
Summary of Research Contributions

Gopal Gupta

10th August, 2017

Below is a summary of the contributions made by my research group over the past 20+ years (in
reverse chronological order). Only major ideas are summarized. My research has been centered around
computational logic, logic programming, and its applications, as well as assistive technology. My group
has solved several problems that were considered impossible to solve by other researchers.

1. Inductive Learning of Default Theories: This line of research extends work done in the field
of inductive logic programming (where one learns a logic program from examples) to learning
normal logic programs, i.e., learning logic programs that contain negation as failure. Normal logic
programs have been shown to model human-style common sense reasoning quite well. The induc-
tive learning algorithms my group has developed learns a default relation as well as exceptions to
it. The learning algorithm can also handle features that range over real numbers. The algorithms
recursively learn exceptions to exceptions and so on thereby producing a learned theory that has
high accuracy. The effort is a step towards what has been dubbed Explainable AI. A prototype
implementation has been developed.

� Farhad Shakerin, Elmer Salazar, and Gopal Gupta. Inductive Learning of Default Theo-
ries. Proc. International Conference on Logic Programming (ICLP), Journal of Theory and
Practice of Logic Programming, Cambridge University Press, to appear.

.

2. Query-driven (Predicate) Answer Set Programming: This problem pertains to executing
answer set programs in a goal-directed, top-down manner. This problem was widely considered
unsolvable and most implementations are based on using a SAT solver, and thus can only handle
propositional programs. The idea of coinductive logic programming pioneered by my group is
what facilitated the first stab at this problem. It culminated in the Galliwasp system, the first
of its kind. Galliwasp was then generalized to the s(ASP) system that can execute predicate
answer set programs directly (where predicates can contain arbitrary terms). All other systems
available thus far can only handle propositional answer set programs. Both Galliwasp and s(ASP)
are publicly available. s(ASP) has been used to develop a number of innovative applications. A
student hackathon was recently organized around it.

� Kyle Marple, Ajay Bansal, Richard Min and Gopal Gupta. Goal-Directed Execution of
Answer Set Programs. Proc. Principles and Practice of Declarative Programming (PPDP),
ACM Press, 2012. pp 35-44.

� Kyle Marple and Gopal Gupta. Galliwasp: A Goal-Directed Answer Set Solver. Selected
Papers from LOPSTR’12. Springer LNCS 7844. pp. 122-136. 2013.

� Kyle Marple, Elmer Salazar, Zhuo Chen, Gopal Gupta. The s(ASP) Predicate Answer Set
Programming System. ALP Newsletter. March 2017.

3. Coinductive Logic Programming: The idea is to give operational semantics to compute an-
swers that are in the greatest fixpoint semantics. Coinductive LP has far-reaching applications.
Standard logic programming (or standard computation) is based on induction (least fixpoint se-
mantics). Infinite structures such as perpetual programs, ω-automata, etc., cannot be modeled
(at least elegantly) by induction. Rather, they need coinduction for modeling. The paper that in-
troduced coinductive LP received the ICLP 2016 test-of-time award for being the most influential



paper of ICLP 2006. Coinductive logic programming has been in many Prolog implementations,
most notably in SWI Prolog.

� L. Simon, A. Mallya, A. Bansal, G. Gupta. Coinductive Logic Programming. In Proc. Int’l
Conference on Logic Programming. 2006. Springer Verlag LNCS 4079. pp. 330-345.

� G. Gupta, N. Saeedloei, R. Min, B. DeVries, K. Marple, F. Kluzniak. Infinite Computation,
Co-induction, and Computational Logic. In Proc. 4th International Conference on Algebra
and Co-algebra in Computer Science. Springer Verlag, pp. 40-54.

� Neda Saeedloei, Gopal Gupta. Coinductive Constraint Logic Programming. FLOPS 2012.
Springer LNCS 7294. pp. 243-259

4. Modeling Real-time Systems with CLP(R): It is hard to model real-time systems faithfully
(as time is continuous). Most systems model time by discretizing it. Discretizing time only
produces an approximation. This work showed how time in real-time systems can be faithfully
modeled using constraint logic programming over reals (CLP(R)). We began by showing how
timed automata can be faithfully modeled; this was then generalized to timed grammars, timed
push down automata, timed pi-calculus, timed linear temporal logic, timed planning, etc.

� G. Gupta, E. Pontelli. A Constraint-based Approach to Specification and Verification of
Real-time Systems. In Proc. IEEE Real-time System Symposium, San Francisco, pp. 230-
239. Dec. ’97.

� N. Saeedloei, G. Gupta. Timed Definite Clause ω-Grammars. Proc. 26th International
Conference on Logic Programming. 2010. pp. 212-221

� N. Saeedloei, G. Gupta. Timed π-calculus. Proc. 8th International Symposium on Trusted
Global Computing. Buenos Aires. 2013. Springer Verlag, LNCS 7844. pp. 122-136.

5. Nemeth Braille Math Code to Print PDF Translation: This problem involved automatic
translation of mathematics and text written using Nemeth code and contracted Braille, respec-
tively, to print PDF so that a sighted person can read what a blind person has brailled. This
problem is called the backtranslation problem. It is useful in the classroom where the pupil is
blind and the teacher sighted. Nemeth code was developed (1951) before formal study of syntax
was started by Chomsky (1957). Nemeth code is a context sensitive language and is specified via
examples. The backtranslation problem was widely considered unsolvable. My group solved it
using logic programming and Horn clause semantics approach. The research also resulted in a
company that won many SBIR awards, and produced the BrailleMath product.

� A. Karshmer, G. Gupta, S. Geiger, C. Weaver. “A Framework for Translation of Braille
Nemeth Math to Latex,” In Proc. ACM Conference on Assistive Technologies, ACM Press,
pp. 136-143, Mar. 1998.

