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Abstract—Timed automata has been used as a powerful
formalism for specifying, designing, and analyzing real time
systems. We consider the generalization of timed automata
to Pushdown Timed Automata (PTA). We show how PTAs
can be elegantly modeled via logic programming extended
with coinduction and constraints over reals. We use this logic
programming realization of a PTA to develop an elegant
solution to the generalized railroad crossing problem of Lynch
and Heitmeyer. Interesting properties of the system can be ver-
ified merely by posing appropriate queries to this coinductive
constraint logic program.

I. INTRODUCTION

Design, specification, implementation and verification of
real-time systems is an important area of research, as real-
time systems are ubiquitous. Timed automata is a popular
approach to designing, specifying and verifying real-time
systems [1], [2]. Timed automata are ω-automata [3] ex-
tended with stop watches. Transitions from one state to
another are not only made on the alphabet symbols of the
language but also on constraints imposed on stop-watches
(e.g., at least 2 units of time must have elapsed).

Timed automata are suitable for specifying a large class
of real-time systems; however, they suffer from the same
limitations that any automaton suffers, in that they can
recognize only timed regular languages. This restriction
to regular languages renders them unsuitable for many
complex, useful applications where the language involved
may not be regular. To overcome this problem, timed au-
tomata have been extended to pushdown timed automata
which recognize timed context-free languages [4]. A PTA
recognizes a sequence of timed words, where a timed word
is a symbol from the alphabet of the language the automaton
accepts, paired with the time-stamp indicating the time that
symbol was seen. The sequence of timed words in a string
accepted by a PTA must obey the rules of syntax laid down
by the underlying untimed PDA, while the time-stamps must
obey the timing constraints imposed on the times at which
the symbols appear. Note that the concept of a PTA can
be extended to the concept of timed context-free grammars
or even timed context-sensitive grammars [5]; however, we
don’t elaborate on them here.

Earlier, Gupta and Pontelli showed how timed automata
can be elegantly modeled via constraint logic programming

over reals or CLP(R) [6]. Subsequently, Simon et al [7],
[8] showed how coinduction can be introduced in logic
programming to elegantly model and verify properties of
ω-automata. In this paper we extend that work to show how
coinduction and CLP(R) can also be used to elegantly model
PTAs. We show how a coinductive CLP(R) rendering of a
PTA can be used to verify safety and liveness properties of
a system. We illustrate the effectiveness of our approach by
showing how the generalized railroad crossing problem [9]
can be elegantly modeled, and how its various safety and
utility (liveness) properties can be elegantly verified.

The rest of the paper is organized as follows. We present
an overview of timed automata, constraint logic program-
ming over reals, and coinductive logic programming re-
spectively. Next, we consider pushdown timed automata
and timed grammars and show how they can be elegantly
modeled via coinductive CLP(R). Note that the formulation
of PTAs is our own, though they were first introduced in
[10], [4]. We illustrate our method of modeling and verifying
PTAs to elegantly solve the generalized railroad crossing
problem. The railroad crossing problem considers verifying
the safety and liveness properties of a gated train crossing
with multiple tracks through which multiple trains can travel
simultaneously in both directions.

II. BACKGROUND

We give an overview of timed automata, CLP(R) and
coinductive logic programming in the next 3 subsections.
More details can be found in [11], [12] and [13] respectively.

A. Real-time systems and Timed Automata

Real-time systems are ubiquitous. Almost every embed-
ded system found in various devices (e.g., cars) has to
operate under real-time constraints. Various extensions of
finite state automata have been proposed for embedding
the notion of time and time constraints [14], [1], [15],
[16] to model real-time systems and verify their properties.
Timed automata is one of the most popular formalism.
A timed automaton is a generalization of an automaton
capable of recognizing infinite words (also known as an ω-
automaton [3]). A ω-automaton over the alphabet Σ is a
tuple M = 〈Σ,∆, Q,Q0, F 〉, where Q is the (finite) set of
states, Q0 ⊆ Q is the set of initial states, F ⊆ Q is the



set of final states, and ∆ ⊆ Q × Σ × Q is the transition
relation. Given an infinite string s0s1s2 . . ., where si ∈ Σ,
a derivation is defined as a sequence of transitions

q0
s07→ q1

s17→ q2 . . .

