
Logic-based Explainable and Incremental
Machine Learning

Gopal Gupta
Huaduo Wang, Kinjal Basu, Farhad Shakerin, Elmer Salazar
Sarat Chandra Varanasi, Parth Padalkar, Sopam Dasgupta

Department of Computer Science
The University of Texas at Dallas, Richardson, USA

Abstract. Mainstream machine learning methods lack interpretability,
explainability, incrementality, and data-economy. We propose using logic
programming to rectify these problems. We discuss the FOLD family
of rule-based machine learning algorithms that learn models from rela-
tional datasets as a set of default rules. These models are competitive
with state-of-the-art machine learning systems in terms of accuracy and
execution efficiency. We also motivate how logic programming can be
useful for theory revision and explanation based learning.

1 Introduction

Dramatic success of machine learning has led to a plethora of artificial intel-
ligence (AI) applications. The effectiveness of these machine learning systems,
however, is limited in several ways:

1. Lack of Interpretability: The models learned by machine learning systems
are opaque, i.e., they are not comprehensible by humans. This is mainly be-
cause these statistical machine learning methods produce models that are
complex algebraic solutions to optimization problems such as risk minimiza-
tion or likelihood maximization.

2. Lack of Explainability: These models are unable to produce a justification
for a prediction they compute for a new data sample.

3. Lack of Incrementality: These methods are unable to incrementally up-
date a learned model as new data is encountered.

4. Lack of Data Economy: These methods need large amounts of data to
compute a model. Humans, in contrast, are able to learn from a small number
of examples.

In this position paper we show that these problems are greatly alleviated if
we develop machine learning methods that learn default theories coded in logic
programming. The whole field of inductive logic programming (ILP) has been de-
veloped in which Horn clauses are learned from background knowledge, positive,
and negative examples [8]. Rules with negated goals in the body are also learned
in ILP as nonmonotonic logic programs and default rules [27, 11]. Representing a



2 Gupta et al

model as default rules brings significant advantages wrt interpretability, explain-
ability, incremental learning, and data economy. We present LP-based machine
learning algorithms that are interpretable and explainable, as well as LP-based
reinforcement learning for incremental learning, and LP-based explanation based
learning for solving data economy issues.

Default rules are an excellent way of capturing the logic underlying a rela-
tional dataset. Defaults are used by humans in their day-to-day reasoning [28,
10]. Most datasets are generated from human-driven activity (e.g., loan approval
by bank officials) and our experiments indicate that the rules underlying the
model learned from these datasets can be represented quite faithfully and suc-
cinctly with default rules. Default rules are used by humans to learn a concept in
an elaboration tolerant manner, as they allow humans to constantly adjust the
decision boundary. We have developed machine learning algorithms that learn
default rules (the model) from relational data containing categorical (i.e., dis-
crete) and numerical values that are competitive with state-of-the-art machine
learning techniques. These algorithms are interpretable and explainable.

Once a set of default rules has been learned from data, it is possible that these
rules may be wrong (possibly because we over-generalized or under-generalized).
When human beings learn from examples (by formulating a rule of thumb in
their mind), then when they encounter an example that goes against the learned
rule, they revise the rule in light of this new example. For example, suppose
we learn the rule that if object X is a fruit, then it goes into the refrigerator.
Later, we learn from experience or someone may tell us that pineapples must
not go into the refrigerator. In that case, we will revise the rule, changing it to:
if X is a fruit, it goes into the refrigerator, except for pineapples. This is a form
of incremental or reinforcement learning [1]. We will refer it to as logic-based
reinforcement learning. Logic-based reinforcement learning can be regarded as
theory revision. Logic-based reinforcement learning is elegantly modeled in logic
programming using default theories as well.

Traditional machine learning methods need large amounts of data to learn.
In contrast, humans can learn from a small number of examples. The problem
of learning from a small number of examples has been explored under the topic
of explanation-based learning (EBL) [16]. Explanation-based learning can be
further developed and applied to practical applications within the framework of
logic programming through the use of default theories.

