) ≡
exp(ht(ut; θ))

1T
d exp(ht(ut; θ))

. (1)

Assumption A2. Knowledge Digraph Probability Model Specifications. Let Θ be a compact
and non-empty subset of a q-dimensional real vector space. Let pt be defined as in (1). Let p : Ω×Γτ ×
Θ → [0, 1] be defined for all ft ∈ Ω and for all ut ∈ Γτ such that for t = 1, 2, . . .:

p(ft|ut; θ) = fT
t pt(ut; θ)

for all θ ∈ Θ.

A set M ≡ {pt : pt(·; θ), θ ∈ Θ} whose elements satisfy A2 is called a knowledge digraph probability
model. Also note that Assumption A2 may be interpreted as specifying a type of multinomial logistic
time-series model. Assumption A2 may also be interpreted as specifying a type of connectionist time-
series model as shown in Figure 2.

Assumption A3. Multivariate Gaussian Prior Specifications. Let pθ : Θ × Θ × Θ2 → [0,∞) be
defined such that pθ(·;mθ,Cθ) is a multivariate Gaussian density with mean mθ and covariance matrix
Cθ for all mθ ∈ Θ and for all positive definite Cθ ∈ Θ2.

1.4 Parameter Estimation

Parameter estimation requires the specification of an objective function whose global minima may be
identified as the parameter estimates. The objective function used in KDC analysis is motivated by
noting that:

p(θ|f1, . . . , fn) ≡
[

n∏

t=1

p (ft|ut; θ)

]
pθ(θ). (2)
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Fig. 2. Figure 2. Connectionist network interpretation of KDC probability model. Note that the acti-
vation pattern over the input units correspond to ut ≡ [ut,1ut,2ut,3], the activation pattern over the
hidden units correspond to ht ≡ [ht,1ht,2ht,3], and the activation pattern over the output units is
pt ≡ [pt,1pt,2pt,3]. The connection weights from the input units to the hidden units are specified by
W(θ). The non-modifiable nonlinear transformation mapping ht into pt is defined by Equation (1).

The global maxima of p(θ|f1, . . . , fn) thus may be identified as corresponding to MAP (Maximum A
Posteriori) estimates.

Let

Zθ ≡ (2π)q/2(detCθ)1/2.

Let the loss function cΘ : Θ ×Rd(τ+1) → R be defined such that:

c(θ; ft, ft−1, . . . , ft−τ) = − log (p(θ|f1, . . . , fn)) + logZθ

= − log
(
fT
t log(pt(ut; θ)

)
+ (1/2)(θ−mθ)T [Cθ]−1(θ − mθ)

Let

lΘn (θ; f1, . . . , fn) = n−1
n∑

i=1

cΘ(θ; f1, . . . , fn) − n−1log(pθ(θ)) (3)

where the q-dimensional real vector mθ and the q-dimensional positive definite symmetric matrix Cθ

are known constants.
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First note, that the global minima of lΘn correspond to the global maxima of p(θ|f1, . . . , fn). In addition,
the global minima of the first term of (3) (which is typically referred to as tne negative log-likelihood
function) correspond to maximum likelihood estimates. Note that as n becomes large, the second term in
(3) becomes small relative to the log-likelihood term implying that under general conditions MAP esti-
mation and ML estimation will be asymptotically equivalent. In addition to having important semantic
properties, the function ln has important computational properties as well which are summarized in the
following Theorem T1.

Theorem T1: KDC MAP Objective Function Properties. The objective function ln in (3) is
convex and analytic on Rq. In addition, if ∇2ln evaluated at a critical point, θ̂n, has strictly positive
eigenvalues, then θ̂n is the unique global minimum of ln.

Theorem T1 establishes that ln is a convex differentiable function standard nonlinear optimization
methods such as the Newton-Raphson algorithm with an appropriate linesearch may be designed to find
a global minimum, θ̂n, of ln. Finally, Theorem T1 provides a simple computational test for determining
if θ̂n is the unique global minimum of ln.

The function lΘn may be viewed as a realization of the ”random function”

l̃Θn (·) ≡ ln(·; f̃1, . . . , f̃n).