such that q0 ∈ Q0 and (qi−1, si−1, qi) ∈ ∆.
Different notions of acceptance have been proposed. A

Büchi automaton accepts a sequence s̄ = s0s1s2 . . . iff there
exists a state q ∈ F and an infinite set of indices I such that
(∀i ∈ I)(q = qi). A Müller automaton defines F to be a
subset of 2Q, and a derivation for s̄ lead to the acceptance of
the string iff there exists A ∈ F and an infinite set of indices
Ia for each a ∈ A such that (∀q ∈ A)(∀i ∈ Iq)(qi = q).

The purpose of a timed automaton is to recognize timed
words. A timed word (s̄, t̄) associates a time value ti with
each symbol si of an infinite word s̄ . A timed automaton
is obtained from a ω-automaton by adding:
• a finite set C of clocks;
• a set P of propositions over C;
• a labeling function τC : ∆ 7→ 2C (reset function);
• a labeling function τP : ∆ 7→ prop(P), where prop(A)

is the set of propositional formulae over the set of
atomic propositions A.

Thus, in a timed automaton, each transition (p, a, q, C ′, φ)
not only consumes a symbol a from the string, but addition-
ally
• resets all the clocks in C ′ ∈ 2C ((∀c ∈ C ′)(c := 0));
• verifies that the formula φ is satisfied by the current

values of the clocks.
The set P of propositions is typically limited to proposi-

tions of the form x ≤ c and c ≤ x, where x ∈ C.
A derivation in a timed automaton is described as a

sequence of transitions between states. A state for a timed
automaton is a pair 〈q, ν〉, where q ∈ Q and ν is a clock
valuation function (ν : C 7→ R+, with R+ the set of non-
negative real numbers). The initial state is 〈q0, ν0〉, with
q0 ∈ Q0, and ν0(x) = 0 for all clocks x ∈ C.
The transition

〈qi, νi〉
si,ti−→ 〈qi+1, νi+1〉

takes place if the following conditions are met:
1) there is a transition (qi, si, qi+1) in ∆;
2) the proposition τP (qi, si, qi+1) is satisfied by the clock

valuation {νi(x) + ti − ti−1 : x ∈ C};
where the function νi+1 is defined as follows:

νi+1(x) =
{

0 if x ∈ τC(qi, si, qi+1)
νi(x) + ti − ti−1 otherwise

Thus, each transition can take place only if there is a
correct matching on the input symbol and the current clock
evaluation satisfies the time constraint on the transition. The
effect of the transition is to lead to a new state and to reset
the clocks specified by the function τC .

Figure 1. A Sample Timed Automaton

Figure 1 shows a simple timed automaton. It describes a
system in which signals are recognized. Each signal a can
(but need not) be followed by a b signal, with the constraint
that the b signal must arrive at least one time unit after a and
at most two time units after a. This is a Büchi automaton,
the final state is F = {q0}.

In the rest of this work we will limit our considerations
to deterministic timed automata with Müller termination. A
deterministic automaton is one that satisfies the following
properties:

1) the set Q0 is a singleton set, i.e., there is a single
initial state;

2) for each a ∈ Σ, the number of a transitions originating
from each state qi is ≤ 1.

These conditions imply that for each word there is at
most one possible derivation. In the specific case of timed
automata, the second condition is modified as follow: for
each a ∈ Σ and q ∈ Q, if there are two transitions of
the form(q, a, ?1) and (q, a, ?2) in ∆, then τP (q, a, ?1) ∧
τP (q, a, ?2) is unsatisfiable (i.e., the two propositions are
mutually exclusive), where ?i stands for any arbitrary state.

B. Constraint Logic Programming over Reals

Constraint Logic Programming (CLP) is a many-sorted
version of logic programming, in which different sorts are
associated to different interpretation domains, and corre-
sponding formulae are manipulated using predefined con-
straint solvers. The intuitive idea is to introduce special
classes of formulae (constraints) which are not handled using
traditional resolution, but are interpreted under a predefined
specific interpretation and handled by external constraint
solvers. For a more precise and complete presentation of
CLP the reader is referred to the literature [17], [18].

