Syntax

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine
Syntax

- Symbols for building words,
- Structure of words,
- Structure of well-formed phrases,
- Structure of sentences.

Only syntactically correct programs also have a semantics.
Examples

Arithmetic

• Symbols: 0–9, +, −, *, /, (,)
• Words: numerals.
• Phrases: arithmetic expressions.
• Sentences: phrases.

Pascal-like programming language

• Symbols: letters, digits, operators, ...
• Words: keywords, idents, numerals, ...
• Phrases: expressions, statements, ...
• Sentences: programs.

Languages have internal structure.
Backus-Naur Form (BNF)

Specification of formal languages.

- Set of equations.
- Left-hand-side: *non-terminal*

 Name of a structural type.
- Right-hand-side: list of forms

 (Terminal) symbols and non-terminals.

\[
\langle \text{non-terminal} \rangle ::= \\
form_1 \mid \form_2 \mid \ldots \mid \form_n
\]
Example

\[\langle \text{digit} \rangle ::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \]

\[\langle \text{operator} \rangle ::= + \mid - \mid * \mid / \]

\[\langle \text{numeral} \rangle ::= \langle \text{digit} \rangle \mid \langle \text{digit} \rangle \langle \text{numeral} \rangle \]

\[\langle \text{expression} \rangle ::= \]
\[\langle \text{numeral} \rangle \mid (\langle \text{expression} \rangle) \mid \]
\[\langle \text{expression} \rangle \langle \text{operator} \rangle \langle \text{expression} \rangle \]

Structure of an expression is illustrated by its derivation tree.
Ambiguous Syntax Definitions

Expression $4 \times 2 + 1$ has two derivation trees!

Unambiguous definition

\[
\begin{align*}
\langle \text{expression} \rangle & ::= \\
& \langle \text{expression} \rangle \langle \text{lowop} \rangle \langle \text{term} \rangle \mid \\
& \langle \text{term} \rangle \\
\langle \text{term} \rangle & ::= \langle \text{term} \rangle \langle \text{highop} \rangle \langle \text{factor} \rangle \mid \langle \text{factor} \rangle \\
\langle \text{factor} \rangle & ::= \langle \text{numeral} \rangle \mid (\langle \text{expression} \rangle) \\
\langle \text{lowop} \rangle & ::= + \mid - \\
\langle \text{highop} \rangle & ::= * \mid /
\end{align*}
\]

Extra level of structure makes derivation unique but syntax complicated.
Semantics

We do not need to use artificially complex BNF definitions!

Why?

Derivation trees are the real sentences of the language!

(Strings of symbols are just abbreviations of trees; these abbreviations may be ambiguous).
Two BNF Definitions

- **Concrete syntax**

 Determine derivation tree from string abbreviation (parsing).

- **Abstract syntax**

 Analyze structure of tree and determine its semantics.

Tree generated by concrete definition identifies a derivation tree for the string in the abstract definition.
Abstract Syntax Definitions

- Descriptions of structure.
- Terminal symbols disappear.
- Building blocks are words.

Abstract syntax is studied at the word level.

\[
\begin{align*}
\langle \text{expression} \rangle & ::= \\
& \langle \text{numeral} \rangle \mid \\
& \langle \text{expression} \rangle \langle \text{operator} \rangle \langle \text{expression} \rangle \mid \\
& \text{left-paren} \ \langle \text{expression} \rangle \ \text{right-paren}
\end{align*}
\]

\[
\begin{align*}
\langle \text{operator} \rangle & ::= \text{plus} \mid \text{minus} \mid \text{mult} \mid \text{div} \\
\langle \text{numeral} \rangle & ::= \text{zero} \mid \text{one} \mid \ldots \mid \text{ninety} \mid \ldots
\end{align*}
\]

Structure remains, text vanishes.
Set Theory

More abstract view of abstract syntax.

- Non-terminal names set of phrases specified by corresponding BNF rule.

 Expression, Op, Numeral

- Rules replaced by syntax builder operations, one for each form of the rule.

 numeral-exp: Numeral → Expression
 compound-exp: Expression × Op × Expression → Expression
 bracket-exp: Expression → Expression

- Terminal words replaced by constants

 plus: Op
 zero: Numeral

 ...

World of words and derivation trees replaced by world of sets and operations.
More Readable Version

• Syntax domains.
• BNF rules.

Abstract Syntax:

\[E \in \text{Expression} \]
\[O \in \text{Operator} \]
\[N \in \text{Numeral} \]
\[E ::= N \mid EO E \mid (E) \]
\[O ::= + \mid - \mid * \mid / \]

\textit{N is just set of values.}
Mathematical Induction

Strategy for proving P on natural numbers.

- Induction basis: Show that $P(0)$ holds.
- Induction hypothesis: assume $P(i)$.
- Induction step: prove $P(i + 1)$

Proposition There exist exactly $n!$ permutations of n objects.

Proof We use mathematical induction.

- **Basis:** There exists exactly $1 = 0!$ permutation of 0 objects (the “empty” permutation).
- **Hypothesis:** $n!$ permutations of n objects exist.
- **Step:** Add a new object j to n objects. For each permutation $\langle k_{i_1}, k_{i_2}, \ldots, k_{i_n} \rangle$ of the n objects, $n + 1$ permutations result: $\langle j, k_{i_1}, k_{i_2}, \ldots, k_{i_n} \rangle, \langle k_{i_1}, j, k_{i_2}, \ldots, k_{i_n} \rangle, \ldots, \langle k_{i_1}, k_{i_2}, \ldots, k_{i_n}, j \rangle$. Since there are $n!$ permutations of n objects, there are $(n + 1) \times n! = (n + 1)!$ permutations of $n + 1$ objects.
Structural Induction

Mathematical induction relies on structure of natural numbers:

$$N ::= 0 \mid N + 1$$

- Show that all trees of zero depth has P.
- Assume trees of depth m or less have P.
- Prove that tree of depth $m + 1$ has P.

Arbitrary syntax domains:

- $D ::= \text{Option}_1 \mid \text{Option}_2 \mid \ldots \mid \text{Option}_n$
- To prove that all members of D have P
 1. Assume occurrences of D in Option_i have P,
 2. Prove that Option_i has P.

(for each Option_i).
Example

\[E : \text{Expression} \]
\[E ::= \text{zero} \mid E_1 \ast E_2 \mid (E) \]

Proposition All members of Expression have the same number of left parentheses as the number of right parentheses.

Proof

1. zero: \(\text{left}(E) = 0 = \text{right}(E) \).
2. \(E_1 \ast E_2 \): \(\text{left}(E) = \text{left}(E_1) + \text{left}(E_2) = \text{right}(E_1) + \text{right}(E_2) = \text{right}(E) \).
3. \((E') \): \(\text{left}(E) = 1 + \text{left}(E') = 1 + \text{right}(E') = \text{right}(E) \).
Simultaneous Induction

\[
S ::= *E*
\]
\[
E ::= +S \mid **
\]

Mutually recursive definition of syntax domains.

Proposition All S-values have an even number of * occurences.

Proof We prove by simultaneous induction on S and E “all S-values and all E-values have an even number of * occurences”.

1. $*E*$: $\text{number}(S) = 2 + \text{number}(E)$ which is even, since $\text{number}(E)$ is even.
2. $+S$: $\text{number}(E) = \text{number}(S)$ which is even.
3. $**$: $\text{number}(**) = 2$ which is even.