Let the MAP estimate θ̃n be defined (when it exists) as a global minimum of l̃Θn . Suppose the expected
value of l̃Θn , lΘ : θ → R, exists and there is a unique global minimum of lΘ. This unique global minimum
of l is called the pseudo-true parameter since it can be shown (Kullback-Leibler, 1959) that this global
minimum corresponds to the true model parameters if the probability model is correctly specified. If
the probability model is not correctly specified, then the global minimum of l may be interpreted as
minimizing the cross-entropy between the KDC probability model and the DGP.

Some notation is now introduced for the purposes of stating some theorems which explicitly relate
properties of l̃Θ to properties of lΘn . Let the gradient per observation gΘ

i ≡ − log (p(fi|fi−1, . . . , fi−τ ; θ)).
Let the sample average gradient gΘ ≡ n−1 ∑n

i=1 gΘ
i . Let Ji,τ ≡ {j ∈ {1, 2, . . .} : |i− j| ≤ τ}. Let the

sample Outer Product Gradient (OPG) Hessian Estimator

BΘ
n ≡ n−1

n∑

i=1

∑

j∈Ji,τ

gΘ
i (gΘ

j )T .

The sample Sandwich Estimator CΘ
n ≡ [AΘ

n ]−1BΘ
n [AΘ

n ]−1 when it exists. Let AΘ ≡ E{ÃΘ
n }, BΘ ≡

E{B̃Θ
n }, CΘ ≡ E{C̃Θ

n }, and lΘ ≡ E{̃lΘn }. Let gΘ∗, AΘ∗, BΘ∗, and CΘ∗ be defined respectively as gΘ,
AΘ, BΘ, and CΘ evaluated at θ∗.

Assumption A4. Unique Local Minimum. Assume AΘ(θ∗) is positive definite.

Assumption A4 guarantees that θ∗ is a strict local minimum. Since Theorem T1 shows that lΘ is convex
for KDC probability models, A4 and T1 together imply that any strict local minimum θ∗ which satisfies
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A4 must be the unique global minimum. Although this establishes global identifiability of the KDC
probability models, the following Theorem T2 provides a stronger result.

Theorem T2: Consistent Estimation of Parameter Estimates. Assume A1, A2, A3, and A4
hold. Then θ̃n exists for n = 1, 2, . . .. In addition, as n→ ∞, θ̃n → θ∗ w.p.1.

Theorem T2 thus establishes the existence, uniqueness, and consistency of the parameter estimates for
a KDC probability model provided that Assumption A4 is satisfied.

The asymptotic distribution of θ̃n is now characterized.

Assumption A5. OPG Hessian Positive Definiteness. Assume BΘ∗ is positive definite.

Theorem T3: Asymptotic Distribution of Estimates. Assume A1, A2, A3, A4, and A5 hold. As
n→ ∞,

√
n

(
θ̃n − θ∗

)
converges in distribution to a zero-mean Gaussian random vector with covariance

matrix CΘ∗.

Theorem T3 characterizes the asymptotic distribution of the parameter estimates for the purposes of
calculating standard errors of parameter estimates, confidence intervals, and hypothesis testing. For
example, the standard error of the ith element of θ̃n, σi, is defined by the formula: σi = (CΘ∗

ii /n)1/2

where CΘ∗
ii is the ith on-diagonal element of CΘ∗.

In practice, CΘ∗ is not directly observable and must be estimated. The following theorem provides a
mechanisms for estimating CΘ∗ using the sample sandwich covariance matrix estimator

C̃Θ
n ≡ [ÃΘ

n ]−1B̃Θ
n [ÃΘ

n ]−1

(when it exists).

Theorem T4: Hessian and Covariance Matrix Estimation. Assume A1, A2, and A3 hold. Then as
n→ ∞, AΘ

n (θn) → AΘ∗ w.p.1, and BΘ
n (θn) → BΘ∗ w.p.1. In addition, if A4 holds, then CΘ

n (θn) → CΘ∗

w.p.1.

The asymptotic covariance matrix CΘ∗ may thus be estimated using CΘ
n (θn) provided that A4 and A5

hold. In order to check that A4 and A5 hold, Theorem T4 provides a mechanism for estimating AΘ∗

and BΘ∗ by using AΘ
n (θn) and BΘ

n (θn) respectively.