The language at hand is built on two collections of
symbols, Σ, containing all the function symbols, and Π,
containing the predicate symbols. Furthermore, predicate
symbols are divided into two separate classes, Π = Πc∪Πp;
Πp contains the user-defined predicates, while Πc contains
the constraint predicates. Constraint predicates will be inter-
preted with respect to a predefined interpretation structure,
while user-defined predicates will be subject to the user
definitions. Πc is always assumed to contain the equality
symbol =.

Terms are objects created using the symbols from Σ and
V , where V is a collection of variables. A term is either a



simple variable or the application f(t1, . . . , tn) of a n-ary
symbol f ∈ Σ to n terms t1, . . . , tn (n ≥ 0).

An atom is the application p(t1, . . . , tn) of a predicate
symbol p to n terms t1, . . . , tn. If p ∈ ΠC , then the atom
is said to be a constraint. The program is composed by a
collection of clauses, where each clause has the form:

head : − c | b1, . . . , bk

head, bi are user defined atoms while c is an arbitrary
conjunction of constraints.

From the semantic point of view, constraints are inter-
preted using a predefined interpretation (i.e., a domain D
together with an interpretation function ID). In particular, a
constraint c is solvable if D |= ∃(c). A solution θ for c is a
mapping from the variables in c to D, such that D |= cθ.

From the procedural point of view, execution of a con-
straint program requires the use of constraint solvers capa-
ble of deciding the solvability of each possible constraint
formula1. Resolution is extended in order to embed calls
to the constraint solvers. If ?−c1 | g1, . . . , gn is a goal,
and p: −c2 | b1, . . . , bk is a clause in the program, then the
resolvent of the goal w.r.t. the given clause is

?−(c1, c2, g1 = p) | b1, . . . , bk, g2, . . . , gn

as long as D |= (c1∧c2∧(g1 = p)). The constraint solver is
used to test the validity of the condition on the constraints.

Frequently, constraint solvers are capable not only of
checking solvability, but also of simplifying the constraints
(eventually computing explicit solutions whenever possible);
in this case, in the resolvent the constraint c1, c2, (g1 = p)
is replaced with its simplified form.

An example of a CLP system is CLP(R), where the
constraint domain is the domain of real numbers, Σ contains
real numbers and arithmetic operations (+, ∗, etc.), and ΠC

contains the equality = and the disequation predicates (≤,
≥, etc.).

C. Coinductive Logic Programming

One difficulty in modeling timed automata and PTAs is
that the underlying automaton is an ω-automaton which
accepts infinite strings. Standard logic programming (which
computes least fixed-points) is not equipped to model au-
tomata that accept infinite strings (which belong to the
greatest fixed-points). Recently coinduction [19] has been
introduced into logic programming by Simon et al [7], [8]
to overcome this problem. Coinductive LP can also be used
for reasoning about unfounded sets, behavioral properties of
(interactive) programs, elegantly proving liveness properties

1It is common for the programmer to identify only special types of con-
straint formulae, the admissible constraints; these are the only constraints
which are admitted during the execution of a program. This is because it
is not possible to devise a constraint solver that will solve any arbitrary set
of constraints.

in model checking, type inference in functional program-
ming, etc. [13].

Coinduction is the dual of induction and corresponds to
the greatest fixed-point (gfp) semantics. Simon et al’s work
gives an operational semantics—similar to SLD resolution—
for computing the greatest fixed-point of a logic program.
This operational semantics (called co-SLD resolution) relies
on the coinductive hypothesis rule and systematically com-
putes elements of the gfp of a program via backtracking. It
is briefly described below. The semantics is limited only to
regular proofs, i.e., those cases where the infinite behavior
is obtained by infinite repetition of a finite number of finite
behaviors (and, thus, is powerful enough for modeling ω-
automata).