Finally, knowledge expressed as a logic program can be incorporated in the
neural learning process. Thus, logic programming can play an important role in
neuro-symbolic learning [34, 17, 18]. However, we won’t discuss this topic due to
lack of space. Logic programming can make a significant difference in this area.

Note that we only give a brief overview of logic-based reinforcement learning
and explanation-based learning. These techniques are really important for the
field of machine learning, and logic programming can provide excellent solutions.
Our hope is that the logic programming community will invest more effort in
further developing them.



Logic-based Explainable and Incremental Machine Learning 3

2 Default Rules

Default Logic [20] is a non-monotonic logic to formalize commonsense reasoning.
A default D is an expression of the form

A : MB

Γ
which states that the conclusion Γ can be inferred if pre-requisite A holds and B
is justified. MB stands for “it is consistent to believe B”. If we restrict ourselves
to logic programming, then normal logic programs can encode a default theory
quite elegantly [12]. A default of the form:

α1 ∧ α2 ∧ . . . ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ
can be formalized as the normal logic programming rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents negation-as-failure.
We call such rules default rules. Thus, the default

bird(X) : M¬penguin(X)

fly(X)

will be represented as the following default rule in normal logic programming:
fly(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion
that X can fly, the default part of the rule, and not penguin(X) the exception
part of the rule.

3 Default Rules as Machine Learning Models

Default rules allow knowledge to be modeled in an elaboration tolerant manner
[4, 12]. Default rules are an excellent vehicle for representing inductive general-
izations. Humans indeed represent inductive generalizations as default rules [28,
10]. Arguably, the sophistication of the human thought process is in large part
due to the copious use of default rules [12].

Consider the example about birds above. We observe that bird 1 can fly, bird
2 can fly, bird 3 can fly, and so on. From this we can generalize and learn the
default rule that “birds fly.” But then we notice that a few of the birds that are
penguins, do not fly. So we add an exception to our rule: “birds fly, unless they
are penguins”. What we are doing is really adjusting our decision boundary, as
illustrated in Fig. 1(i) and Fig. 1(ii) (black dots represents normal birds, red dots
represent penguins). In logic programming, we can make the exception part of
the rule explicit, and code it as:

fly(X) :- bird(X), not abnormal bird(X).

abnormal bird(X) :- penguin(X).

Suppose, we later discover that there is a subclass of penguins (called super-
penguins [11]) that can fly. In such a case, we have learned an exception to an



4 Gupta et al

exception (See Fig. 1(iii); green dot represents a super-penguin). This will be
coded in logic programming as:

fly(X) :- bird(X), not abnormal bird(X).

abnormal bird(X) :- penguin(X), not abnormal penguin(X).

abnormal penguin(X) :- superpenguin(X).

Thus, default rules with exceptions, exceptions to exceptions, exceptions to ex-
ceptions to exceptions, and so on, allow us to dynamically refine our decision
boundary as our knowledge of a concept evolves. This is the insight that the
FOLD family of algorithms uses to learn a model underlying a dataset. Figure
1 illustrates the idea.

3.1 FOLD Family of Machine Learning Algorithms

We have developed the FOLD family of algorithms that output a model repre-
sented as default rules. Our inspiration is the FOIL algorithm of Quinlan [19].
The FOLD algorithm is a top-down rule-learning algorithm [26]. It starts with
the candidate rule

p(X,L) :- true.

where p(X,L) is the target predicate to learn, and states that record X has the
label L (for example, for the Titanic survival dataset, the target predicate will be
status(Passenger Id, S), where S is either survived or perished). It then
extends the body with a selected literal (predicate) from among the features so
as to cover maximum number of positive examples and avoid covering maximum
number of negative examples. The process of selecting a literal to add to the body
of the rule relies on heuristics. Traditionally, the Information Gain (IG) heuristic
has been used [19, 26]. The IG heuristic was pioneered in the FOIL algorithm
[19] for learning logic programs and adapted by us for the FOLD algorithm
[26] to learn default theories. The FOLD algorithm learns a default theory, so
in the next step of learning, it swaps the remaining uncovered positive and
negative examples, and recursively applies the literal selection step to learn the
exception to the default. Literal selection with swapping of uncovered positive
and negative examples continues until reasonable accuracy is obtained. Thus,
given the following information, represented as predicates:

bird(tweety). bird(woody).