1.5 Model Selection

An important problem in model development is the model selection problem. Here, the researcher has a
relatively small number of theoretically-motivated models of the same empirical phenomena and wishes
to determine which of these models appears to provide the best possible account of the observed data.
This concept is now formalized within the context of the framework developed in this article.
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Let lΘ be the KDC MAP Objective function for model MΘ whose unique global minimum is θ∗. Let lΨ

be the KDC MAP Objective function for model MΨ whose unique global minimum is ψ∗. The objective
of the KDC model selection problem is defined as follows.

• Choose model MΘ if lΘ(θ∗) < lΨ(ψ∗).

• Choose model MΨ if lΨ(ψ∗) < lΘ(θ∗).

• Choose both models MΘ and MΨ if lΨ(ψ∗) = lΘ(θ∗).

In practice, the researcher does not have knowledge of the values of lΘ(θ∗) and lΨ(ψ∗) and so these
quantities must be estimated from the models MΘ and MΨ and the data sample. An estimator of lΘ,
l̂Θn ≡ l̃Θn +kΘ, is called a model selection criterion where the additional model selection penalty term term
kΘ

n : Θ × Ωτ → R is introduced to improve estimation performance for finite samples in a particular
way. Note that kΘ

n ≡ 0 implies l̂n = l̃n which yields the log-likelihood (also known as the cross-entropy
or divergence) model selection criterion. When kΘ

n is not equal to zero, then it is assumed to converge
to zero at a sufficiently fast rate as specified in the following assumption.

Assumption A5. Model Selection Penalty Term. Assume Assumption A1 holds. Assume

√
nkΘ

n (θn; f̃1, . . . , f̃n) → 0

in probability as n→ ∞.

Assumption A5 requires that the model selection penalty term converges to zero as the sample size n
approaches infinity at a particular rate. This constraint upon the convergence rate is not particularly
restrictive since many important model selection penalty terms satisfy Assumption A5. For example,
choosing kΘ

n = 0 results in a log-likelihood criterion as previously noted. Let q be the number of free
parameters in model MΘ. Choosing kΘ

n = q/n results in the well-known Akaike Information Criterion
(AIC) which yields a model selection criterion for providing a better finite-sample unbiased estimate of
lΘ(θ∗) under the assumption that the model is correctly specified (Akaike, 1973; Linhart and Zucchini,
1986). Choosing

kΘ
n = trace([AΘ

n (θn)]−1(θn)BΘ
n (θn))

results in the Generalized Akaike Information Criterion (GAIC) which extends the AIC to situations
where many forms of model misspecification may be present (Linhart and Zucchini, 1986???). Choosing
kΘ

n = (q/2)log(n)/n results in the well-known Bayes/Schwarz Information Criterion (BIC/SIC) which
yields a model selection criterion to support the selection of the model which is ”most probable”. A
more robust version of BIC/SIC is provided by the Generalized Bayes Information Criterion (GBIC)
which is defined by choosing

kΘ
n = (1/2n)log

(
detAΘ

n (θn)
)

+ (q/2n)log(n/2π).
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(Djuric, 1998; also see Shun and McCullagh, 1995). All of the above model selection penalty term choices
satisfy Assumption A5 and are valid provided that Assumptions A1, A2, A3, and A4 hold.

Given a particular model selection criterion, a KDC model selection test (Golden, 2003; also see Vuong,
1989; Rivers and Vuong, 2002) may be used to test the null hypothesis that: H0 : lΘ(θ∗) = lΨ(ψ∗). To
achieve this objective, however, the following quantities need to be defined.

Let

BΘ,Ψ
n ≡ n−1

n∑

i=1

∑

j∈Ji,τ

gΘ
i (gΨ

j )T .

Let

Bn ≡




BΘ
n BΘ,Ψ

n

BΨ,Θ
n BΨ

n


 . (4)

Let

An ≡




BAΘ
n AΘ,Ψ

n

AΨ,Θ
n AΨ

n


 . (5)

Let

Rn ≡



−BΘ

n [AΘ
n ]−1 −BΘ,Ψ

n [AΨ
n ]−1

BΨ,Θ
n [AΘ

n ]−1 BΨ
n [AΨ

n ]−1




where An and Bn are defined as in (4) and (5).

Let cΘt ≡ cΘ(·; ft, . . . , ft−τ) and let cΨt ≡ cΨ(·; ft, . . . , ft−τ). Let the discrepancy variance function, (σZ)2

σ2
Zn

=
1
n

n∑

i=1

∑

j∈Jt,τ

(
cΘi − cΨi

) (
cΘj − cΨj

)
.

