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Abstract. We argue that various extensions proposed for Prolog—
tabling, constraints, parallelism, coroutining, etc.—must be integrated
seamlessly in a single system. We also discuss how goal-directed pred-
icate answer set programming can be incorporated in Prolog, and how
it facilitates development of advanced applications in AI and automated
commonsense reasoning.

1 Introduction

The year 2022 was celebrated as the 50th anniversary of the founding of logic pro-
gramming (LP) and Prolog [16]. Prolog harnesses the power of logic and provides
a new declarative paradigm for computing. Initially, Prolog was based on Horn
clauses with some built-ins added. Over time more features were added to make
the language more powerful as well as efficient. These features include constraints
over various types of domains (reals, booleans, finite domains, etc.), negation-as-
failure, coroutining, tabling, parallelism, etc. Prolog has been applied to many
(innovative) applications. Today, Prolog is a highly sophisticated language [34]
with a large user base. Over the last fifty years, as one would expect, research
in logic programming has flourished in three main areas: making Prolog more
efficient, making Prolog more expressive, and developing applications that make
use of logic programming technology. We will focus on the first two issues, as
any discussion of applications of logic programming will take significantly more
space. However, one of the applications of LP that we will discuss in this paper is
automating commonsense reasoning with the aim of building systems that can
emulate the thought process of an (unerring) human [37, 18, 47, 25]. We believe
that logic programming is indispensable for this purpose. We assume that the
reader is familiar with Prolog, logic programming, and answer set programming.
An excellent, brief exposition is given in the introductory chapter of this book
[51]. More detailed expositions can be found elsewhere [48, 39, 23].

1.1 Making Prolog more Efficient

Given a call, a Prolog interpreter finds matching clauses and tries them one by
one via backtracking. Once a matching clause is selected, subgoals in the body
of the clause are executed. The strategy for rule selection and subgoal selection
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is called the computation rule [39]. Prolog uses a computation rule that tries
clauses in textual order, while subgoals in a clause are tried left to right. A
considerable amount of research has been undertaken over the past decades to
improve the rule selection process. Executing Prolog programs in or-parallel—
trying multiple matching clauses simultaneously on multiple processors—can be
regarded as a strategy to improve rule-selection. Tabled logic programming can
also be viewed as a rule-selection strategy, where rules are (optionally) selected in
a non-textual order to ensure termination of left-recursive programs, for example.
Research has also been undertaken over the past several decades to improve the
subgoal selection process. Research in goal selection strategies includes constraint
logic programming (where the generate and test strategy is flipped into test
and generate), coroutining, concurrent logic programming, and and-parallelism.
These efforts in improving rule selection and subgoal selection have resulted in
Prolog systems that are highly effective [34].

Unfortunately, various strategies developed to make execution more efficient
are not all available in a single Prolog system where they work seamlessly with
each other. We believe that future research in Prolog must focus on building
a unified system that supports tabling, constraints, coroutining, parallelism,
and concurrency [26]. These enhancements must also work seamlessly with each
other. Many groups have been steadfastly working towards this goal. These in-
clude, among others, efforts by Arias and Carro to integrate constraints in tabled
logic programming [4] and by Rocha and Santos Costa to combine tabling and
or-parallelism [44]. Research has also been conducted on adding concurrency at
the user level to Prolog [12, 3, 17]. Some of these ideas have been incorporated in
systems such as SWI-Prolog [52] and Ciao-Prolog [30], nevertheless, research to
realize a system where all these advanced features are efficiently and seamlessly
integrated and available in a single system must continue. Our hope is that such
a logic programming system will be realized in the future.

1.2 Making Prolog More Expressive

We next consider research on making Prolog more expressive. Prolog is a Turing-
complete language, so by greater expressiveness we mean the ability to represent
and solve problems more elegantly, i.e., the logic program developed to solve a
problem is “close” to the problem specification. A large segment of this research
is dedicated to adding negation-as-failure (NAF) to logic programming, though,
considerable research has been done in devising other extensions, e.g., constraint
handling rules [20], functional-logic programming [29], higher order LP [14], coin-
ductive logic programming [46], and adding assertions [31]. Due to lack of space,
we will primarily focus on the incorporation of NAF and coinduction into logic
programming, one of the reasons being that they help in realizing (predicate)
ASP within Prolog, critical for automating commonsense reasoning. [37, 18, 47].