cat(kitty). penguin(polly).

bird(polly).
and given positive examples:



Logic-based Explainable and Incremental Machine Learning 5

E+: fly(tweety). fly(woody).
and negative examples

E-: fly(polly). fly(kitty).
FOLD will learn the default theory:

fly(X) :- bird(X), not abnormal(X).

abnormal(X) :- penguin(X).

The FOLD algorithm inspired a family of algorithms for learning stratified nor-
mal logic programs: LIME-FOLD [24], SHAP-FOLD [25], FOLD-R [23], FOLD-
R++ [29], FOLD-RM [32], FOLD-SE [30] and FOLD-TR [31]. Various algo-
rithms in this family differ in the heuristic used for literal selection as well
as how efficiently the heuristic is computed. Given a labeled training dataset,
these learning algorithms learn a default theory that serves as a model. The
default theory is represented as a stratified normal logic program, and hence is
interpretable. Given a new data record, the model will predict the outcome by
executing the logic program. The proof tree generated during execution serves
as an explanation for the decision reached by the model.

For the FOLD algorithm family, the dataset can have numerical and categori-
cal features, however, the classification label should be categorical. LIME-FOLD
is based on using the LIME method [21] for determining the level of contribution
of each feature to a prediction [24]. SHAP-FOLD uses Shapley values [15] in-
stead. FOLD-R and FOLD-R++ are binary classifiers that use information gain
[19] as the heuristic, where FOLD-R++ uses prefix sums to speed up the compu-
tation. FOLD-RM is a multi-class classifier version of FOLD-R++. FOLD-SE is
based on a new heuristic called Gini Impurity [14]. This new heuristic leads to a
significant reduction in the number of learned default rules and literals. FOLD-
SE provides scalable interpretabilty, in that the number of default rules learned
does not increase with the size of the dataset. The number of rules learned may
be as small as 2 for a highly accurate model given datasets of sizes as large as
150,000. FOLD-TR [31] uses the FOLD algorithm to learn to rank.

3.2 Examples and Performance

We next give an example. The Titanic survival prediction is a classical classi-
fication challenge, which contains 891 passengers as training examples and 418
passengers as testing examples. The default rule-set learned by our FOLD al-
gorithm is shown below. It captures the underlying logic of the model, namely,
that female infant passengers, aged less than 5 in 3rd class who paid fare less
than or equal to 10.463 units, perished. Male passengers perished unless they
paid a fare in the range 26.25 to 26.387 units inclusive or they were younger
than 12 with 2 or fewer relatives and were not without parents.

status(X,perished) :- class(X,'3'), not sex(X,'male'),

age(X,N1), N1=<5.0, fare(X,N4), N4=<10.463.

status(X,perished) :- sex(X,'male'), not ab1(X), not ab3(X).

ab1(X) :- fare(X,N4), N4>26.25, N4=<26.387.

ab2(X) :- number_of_parents_children(X,N3), N3=<0.0,

age(X,N1),N1=<11.0.



6 Gupta et al

ab3(X) :- age(X,N1),N1=<12.0, number_of_siblings_spouses(X,N2),

N2=<2.0, not ab2(X).

status(X,survived) :- not status(X,perished).

The rules represent a default theory with (nested) exceptions (ab1, ab2,

ab3). If a person did not perish, they survived. The model’s accuracy is 0.98,
precision is 1.0, recall is 0.96, and F1-score is 0.98 [1]. These rules are inter-
pretable by a human.