Let the discrepancy autocorrelation coefficient function rn : Ψ × Θ × Ωτ+1 → R be defined such that:

rn ≡

[∑n
i=1

∑
j∈Ji,τ ,j 6=i(cΘi − cΨi )(cΘj − cΨj )

]

2τ
∑n

i=1

(
cΘi − cΨj

)2
.

(6)
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Assumption A6: KDC Model Selection Assumptions. A6(i): Assume E{Bn} in (4) evaluated
at (θ∗, ψ∗) is positive definite. A6(ii): Assume E{An} in (5) evaluated at (θ∗, ψ∗) is positive definite.
A6(iii): Assume E{rn}(θ∗, ψ∗) 6= −1/(2τ) where rn is defined as in (6).

Given the above quantities, the KDC model selection test may be formulated following the approach of
Golden (2003; also see Vuong, 1989; Rivers and Vuong, 2002).

• Step 1. Compute the matrix Rn. Let λn be a vector whose ith element is the square of the ith
eigenvalue of Rn, i = 1, . . . , (p+ q). Compute the probability, p1, that a weighted chi-square random
variable with weight vector equal to λn exceeds n(σ∗Zn

)2. If p1 < α, then go to Step 2. Otherwise,
accept H0 : lΘ(θ∗) = lΨ(ψ∗).

• Step 2. Compute the probability, p2, that a zero-mean Gaussian random variable with unit variance
exceeds Zn. If p2 < α, then reject H0 : lΘ(θ∗) = lΨ(ψ∗). Otherwise, accept H0 : lΘ(θ∗) = lΨ(ψ∗).

Assumptions A1, A2, A3, and A6 in conjunction with the theorems provided in Golden (2003) may then
be used to establish that the Type 1 error probability associated with the above procedure is asymptot-
ically bounded by significance level α and the Type 2 error probability approaches zero asymptotically
(see Golden, 2003, for additional details). Also note that A6 implies A4 and A5 will hold for both models
MΘ and MΨ.

1.6 Hypothesis Testing

Theorem T5: Wald Hypothesis Test. Assume A1, A2, A3, A4, and A5 hold. Let H0 : Sθ∗ = s
where S ∈ Rk×q and s ∈ Rk. If H0 is true, then

W̃n ≡ n
(
Sθ̃n − s

)T
[C̃n]−1

(
Sθ̃n − s

)

converges in distribution to a chi-square random variable with k degrees of freedom. If H0 is false, then
Wn → ∞ w.p.1.

Theorem T5 may be used for within-group hypothesis testing applications. For example, consider a KDC
probability model consisting of the digraphs {D1, . . . ,Dq} with corresponding parameters θ1, . . . , θq.
Theorem T3 may be used to test null hypotheses such as H0 : θk = 0 or H0 : θj = θk (j 6= k) through
appropriate choices of the selection matrix S and selection vector s.

Theorem T5 may also be used for between-group hypothesis testing applications. Consider a situation
involving two data sets which are independent random samples from two DGPs respectively. The two
DGPs may be either distinct or identical. Let θ̃1n denote a q-dimensional parameter estimates obtained
from estimating a KDC probability model’s parameters using a data sample from DGP 1. Let the
covariance matrix of θ̃1n be denoted by C̃1

n. Let θ̃2n denote a q-dimensional parameter estimates obtained
from estimating the same KDC probability model’s parameters using a data sample from DGP 2. Let
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the covariance matrix of θ̃1n be denoted by C̃2
n. Let θ1∗ and θ2∗ denote the pseudo-true parameters

corresponding to the asymptotic limits of θ̃1n and θ̃2n respectively (when they exist). Now, by defining,
θ̃ ≡ [θ̃1n θ̃2n] and

C̃n ≡




C̃1
n 0q×q

0q×q C̃2
n


 ,

it immediately follows that the Wald test in Theorem T5 may be used to test hypotheses regarding
whether or not parameter estimates of a KDC Probability Model estimated for one data sample are
significantly different from parameter estimates of that same KDC probability model estimated for
a second data sample. For example, an omnibus test of the null hypothesis H0 : θ1∗ = θ2∗ may be
developed or statistical tests for comparing individual corresponding parameters such as: H0 : θ1∗k = θ2∗k

for k = 1, . . . , q can be developed.
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