6. An Aural Language for Voice-based Browsing: The idea is to have a formal language that
can be spoken to give commands to an aural browser. This system gives the user the ability to
mark specific points in the passage being read by the aural browser through voice utterances.
Complex navigation strategies can then be created and aurally spoken by the user based on these
voice-marks.

� M. Nichols, Q. Wang, G. Gupta. A VoiceXML-based Spoken Scripting Language for Voice-
based Web Navigation. In Human Computer Interaction Conference, July 2005, Lawrence
Erlbaum and Associates.

7. Constraint Spreadsheets: The idea is to generalize a spreadsheet to support finite domain
constraints. It has been implemented via at least 5 student MS theses, the latest one being



the PlanEx tool in Abhilash Tiwari’s MS thesis in 2009. An earlier version of the system was
successfully used to automatically design CS and EE Department’s course schedule.

� G. Gupta, S. Akhter. Knowledgesheet: A Graphical Spreadsheet Interface for Interactively
Developing A Class of Constraint Programs. In Proc. Practical Aspects of Declarative Lan-
guages, Lecture Notes in Computer Science 1753, Springer Verlag, 2000.

8. Tabled Logic based on Dynamic Reordering of Alternatives: The DRA techniques realizes
tabling in logic programming by repeatedly reordering the alternatives in Prolog’s search tree at
runtime. The main advantage is the simplicity of this technique as well as its space-efficiency. The
method influenced Neng-Fa Zhou’s linear tabling method included in the B-Prolog system. Our
work on DRA also lead to invention of mode-directed tabling that allows dynamic programming
problems to be elegantly solved within logic programming. Nearly all tabled Prolog systems
incorporate our idea of mode-directed tabling, e.g., SWI, YAPTAB, XSB, PICAT. Mode-directed
tabled LP based planning in PICAT, for instance, competes with the best available planners. The
mode-directed tabling paper received the “most practical paper” award at PADL2004.

� H-F. Guo, G. Gupta. A Simple Technique for Implementing Tabling based on Dynamic
Reordering of Alternatives. Proc. 17th Int’l Conf. on Logic Programming, Papphos, Cyprus,
Springer Verlag LNCS 2237. pp 181-198.

� H-F. Guo, G. Gupta. Simplifying Dynamic Programming via Mode-directed Tabling. In
Proc. Sixth International Conference on Practical Aspects of Declarative Languages. 2004.
pp. 163-177.

9. Horn Logical Denotational Semantics: The idea is to use logic programming to express
denotational semantics. Both syntax and semantics can be specified as logic programs, and an in-
terpreter obtained (so we have both “executable syntax” and “executable semantics”). Compiled
code can be produced via partial evaluation (first Futamura projection). There are many applica-
tions: from provably correct code generation, to rapidly implementing domain specific languages,
to processing languages that only admit context sensitive grammars, to rapidly building provably
correct translators. The idea generalizes to continuation semantics quite elegantly. Horn logic
denotations is the technology behind Interoperate, Inc., one of the two companies I founded.

� G. Gupta Horn Logic Denotations and Their Applications. The Logic Programming
Paradigm: A 25 year perspective. Springer Verlag. pp. 127-160. (Proceedings of Work-
shop on Current trends and Future Directions in Logic Programming Research, April ’98).

� Qian Wang, G. Gupta, M. Leuschel. Towards Provably Correct Code Generation via Horn
Logical Continuation Semantics. in Proc. International Conf. on Practical Aspects of
Declarative Languages 2005. Springer Verlag. LNCS 3350. pp. 98-112. 2005.

10. Incremental Stack-Splitting: A scalable technique for implementing or-parallelism:
This technique was a culmination of the extensive work that my group did in the 90s in realizing
and-or parallel execution models for logic programs and studying the problem of supporting mul-
tiple environments in or-parallel execution. Stack-splitting is an extension of the stack-copying
technique devised by Khayri Ali of SICS. The stack-splitting technique is scalable in that it can
be used to realize or-parallelism on a a large number of processors that may or may not share
memory. It has been deployed for building all types of or-parallel systems, particularly by Santos
Costa and Rocha’s group in Porto. I believe it to be the best technique for parallelizing search.

� G. Gupta and E. Pontelli. Stack-splitting: A Simple Technique for Implementing Or-
parallelism on Distributed Machines. In Proc. 16th International Conference on Logic Pro-
gramming, 1999. MIT Press, pp. 290-305.



� E. Pontelli, K. Villaverde, H. Guo, G. Gupta. Stack Splitting: a Technique for Efficient
Exploitation of Search Parallelism on Share-nothing Platforms. Journal of Parallel and Dis-
tributed Computing. 2006. pp. 1267-1293.

11. Analysis of Or-parallelism: The major result achieved here was to show that or-parallel search
(as in logic programming or AI) cannot be parallelized without incurring a non-constant time
overhead: i.e., it is not possible to devise a scheme that will perform all operations involved in
an (or-parallel) search in constant time. The result first appeared in ACM TOPLAS; a more
formal proof appeared in New Generation Computing. This result also allowed various models
for realizing or-parallelism to be categorized and classified. Big step forward in understanding or-
parallelism (recall that the Japanese Fifth Generation project all but abandoned or-parallelism).

� G. Gupta and B. Jayaraman “Analysis of Or-parallel Execution Models,” ACM Transactions
On Programming Languages and Systems (ACM TOPLAS), Vol 15, No. 4, September 1993,
pp. 659-680.

� D. Ranjan, E. Pontelli, and G. Gupta. “On the Complexity of Or-parallelism,” In New
Generation Computing: An International Journal Vol. 17, No. 3, May 1999.