The learned program can be executed in a Prolog system or an answer set
programming system such as s(CASP) [3]. The s(CASP) system can also gener-
ate a proof tree that serves as an explanation for a prediction made for a given
input. The FOLD-SE system itself also generates an explanation. Explainability
is important for understanding the prediction made by a machine learned model.
The FOLD family of algorithms are comparable in accuracy to state-of-the-art
machine learning systems such as XGBoost [6] and Multi-Layer Perceptrons
(MLPs) [1]. XGBoost is a very popular machine learning method based on gra-
dient boosting, while MLPs are neural networks. The FOLD family of algorithms
is an order of magnitude faster than XGBoost and MLPs, and, in addition, is
explainable. The FOLD family algorithms perform minimal pre-processing of
the dataset (no need for one-hot encoding [1], for example). Table 1 shows the
performance of FOLD-SE compared to the most prominent rule-based machine
learning algorithm called RIPPER [7] on selected datasets (a more extensive
comparison can be found elsewhere [30]).

We can see that FOLD-SE outperforms RIPPER on the number of rules
generated and execution time. The number of rules may go down from approxi-
mately 180 to between 2 and 3 (for rain in Australia dataset, for example). The
results reported are an average over 10 runs, so the number of rules reported
in the table can be fractional. The scalability of FOLD-SE with respect to in-
terpretability, namely, the number of rules generated is small regardless of the
size of the dataset, shows the power of representing inductive generalizations as
default rules.

Data Set RIPPER FOLD-SE

Name Rows Cols Acc F1 T(ms) Rules Preds Acc F1 T(ms) Rules Preds

acute 120 7 0.93 0.92 95 2.0 4.0 1.0 1.0 1 2.0 3.0

heart 270 14 0.76 0.77 317 5.4 12.9 0.74 0.77 13 4.0 9.1

breast-w 699 10 0.93 0.90 319 14.4 19.9 0.94 0.92 9 3.5 6.3

eeg 14980 15 0.55 0.36 12,996 43.4 134.7 0.67 0.68 1,227 5.1 12.1

cr. card 30000 24 0.76 0.84 49,940 36.5 150.7 0.82 0.89 3,513 2.0 3.0

adult 32561 15 0.71 0.77 63,480 41.4 168.4 0.84 0.90 1,746 2.0 5.0

rain in aus 145460 24 0.63 0.70 3118,025 180.1 776.4 0.82 0.89 10,243 2.5 6.1

Table 1. Comparison of RIPPER and FOLD-SE on selected Datasets

Table 2 compares the performance of FOLD-SE with state-of-the-art machine
learning tools XGBoost and Multilayer Perceptrons (MLPs) on training time
(in milliseconds). Note that Accuracy and F1-score that are standard metrics
[1] are reported. Table dimension is also given (Rows x Columns). The best



Logic-based Explainable and Incremental Machine Learning 7

Data Set XGBoost MLP FOLD-SE

Name Rows Cols Acc F1 T(ms) Acc F1 T(ms) Acc F1 T(ms)

acute 120 7 1.0 1.0 122 0.99 0.99 22 1.0 1.0 1

heart 270 14 0.82 0.83 247 0.76 0.78 95 0.74 0.77 13

breast-w 699 10 0.95 0.96 186 0.97 0.98 48 0.94 0.92 9

eeg 14980 15 0.64 0.71 46,472 0.69 0.71 9,001 0.67 0.68 1,227

credit card 30000 24 NA NA NA NA NA NA 0.82 0.89 3,513

adult 32561 15 0.87 0.92 424,686 0.81 0.87 300,380 0.84 0.90 1,746

rain in aus 145460 24 0.84 0.90 385,456 0.81 0.88 243,990 0.82 0.89 10,243

Table 2. Comparison of XGBoost, MLP, and FOLD-SE

performer is highlighted in bold. FOLD-SE is comparable in accuracy to widely
used machine learning systems such as XGBoost and MLPs, yet it is an order
of magnitude faster and is explainable. Thus, the default rule representation
of machine learning models is quite effective. Note that the FOLD algorithms
have been extensively compared with other ILP methods that learn answer set
programs elsewhere [32, 29, 30, 25]. We do not repeat the comparison here due
to lack of space. FOLD-SE outperforms Decision Trees [1] in terms of brevity
of explanation. For example, for the adult dataset, the tree generated in the
Decision Tree method has 4000+ nodes, around half of which are leaf nodes. This
translates into 2,000 odd decision rules. Also, the average depth of leaf nodes is
24.7. Therefore, there would be around 50,000 predicates in the decision rule-set.
The FOLD-SE algorithm, in contrast, only generates 2 rules with 5 predicates,
while achieving greater accuracy.