Stable models semantics [24] led to the paradigm of Answer Set Programming
(ASP) [10]. Commonsense reasoning, realized via default reasoning, imposing in-
tegrity constraints, and assumption-based reasoning, can be elegantly emulated
in ASP [23, 42]. However, a problem faced by ASP is the following: how to exe-
cute answer set programs in the presence of predicates? ASP researchers resorted
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to allowing only propositional programs. Thus, ASP programs containing pred-
icates have to be grounded first so that they become propositional and then a
SAT-solver is used to find its (multiple) models. This leads to a number of restric-
tions including: (i) programs have to be finitely groundable, (ii) data structures
such as lists are not permitted, (iii) program size blows up exponentially dur-
ing grounding, (iv) real numbers cannot be faithfully represented. Thus, while
ASP enhances Prolog, it also restricts it due to the choice of implementation
mechanism used. While extremely efficient propositional ASP systems such as
CLINGO [22] have been developed, restriction to propositions-only programs
make them hard to use for knowledge representation applications, in particular,
modeling commonsense reasoning, which is often query-driven or goal-directed.
To overcome this, stable model semantics-based NAF must be incorporated in
Prolog. The discovery of coinductive logic programming [46] led to development
of query-driven implementations of ASP called s(ASP) [40] and s(CASP) [6].
The s(ASP) and s(CASP) systems allow predicates, do not require grounding,
and can be thought of as extending Prolog with stable model semantics-based
negation. Thus, default rules with exceptions, integrity constraints, and cyclical
reasoning through negation can be elegantly supported in this extended Pro-
log, thereby supporting automation of commonsense reasoning. The s(ASP) and
s(CASP) systems rely on many advanced techniques such as constructive nega-
tion, dual rule generation, coinduction, etc., and are scalable.

2 Emulating Human Thinking with Logic Programming

Logic programming was conceived as a language for problem-solving, AI, and
emulating human thinking [38, 37]. However, Prolog’s inability to effectively
model incomplete information limited its use for AI and emulating human rea-
soning, which became an impetus for significant subsequent research by various
groups [25, 18, 23, 37]. Negation-as-failure is an important component in these
research efforts and ASP is an important effort in this direction. ASP extends
logic programming with stable model semantics-based NAF [10, 23]. ASP allows
reasoning with incomplete information through NAF and defaults. ASP also
supports integrity constraints, and non-inductive semantics in which multiple
models (worlds) are admitted. Thus, ASP is a paradigm that comes close to
supporting commonsense reasoning and emulating the human thought process
[23, 27]. It is our position that the path to automating commonsense reasoning in
a practical manner goes through Answer Set Programming realized via Prolog-
like implementations of predicate ASP such as the s(CASP) system [6, 40]. By
Prolog-like, we mean that predicates and first order terms are supported, and
execution is query-driven, carried out in a top-down manner. Thus, the power of
ASP, i.e., negation based on stable model semantics, is supported within Prolog.

We strongly believe that the best path to building intelligent systems is
by emulating how intelligent behavior manifests in humans. Humans use their
senses (sight, sound, smell, taste, and touch) to acquire information via pat-
tern matching, but to draw conclusions based on this information, humans use
(commonsense) reasoning. Note that:
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1. Machine learning technologies are akin to human sensing and pattern match-
ing (humans learn by observing patterns through use of various senses). Ma-
chine learning technologies have greatly advanced in the last few years.

2. Commonsense reasoning relates to human thinking. ASP and systems such
as s(CASP) provide the wherewithal to elegantly automate commonsense
reasoning.

Note that sensing and pattern matching corresponds to Kahneman’s System 1
thinking and reasoning to Kahneman’s System 2 thinking [33]. Just as it is hard
for a human to explain the information they have acquired through senses (for
example, it will be very hard for someone to explain why they believe that the
sound they heard is the sound of a siren), explaining their own decisions has been
a problem for machine learning systems. Even understanding natural language
involves sensing and pattern matching. Humans hear or read a sentence and are
quickly able to understand the knowledge implicit in that sentence. Note that
commonsense knowledge may also be used in this sensing and pattern matching
process [53]. The knowledge acquired through sensing and pattern matching is
represented in some manner in our mind. Next, to draw further conclusions,
humans perform reasoning over this knowledge that resides in the mind. This
reasoning may also involve using (additional) commonsense knowledge that has
been acquired over a period of time and that also resides in our mind in some
form. For example, once the sound of the siren is heard, its occurrence is rep-
resented in our mind as knowledge. This knowledge may prompt us to find a
safe spot as we know that the siren sound is announcing a tornado in the area
(commonsense knowledge for those who live in the plains of Texas).