In the coinductive LP (co-LP) paradigm the declarative
semantics of the predicate is given in terms of infinitary
Herbrand (or co-Herbrand) universe, infinitary Herbrand
(or co-Herbrand) base [20], and maximal models (computed
using greatest fixed-points) [7]. The operational semantics
under coinduction is identical to Prolog’s operational se-
mantics except for the following addition [7]: a predicate
call p(t̄) succeeds if it unifies with one of its ancestor
calls. Thus, every time a call is made, it has to be remem-
bered. This set of ancestor calls constitutes the coinductive
hypothesis set. Under co-LP, infinite rational answers can
be computed, and infinite rational terms are allowed as
arguments of predicates. Infinite terms are represented as
solutions to unification equations and the occurs check is
omitted during the unification process: for example, X =
[1 | X] represents the binding of X to an infinite list of
1’s. Thus, in co-SLD resolution, given a single clause (note
the absence of a base case)
p([ 1 | X ]) :- p(X).

the query ?- p(A) will succeed in 2 resolution steps with
the (infinite) answer:
A = [1 | A]

which is a finite representation of the infinite answer: A =
[1, 1, 1, ....].

An important application of coinductive LP is in directly
representing and verifying properties of Kripke structures
and ω-automata (automata that accept infinite strings). Just
as automata that accept finite strings can be directly pro-
grammed using standard LP, automata that accept infinite
strings can be directly represented using coinductive LP (one
merely has to drop the base case). Consider the automata
(over finite strings) shown in Figure 2 which is represented
by the logic program below.

automaton([X|T], St):-
trans(St, X, NewSt),
automaton(T, NewSt).

automaton([], St) :- final(St).
trans(s0, a, s1). trans(s1, b, s2).
trans(s2, c, s3). trans(s3, d, s0).



Figure 2. An Automaton

trans(s2, e, s0). final(s2).

A call to ?- automaton(X, s0) in a standard LP
system will generate all finite strings accepted by this
automaton. Now suppose we want to turn this automaton
into an ω-automaton, i.e., it accepts infinite strings (an
infinite string is accepted if states designated as final state are
traversed an infinite number of times), then the (coinductive)
logic program that simulates this automaton can be obtained
by simply dropping the base case (for the moment, we’ll
ignore the requirement that final states occur infinitely often)

automaton([X|T], St) :-
trans(St, X, NewSt),
automaton(T, NewSt).

Under coinductive semantics, posing the query | ?-
automaton(X, s0). will yield the cyclical solutions:

X = [a, b, c, d | X];
X = [a, b, e | X];

This feature of coinductive LP can be leveraged to modeling
and verifying properties of (timed) ω-automata directly and
elegantly.

III. PUSHDOWN TIMED AUTOMATA

A Pushdown Timed Automaton extends a timed automa-
ton with a stack in exactly the same manner that a pushdown
automaton extends a finite automaton. Thus, a PTA is
obtained from a timed automaton by adding:
• ε (empty string) to the input alphabet Σ.
• a stack alphabet Γε = Γ ∪ ε
• a stack represented by Γ∗ε .

Acceptance conditions for an infinite string for a PTA are
similar to those for timed automata except that, additionally,
the stack must be empty. The transition relation is extended
to include the state of the stack (to represent that a stack
symbol may be pushed or popped during a transition). Thus,
the transition function becomes:

〈qi, νi, aγ〉
si,ti−→ 〈qi+1, νi+1, bγ〉

where a, b ∈ Γε and γ ∈ Γ∗ε . Note that si may be an empty
word (ε).

Pushdown timed automata have been introduced earlier
[4], [21], [10]. Our aim in this paper is to show how PTAs
can be modeled and their properties verified with coinductive
constraint logic programming over reals with the same ease
as that for timed automata [6].

In many cases real-time systems that are naturally mod-
eled as PTAs can be modeled as timed automata by imposing
restrictions (such as limiting the size of the string, i.e.,
limiting the number of allowable events), but, our experience
indicates that such a timed automaton will have an enormous
number of states, and thus would be unwieldy and time con-
suming to specify. Proving its safety and liveness properties
will also be quite cumbersome simply due to the large size
of the automaton.

From PTA one can also develop the notion of timed
grammars [5]; however, in this paper we restrict ourselves
to PTAs.