Default rules can also be used to make convolutional neural networks (CNNs)
explainable as done in the NeSyFOLD system [18], for example (CNNs are neural
networks designed for learning from image data).

4 Logic-based Incremental Learning

The FOLD family of algorithms permits us to learn explainable theories from
positive and negative examples. Once a theory is learned, we may encounter
further instances (examples) and we may attempt to explain them using this
learned theory. If we succeed, our beliefs get stronger, however, if we fail, we
update our beliefs to accommodate the new example. For instance, let’s say a
child drops a glass object on the floor. The object shatters. After a few such
mishaps, the child quickly learns the rule “a glass object dropped on the floor
will shatter” and will be careful afterwards when holding glass objects. However,
later, the child drops another glass object, but the object falls on a soft surface
(e.g., carpeted surface), and does not break. The child then updates the prior
belief to “a glass object dropped on the floor will shatter, unless the floor is
carpeted”.

This action/reward-based learning technique of humans closely relates to Re-
inforcement Learning (RL) [1] in the realm of Machine Learning. In RL, while
exploring an environment, an agent gets positive/negative rewards based on its
actions. From these rewards, the agent may learn—and subsequently revise—a



8 Gupta et al

policy to take better actions in its operating environment. The policy can be rep-
resented symbolically as a default rule-set, and continuously refined. To achieve
this we need a theory revision framework that can be applied to default rules.
We have developed such an incremental learning framework [5] that we summa-
rize next. This work is distinct from our work on FOLD family of algorithms
described earlier. Note that incremental learning is performed by revising the
existing theory through the use of the s(CASP) goal-directed answer set pro-
gramming (ASP) system [3]. With the s(CASP) system, we can obtain a proof
tree for any reasoning task performed. This tree can be analyzed and used to
update the rules. We illustrate our incremental learning framework through an
example.

Consider a house that has sensors installed to protect it from fires and floods.
To protect from fire, a fire sensor is installed that will automatically turn on
water sprinklers installed in the house if fire is detected. Likewise, a water leak
detection sensor in the house will automatically turn off water supply, if water
is detected on the floor/carpet and no one is present in the house. The following
logic program models these rules:

fireDetected :- fire.

turnSprinklerOn :- fireDetected.

sprinklerOn :- turnSprinklerOn.

water :- sprinklerOn.

sprinklerOff :- waterSupplyOff.

waterSupplyOff :- turnWaterSupplyOff.

turnWaterSupplyOff :- houseEmpty, waterLeakDetected.

waterLeakDetected :- water.

houseFloods :- water, not waterSupplyOff.

houseBurns :- fireDetected, SprinklerOff.

houseSafe :- not houseFloods, not houseBurns.

The program is self-explanatory, and models fluents (sprinklerOn,
sprinklerOff, waterLeakDetected, fireDetected, fire, water,

houseEmpty) and actuators (turnWaterSupplyOff, turnSprinklerOn).
The fluents fire, water, and houseEmpty correspond to sensors. For simplicity,
time is not considered. Note that ‘fire’ means fire broke out in the house and
‘water’ means that a water leak occurred in the house.

Given the theory above, if we add the fact fire. to it, we will find that the
property houseBurns defined above will succeed. This is because the occurrence
of fire eventually leads to sprinklers being turned on, which causes water to spill
on the floor, which, in turn, causes the flood protection system to turn on, and
turn off the water supply. We want houseBurns to fail. To ensure that it fails,
we have to recognize that the water supply should be turned off due to a water
leak in an empty house unless the house is on fire:

turnWaterSupplyOff :- houseEmpty, waterLeakDetected,

not fireDetected.