We believe that AI systems can be built better by using (i) machine learning
technologies for sensing (seeing, hearing, etc.), and (ii) goal-directed ASP sys-
tems such as s(CASP) for reasoning [27]. This is in contrast to using machine
learning alone. In this framework, machine learning systems or a neurosym-
bolic system [53] will translate a picture, video, sound, text, etc., to knowledge
expressed as predicates. These predicates capture the relevant knowledge in a
manner similar to how humans represent knowledge in their mind. This knowl-
edge gleaned from “senses” and represented as predicates is further augmented
with commonsense knowledge expressed in s(CASP) as default rules, integrity
constraints, etc. In real life, commonsense knowledge is learned and stored in
our mind throughout our life. Next, a question that we may want to answer
against this combined knowledge can be treated as a query, and executed us-
ing the s(CASP) system. This framework can be used to develop, for example,
an autonomous driving system [35] or a goal-oriented interactive conversational
agent that can actually “understand” human dialogs [43, 55] .

2.1 Deduction, Abduction, and Induction

A significant part of commonsense reasoning can be emulated with defaults,
integrity constraints, and assumption-based reasoning [23, 37, 18, 47]. ASP ob-
viously supports deduction. Default rules can be viewed as inductive generaliza-
tions, and assumption-based reasoning can be viewed as abduction. Thus, the
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three major modes of reasoning—deduction, abduction, and induction[19]—are
naturally supported within ASP. Consider the proposition p, q, and the formula
p ⇒ q.

Deduction: Given premises p and p ⇒ q, we deduce q. Suppose we are given the
premises that Tweety is a bird (bird(tweety)), and the formula ∀Xbird(X) ⇒
flies(X). From these two premises, we can deduce that flies(tweety) holds, i.e.,
Tweety can fly. Obviously, such deductive reasoning is easily expressed in ASP.

Abduction: Given the observation q and the premise p ⇒ q, we abduce p. Sup-
pose we observe Tweety flying (flies(tweety)), and we know that ∀Xbird(X) ⇒
flies(X). From these, we can abduce that bird(tweety) holds, i.e., we assume (or
advance the most likely explanation) that Tweety is a bird. Note that there may
be other explanations, e.g., Tweety may be the name of an airplane. Generally,
the set of abduced literals is fixed in advance. Abductive reasoning in ASP is
elegantly modeled via possible worlds semantics. If we make an assumption p,
i.e., declare p to be abducible, then we can assert via an even loop over negation:

p :- not notp. notp :- not p.

where notp is a dummy proposition. This even loop will result in two possible
worlds: one in which p is true and one in which p is false. It should be noted
that abductive reasoning is, essentially, assumption-based reasoning. Humans
perform assumption-based reasoning all the time [18].

Induction: Given instances of p and corresponding instances of q that may be
related, we may induce p ⇒ q. Thus, given the observations that Tweety is a
bird and Tweety can fly, Sam is a bird and Sam can fly, Polly is a bird and Polly
can fly, and so on, we may induce the formula bird(X) ⇒ flies(X). Induction,
of course, relates to learning associations between data. Induced rules can be
elegantly captured as an answer set program. This is because ASP can be used
to represent defaults with exceptions, which allows us to elegantly represent
inductive generalizations. Consider the following rule:

flies(X):- bird(X), not abnormal bird(X).

abnormal bird(X):- penguin(X).

The above default rule with exception, namely, normally birds fly unless they are
penguins, elegantly captures the rule that a human may form in their mind after
observing birds and their ability to fly. The list of exceptions can grow (ostrich,
wounded bird, baby bird, . . . ). Similarly, the list of defaults rules can grow. For
instance, we may have a separate rule for planes being able to fly. Explainable
machine learning tools that induce default theories have been developed [49, 50]
that are comparable in accuracy to traditionally popular tools such as XGBoost
[13] and Multilayer Perceptron [1, 28].

Given that deduction, abduction, and induction fit into the framework of
ASP well, it gives us confidence that ASP can be a good means of representing
commonsense knowledge and reasoning over it.