Logic-based Explainable and Incremental Machine Learning 9

Therefore, a simple patch to the theory shown above will ensure that houseBurns
fails in all situations. By adding not fireDetected we are subtracting knowledge
preventing houseBurns from succeeding.

Note that to solve the theory revision problem we should be able to ana-
lyze the resulting search tree both when a query succeeds or when it fails. The
s(CASP) system provides access to the search tree through the justification tree
it produces [2]. For a failed query, we obtain the (successful) search tree of the
negated query, and analyze its corresponding justification tree. There has been a
significant amount of work done on theory revision (or knowledge refinement) in
the context of logic [22]. Most of this work assumes that the theory is expressed
using Horn clauses. Adding negation-as-failure through answer set programming
(along with the ability to obtain proof-trees for queries through s(CASP)) al-
lows for a more powerful theory revision framework [5]. This work is a first step
towards building more powerful theory revision frameworks based on using logic
programming, specifically, goal-directed answer set programming.

5 Explanation-based Learning

Machine learning algorithms require large amounts of data to learn a model. Ide-
ally, a small amount of data should be sufficient for learning, including learning
or generalizing from just one example. In order to do so, however, background
(commonsense) knowledge is essential. This aspect is important in machine learn-
ing and has been explored under the topic of explanation-based learning (EBL).
Logic programming can play an important role in EBL. EBL has been exten-
sively investigated in the past [9, 33].

EBL essentially uses prior knowledge to“explain” each training example. An
explanation identifies properties that are relevant to a target concept. EBL trades
a large number of examples needed in traditional machine learning with back-
ground knowledge (called domain theory) for the target concept. The domain
theory should be correct (no negative examples entailed), complete (all positive
examples are covered), and tractable (each positive example can be explained).
It must be noted that EBL has been viewed as a variation of partial evalua-
tion [13]. Traditionally, EBL takes as input a set of training examples, a domain
theory expressed using Horn clauses, and operationality criteria that restrict
the hypothesis space to a fixed set of predicates, e.g., those needed to directly
describe the examples. The goal is to find an efficient definition of the target con-
cept, consistent with both the domain theory and the training examples. Let’s
consider a very simple example about stacking one object on another. Suppose
we have the following specific example involving two objects obj1 and obj2.

safeToStack(obj1,obj2). on(obj1,obj2). owner(obj1,molly).

type(obj2,endtable). type(obj1,box). owner(obj2, john).

fragile(obj2). color(obj1,red). color(obj2, blue).

material(obj1,cardboard). material(obj2, wood).

volume(obj1, 2). density(obj1, 0.1).

and the domain theory explaining why it is safe to stack obj1 on obj2



10 Gupta et al

safeToStack(obj1,obj2) :- lighter(obj1,obj2).

lighter(obj1,obj2) :- weight(obj1, W1), weight(obj2,W2), W1 < W2.

weight(X, W) :- volume(X, V), density(X,D), W =:= V*D.

weight(X,5) :- type(X, endtable).

The operational predicates are type, volume, density, on, <, >, =:=. Par-
tially evaluating the predicate call safeToStack(obj1,obj2) against the domain
theory while keeping only the operational predicates and generalizing will allow
us to learn the general rule:

safeToStack(X,Y) :- volume(X,V), density(X,D), WX =:= V*D,

type(Y, endtable), WX < 5.

Essentially, we have learned a rule that tells us when two objects can be safely
stacked, defined in terms of properties of the two objects. While this may appear
as simple partial evaluation, more intelligent reasoning can be incorporated by
bringing in additional background knowledge. For example, we know that an
end-table is similar to a center-table with respect to the stacking property, and
so we may further generalize our rule to work for more types of tables. We could
generalize it even further to any heavy table-like structure with a flat top, and
so on.

EBL can be made more powerful and flexible by representing the domain
theory in ASP. For example, constraints can be stated to block simplifica-
tion along certain evaluation paths during partial evaluation. More general
generalizations—represented as default rules—can be made that also account for
exceptions. In the example above, while generalizing, we may want to rule out
tables that have small-sized surface top, as there is a danger of tipping over upon
stacking. We may also want to avoid stacking on tables made of fragile material
(another exception). Of course, more knowledge about a table’s dimensions, the
material it is made of, etc., will have to be added to achieve this. Generalizing
to ASP, however, would require developing a partial evaluator for answer set
programming under some operational semantics. The s(CASP) system provides
one such operational semantics.

6 Conclusion

Default rules are an elegant way to represent knowledge underlying machine
learning models. We have developed very efficient machine learning algo-
rithms (e.g., FOLD-SE described above) that are competitive with state-of-
the-art methods. Likewise, knowledge represented as default rules can be in-
crementally updated—via theory revision—as well as generalized/specialized—
via explanation-based learning. It is our position that logic-based approaches—
centered on representing knowledge as default theories—can lead to the design
of machine learning systems that can be competitive with state-of-the-art tradi-
tional machine learning systems, while providing advantages of interpretability,
explainability, incrementality, and data economy.

Acknowledgements: We are grateful to anonymous reviewers and to Bob
Kowalski for insightful comments that helped in significantly improving this



Logic-based Explainable and Incremental Machine Learning 11

paper. Authors acknowledge partial support from NSF grants IIS 1910131, IIP
1916206, and US DoD.

References

[1] Charu C. Aggarwal. Neural Networks and Deep Learning - A Textbook.
Springer, 2018.

[2] Joaqúın Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. “Justifica-
tions for Goal-Directed Constraint Answer Set Programming”. In: Pro-
ceedings 36th International Conference on Logic Programming (Technical
Communications). Vol. 325. EPTCS. 2020, pp. 59–72.

[3] Joaqúın Arias, Manuel Carro, Elmer Salazar, Kyle Marple, and Gopal
Gupta. “Constraint Answer Set Programming without Grounding”. In:
TPLP 18.3-4 (2018), pp. 337–354.

[4] Chitta Baral. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

[5] Kinjal Basu et al. “Symbolic Reinforcement Learning Framework with In-
cremental Learning of Rule-based Policy”. In: Proc. ICLP GDE’22 Work-
shop. Vol. 3193. CEUR Workshop Proceedings. CEUR-WS.org, 2022.

[6] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD. KDD ’16. San Fran-
cisco, California, USA, 2016, pp. 785–794. isbn: 978-1-4503-4232-2.

[7] William W. Cohen. “Fast Effective Rule Induction”. In: Proc. ICML. San
Francisco, CA, USA, 1995, 115–123.

[8] Andrew Cropper and Sebastijan Dumancic. Inductive logic programming
at 30: a new introduction. arXiv:2008.07912. 2020.

[9] Gerald DeJong and Raymond J. Mooney. “Explanation-Based Learning:
An Alternative View”. In: Mach. Learn. 1.2 (1986), pp. 145–176.

[10] E.A. Dietz Saldanha, S. Hölldobler, and L.M. Pereira. “Our Themes on
Abduction in Human Reasoning: A Synopsis”. In: Abduction in Cogni-
tion and Action: Logical Reasoning, Scientific Inquiry, and Social Practice.
2021, pp. 279–293.

[11] Yannis Dimopoulos and Antonis Kakas. “Learning non-monotonic logic
programs: Learning exceptions”. In: Machine Learning: ECML-95. Ed. by
Nada Lavrac and Stefan Wrobel. Berlin, Heidelberg, 1995, pp. 122–137.

[12] Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning, and
the design of intelligent agents: The answer-set programming approach.
Cambridge University Press, 2014.

[13] Frank van Harmelen and Alan Bundy. “Explanation-Based Generalisation
= Partial Evaluation”. In: Artif. Intell. 36.3 (1988), pp. 401–412.

[14] Eduardo Laber, Marco Molinaro, and Felipe Mello Pereira. “Binary Par-
titions with Approximate Minimum Impurity”. In: Proc. ICML. Ed. by
Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learn-
ing Research. PMLR, 2018, pp. 2854–2862.



12 Gupta et al

[15] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting
model predictions”. In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 4765–4774.