2.2 Representing Commonsense Knowledge in ASP/s(CASP)

As stated earlier, a large portion of the human thought process can be largely
emulated by supporting (i) default rules with exceptions and preferences, (ii)
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integrity constraints, and (iii) multiple possible worlds. As explained earlier, de-
fault rules with exceptions express inductive generalizations, and are used by
humans for making deductions. Similarly, multiple possible worlds help in ab-
duction, or assumption-based reasoning. Integrity constraints allow us to prune
unfruitful paths in our abductive reasoning process. Unfruitful paths in the de-
ductive reasoning process are pruned by adding conditions to rule bodies.

Default Reasoning with Exceptions and Preferences: Humans use default
reasoning [23] to jump to conclusions. These conclusions may be revised later
in light of new knowledge. For example, if we are told that Tweety is a bird,
and then asked whether Tweety flies, we will immediately answer, yes, it does.
However, later if we are told that Tweety is a penguin, we will withdraw the
conclusion about Tweety’s flying ability, labeling Tweety as an exception. Thus,
human reasoning is non-monotonic in nature, meaning that conclusions may be
withdrawn as new knowledge becomes available. Humans use this sort of default
reasoning to jump to conclusions all the time, and if they find the assumptions
made to jump to this conclusion to be incorrect, they revise their conclusion.
Multiple default conclusions can be drawn in some situations, and humans will
use additional reasoning to prefer one default over another. Thus, default rules
with exceptions and preferences capture most of the deductive reasoning we
perform. (More details on default reasoning can be found elsewhere [23, 37]).
It should be noted that expert knowledge is nothing but a set of default rules
about a specialized topic [23].

Classical logic is unable to model default reasoning and non-monotonicity in
an elegant way. We need a formalism that is non-monotonic and can support
defaults to model commonsense reasoning. ASP is such a formalism. ASP sup-
ports both NAF (not p) as well as strong negation (-p), where p is a proposition
or a predicate. A strongly negated predicate has to be explicitly defined, just
as positive predicates are. Combining these two forms of negations results in
nuanced reasoning closer to how humans reason:

1. p: denotes that p is definitely true.
2. not -p: denotes that p maybe true (i.e., no evidence that p is false).
3. not p ∧ not -p: denotes that p is unknown (i.e., no evidence of either p or

-p being true).
4. not p: denotes that p may be false (no evidence that p is true).
5. -p: denotes that p is definitely false.

The above insight can be used, for example, to model the exceptions to Tweety’s
ability to fly in two possible ways. Consider the rules:

flies(X):- bird(X), not abnormal bird(X). % default
abnormal bird(X):- penguin(X). % exception

which state that if we know nothing about a bird, X, we conclude that it flies.
This is in contrast to the rules:

flies(X):- bird(X), not abnormal bird(X). % default
abnormal bird(X):- not -penguin(X). % exception
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which states that a bird can fly only if we can explicitly rule out that it is a
penguin. So in the latter case, if we know nothing about a bird, we will conclude
that it does not fly. Which of the two rules one will use depends on how conser-
vative or aggressive one wants to be in jumping to the (default) conclusion. Note
that exceptions can have exceptions, which in turn can have their own excep-
tions, and so on. For example, animals normally don’t fly, unless they are birds.
Thus, birds are exception to the default of not flying. Birds, in turn, normally
fly, unless they are penguins. Thus, a penguin is an exception to the exception
for not flying. Defaults, exceptions, exceptions to exceptions, and so on, allow
humans to perform reasoning elegantly in an elaboration tolerant manner [7, 23].

Integrity Constraints: ASP can also model integrity constraints elegantly. An
integrity constraint is a rule of the form:

false:- p1, p2, . . ., pn.

which states that the conjunction of p1, p2, through pn is false (the keyword
false is often omitted). Integrity constraints elegantly model global invariants
or restrictions that our knowledge must satisfy, e.g., p and -p cannot be true at
the same time, denoted

false:- p, -p.

Humans indeed use integrity constraints in their everyday reasoning: as restric-
tions (two humans cannot occupy the same spot) and invariants (a human must
breath to stay alive). Note that integrity constraints are global constraints, in
that they eliminate possible worlds. Unfruitful paths during deductive reasoning
are eliminated by adding appropriate conditions to the rule-bodies. Note that in
ASP, integrity constraints may also arise due to odd loops over negation (OLON),
i.e., rules of the form:

p(t̄) :- G, not p(t̄).
where p(t̄) is a predicate and G is a conjunction of goals. In absence of an al-
ternative proof for p(t̄), the only admissible model for the above rule is p(t̄) =
false, G = false, which amounts to the global constraint that G must be false.

Possible Worlds: Humans can represent multiple possible worlds in parallel in
their minds and reason over each. For example, in the real world, birds do not
talk like humans, while in a cartoon world, birds (cartoon characters) can talk.
Humans can maintain the distinction between various worlds in their minds and
reason within each one of them. These multiple worlds may have aspects that are
common (birds can fly in both the real and cartoon worlds) and aspects that are
disjoint (birds can talk only in the cartoon world). Unlike Prolog, ASP/s(CASP)
support multiple possible worlds. (See also the example about Annie and David
teaching programming languages in the introductory paper of this volume [51]).

3 The s(CASP) System

The s(CASP) system [6] supports predicates, constraints over non-ground vari-
ables, uninterpreted functions, and, most importantly, a top-down, query-driven
execution strategy for ASP. These features make it possible to return answers
with non-ground variables (possibly including constraints among them) and com-
pute partial models by returning only the fragment of a stable model that is
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necessary to support the answer to a given query. The s(CASP) system sup-
ports constructive negation based on a disequality constraint solver, and unlike
Prolog’s negation as failure and ASP’s default negation, not p(X) can return
bindings for X on success, i.e., bindings for which the call p(X) would have failed.

The s(CASP) system is based on the earlier s(ASP) system [40], and also sup-
ports constraints over reals. The s(CASP) system provides support for full Pro-
log, however, in addition, it also supports coinductive (circular, or assumption-
based) reasoning, constructive negation, dual rules, and support for universally
quantified variables. These are explained briefly next. More details can be found
elsewhere [40, 6, 5].
Coinductive Reasoning: Coinductive reasoning is crucial for s(CASP). An-
swer set programs may contain circular rules, for example:

p:- not q. q:- not p.

If we ask the query ?-p in Prolog with these rules, execution will loop forever.
This is because p calls to not q, which calls q, which calls not p, which then
calls p. If we allow coinductive or circular reasoning[46, 45], then the query p

should succeed. Essentially, we are stating that p succeeds if we assume p to
hold. This yields the answer set in which p is true and q false. Note also that at
least one intervening negation is required between a call and its recursive descen-
dent for coinductive success in s(CASP). This prevents positive loops, i.e., loops
with no intervening negation, from succeeding, and allows us to stay faithful to
stable model semantics (in contrast, such positive loops will not terminate under
completion semantics as realized in Prolog). Thus, given the rule:

p :- p.

the query ?- p. will fail in s(CASP), while the query ?- not p. will succeed
[40, 6]. More details can be found elsewhere [40, 45].
Constraints and OLON rules: Global constraints of the form

false :- p1(t̄1), . . ., pn(t̄n).
are suitably transformed and appended to each top level query to ensure that
each constraint is enforced. Global constraints can also implicitly arise due to
OLON rules. These are analyzed at compile time and the appropriate constraint
generated and appended to a top-level query [40, 6].

Constructive Negation: Since s(CASP) allows general predicates that could
be negated, support for constructive negation becomes essential. Consider a pro-
gram consisting of the simple fact:

p(a).

If we pose the query ?-not p(X), it should succeed with answer X ̸= a. Intu-
itively, X ̸= a means that X can be any term not unifiable with a. To support
constructive negation, the implementation has to keep track of values that a
variable cannot take. The unification algorithm has to be extended, therefore,
to account for such disequality-constrained values. The s(CASP) system incor-
porates [40, 6] constructive negation.

Dual Rules: ASP assumes that programs have been completed [39, 23]. To com-
plete a program, the s(CASP) system will add dual rules [2] to the program. The
procedure to add the dual rules is relatively simple and can be found elsewhere
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[6]. An additional complication in computing the dual rules is the need to handle
existential variables. Consider the following very simple rule:

p(X):- not q(X,Y).

This rule corresponds to the Horn clause:
∀X(p(X) ⇐ ∃Y not q(X,Y ))

Its dual will be:
∀X(not p(X) ⇐ ∀Y q(X,Y ))

which, in s(CASP), will be represented as:
not p(X):- forall(Y, q1(X,Y)). q1(X,Y):- q(X,Y).

Universal quantification in the body of the dual rule is needed because, for
example, for the goal not p(a) to succeed, we must prove that q(a, Y) holds
for every possible value of Y. The s(CASP) system handles all these issues and
produces dual rules for arbitrary programs. The execution of the forall, however,
is non-trivial, as often times the foralls are nested.