[16] Steven Minton et al. “Explanation-Based Learning: A Problem Solving
Perspective”. In: Artif. Intell. 40.1-3 (1989), pp. 63–118.

[17] Ludovico Mitchener, David Tuckey, Matthew Crosby, and Alessandra
Russo. “Detect, Understand, Act: A Neuro-symbolic Hierarchical Rein-
forcement Learning Framework”. In: Mach. Learn. 111.4 (2022), pp. 1523–
1549.

[18] Parth Padalkar, Huaduo Wang, and Gopal Gupta. NeSyFOLD: A Sys-
tem for Generating Logic-based Explanations from Convolutional Neural
Networks. arXiv:2301.12667. 2023.

[19] J. Ross Quinlan. “Learning Logical Definitions from Relations”. In: Ma-
chine Learning 5 (1990), pp. 239–266.

[20] Ray Reiter. “A logic for default reasoning”. In: Artificial Intelligence 13.1-2
(1980), pp. 81–132.

[21] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should
I Trust You?”: Explaining the Predictions of Any Classifier”. In: Proc.
KDD. ACM, 2016, pp. 1135–1144.

[22] Bradley L. Richards and Raymond J. Mooney. “Automated Refinement
of First-Order Horn-Clause Domain Theories”. In: Machine Learning 19.2
(1995), pp. 95–131.

[23] Farhad Shakerin. “Logic Programming-based Approaches in Explainable
AI and Natural Language Processing”. Department of Computer Science,
The University of Texas at Dallas. PhD thesis. 2020.

[24] Farhad Shakerin and Gopal Gupta. “Induction of Non-Monotonic Logic
Programs to Explain Boosted Tree Models Using LIME”. In: Proc. AAAI.
AAAI Press, 2019, pp. 3052–3059.

[25] Farhad Shakerin and Gopal Gupta. Induction of Non-Monotonic Rules
From Statistical Learning Models Using High-Utility Itemset Mining.
arXiv:1905.11226. 2019.

[26] Farhad Shakerin, Elmer Salazar, and Gopal Gupta. “A new algorithm to
automate inductive learning of default theories”. In: TPLP 17.5-6 (2017),
pp. 1010–1026.

[27] Ashwin Srinivasan, Stephen H. Muggleton, and Michael Bain. “Distin-
guishing Exceptions From Noise in Non-Monotonic Learning”. In: Proc.
International Workshop on Inductive Logic Programming, 1992.

[28] Keith Stenning and Michiel van Lambalgen. Human Reasoning and Cog-
nitive Science. MIT Press, 2008.

[29] Huaduo Wang and Gopal Gupta. “FOLD-R++: A Scalable Toolset for
Automated Inductive Learning of Default Theories from Mixed Data”.
In: Functional and Logic Programming: 16th International Symposium,
FLOPS 2022. Kyoto, Japan: Springer-Verlag, 2022, 224–242. isbn: 978-
3-030-99460-0.

[30] HuaduoWang and Gopal Gupta. FOLD-SE: Scalable Explainable AI. 2022.



Logic-based Explainable and Incremental Machine Learning 13

[31] Huaduo Wang and Gopal Gupta. FOLD-TR: A Scalable and Efficient
Inductive Learning Algorithm for Learning To Rank. 2022. arXiv: 2206.
07295.

[32] Huaduo Wang, Farhad Shakerin, and Gopal Gupta. “FOLD-RM: Efficient
Scalable Explainable AI”. In: TPLP 22.5 (2022), pp. 658–677.

[33] Judith Wusteman. “Explanation-Based Learning: A survey”. In: Artif. In-
tell. Rev. 6.3 (1992), pp. 243–262.

[34] Zhun Yang, Adam Ishay, and Joohyung Lee. “NeurASP: Embracing Neural
Networks into Answer Set Programming”. In: IJCAI 2020. Ed. by Chris-
tian Bessiere. 2020, pp. 1755–1762.

https://arxiv.org/abs/2206.07295
https://arxiv.org/abs/2206.07295

	Logic-based Explainable and Incremental Machine Learning