4 Applications

Several advanced applications that automate commonsense reasoning using ASP
and s(CASP) have been developed. Most prominent is the CHeF system [15]
which emulates the expertise of a cardiologist to automatically generate treat-
ment for congestive heart failure. Our studies show that the CHeF system per-
forms on par with a cardiologist. The s(CASP) system has also been used by
others to develop intelligent applications [41, 36]. With respect to the frame-
work above, where we use machine learning for sensing and pattern matching
and s(CASP) for commonsense reasoning, two major strands have been pursued.

Image Understanding: A major task in AI is to understand a picture and
answer questions about it. Current approaches for visual question answering
(VQA) are solely based on machine learning. These approaches train on a col-
lection of images together with the question-answer pairs for each image. Once
the model has been learned, a new image along with a question is given, and the
expectation is that a correct answer will be generated. Given that a generated
answer cannot be justified, or may not be accurate, an alternative approach is
to use machine learning for translating an image into a set of predicates that
capture the objects in the image, their characteristics and spatial relationships.
Commonsense knowledge about the image’s domain can be coded in ASP. Next,
the question to be answered is translated into an ASP query, which is then exe-
cuted using s(CASP) against the knowledge (represented as predicates) captured
from the image augmented with commonsense knowledge of the domain. 100%
accuracy in answering questions is achieved in some of the VQA datasets [8].
The process is similar to how humans answer questions about an image, and can
be leveraged to realize reliable autonomous driving systems [35].

Natural Language Understanding (NLU): A combination of machine learn-
ing and commonsense reasoning can be used for NLU as well. The idea is to
generate predicates from text using large language models such as GPT-3 [11]
via the use of in-context learning or fine-tuning. These predicates represent the
meaning of the sentence, i.e., its deep structure. Commonsense reasoning can
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then be performed over these predicates to draw further conclusions, ask for
missing information, and check for consistency of the information in the sen-
tence. We have used this approach for qualitative reasoning, solving simple word
problems in Algebra, and developing conversational agents that can interact
with a human while “understanding” what he/she is saying [43, 55]. Essentially,
we emulate how a person understands sentences and carries on a conversation.
Commonsense knowledge is also embedded in the LLM, so just like humans,
commonsense knowledge is used at two levels—in “understanding” text as pred-
icates and subsequent reasoning.

5 Conclusion

Learning/pattern-matching and reasoning are crucial to human intelligence. It is
our belief that effective AI systems can only be obtained by combining machine
learning for sensing/pattern-matching and a Prolog system that encapsulates
ASP, such as s(CASP), for commonsense reasoning. While the applications de-
veloped so far are in narrow domains, it is our position that the path to building
AI applications that perform as well as humans goes through logic program-
ming. Machine learning alone cannot be used for modeling human thinking,
as fundamentally it is a statistical technique. If this was indeed possible, then
we believe that nature would have already produced an intelligent being—as
intelligent as humans, or more—based on pattern matching and operating on
instincts alone. As we move up the evolutionary chain towards more intelli-
gent life-forms culminating in humans, reasoning abilities improve. “Lower” life
forms sometimes do have better sensing capabilities, e.g., dogs can smell better,
eagles can see better, etc., but a combination of instinct and reasoning puts hu-
mans on top of the evolutionary chain. Therefore, just as humans rely on both
learning/sensing/pattern-recognition and reasoning, an AI system that aims to
achieve human-level performance must follow the same path [53, 21]. This is also
evident in large language models such as GPT-3 and ChatGPT [11] that use pat-
tern matching on a massive scale to generate a human-like response. Due to the
statistical nature of LLMs, we can never be certain that the generated text is
correct, consistent, and useful [9]. Logic is essential for producing a consistent,
correct, and assuredly-useful response.

In conclusion, Prolog is an indispensable part of computing’s and AI’s land-
scape. We believe that it is an essential component in achieving Artificial Gen-
eral Intelligence (AGI) [54, 32]—AI’s purported holy grail for some—whether
we agree with that goal or not. Considerable research is still needed to: (i) im-
prove the s(CASP) system (by incorporating tabling, constraints, coroutining,
etc.) and making it more efficient; (ii) develop machine learning systems that
extract knowledge as predicates from arbitrary text & images; and, (iii) develop
methods to automatically extract commonsense knowledge and represent it in
s(CASP). We hope that these tasks will be completed in the coming years.
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