As an example of a PTA, consider a language in which
sequences of a’s are followed by sequences of an equal
number of b’s (each such string has at least two a’s and
at least two b’s). For each pair of equinumerous sequences
of a’s and b’s, the first b symbol must appear within 5 units
of time from the first a symbol and the final b symbol must
appear within 20 units of time from the first a symbol. The
grammar annotated with clock constraints is shown below.
Note that c is a clock; clock expressions are written within
braces.
S → R S
R→ a {c := 0} T b {c < 20}
T → a T b
T → a b {c < 5}
Note also that the first rule is coinductive (i.e., a recursive

rule with no base case) and accepts infinite strings. Thus, the
above grammar is an ω-grammar. The PTA realizing this
timed grammar is shown in Figure 3. Note that in Figure
3, S0 is the final state. Actions push(1) and pop(),
respectively push 1 onto the stack and pop the stack (the
automaton in Figure 3 will accept empty string also; we
allow this for simplicity of presentation). The requirement
that the stack be empty ensures that only strings with equal
numbers of a’s and b’s are accepted. Note that the global
time (or wall clock time) keeps advancing at the normal
uniform rate, as the automaton makes transitions.

IV. MODELING PTAS WITH COINDUCTIVE CLP(R)

Gupta and Pontelli [6] showed how constraints over reals
can be used to model continuous real-time systems. They
showed that continuous time and associated clock constraints
can be elegantly specified as a CLP(R) program, which,
in turn can be used to verify interesting properties of
the system, e.g., safety and liveness properties. In their
technique, each transition of the automaton is modeled as a
logic programming fact. It is extended with extra arguments
to model time: one argument is added to model the global



Figure 3. A Pushdown Timed Automaton

(wall clock) time, a pair of arguments are added for each
stop watch used in the automaton. The first argument of this
pair is used to remember the last (wall clock) time the stop-
watch was reset, while the second one is used to pass on
the stop watch value to the next transition.

We described earlier how ω-automata can be modeled
as coinductive logic programs. Thus, coinductive logic pro-
gramming extended with constraints provides a natural and
practical formalism for representing real-time systems mod-
eled as timed automata [13], [22]. Introduction of coinduc-
tion significantly simplifies Gupta and Pontelli’s realization
of ω-automata [13]: the driver program used to compose
the various automata involved in the system is considerably
simplified.

PTAs and timed grammars accept infinite strings. As is
well known, automata and grammars can be elegantly mod-
eled via logic programming [23]. Specifically, the definite
clause grammar facility of Prolog allows one to obtain a
parser for context-free grammars or even context-sensitive
grammars with a minimal amount of work. By extend-
ing logic programming with coinduction, one can develop
language processors that recognize infinite strings. Definite
clause grammars (DCGs) extended with coinduction can act
as recognizers for ω-PDAs and ω-grammars. Further, incor-
poration of coinduction and constraint logic programming
over reals into the definite clause grammar allows modeling
of time aspects of the system. Once a timed system is
modeled as a coinductive constraint logic program, it can be
used to (i) verify if a particular timed-string will be accepted
or not; and, (ii) systematically generate all possible timed
strings that can be accepted. The coinductive CLP realization
of the system can also be used to verify system properties
by posing appropriate queries.

Consider the PTA shown in Figure 3 in section III. The
logic programming rendering of this PTA is shown below. To
keep matters simple, this logic program models the PTA as
a collection of transition rules (one rule per transition in the
PTA), where each rule is extended with stack actions as well

as clock constraints. The first 3 arguments of the trans/8
are self-explanatory. The fourth argument represents the
global (wall clock) time. The pair of arguments, Tr and To,
represent the stopwatch c of the timed automaton, while the
last two arguments represent the stack actions.

The coinductive driver/6 rule realizes the automata,
calling the trans/8 rule repeatedly. The CLP(R) con-
straints are enclosed within curly braces, as is the convention
in most Prolog systems. The constraint Ta > T advances
the time on the wall clock after every transition, and that
the predicate driver/6’s coinductive success will depend
only on the first four arguments, i.e., the wall-clock time will
be ignored to check if the driver/6 predicate is cyclical.
The driver generates the timed trace of events as output.

trans(s0,a,s1,T,Tr,To,_,[1]) :- {To=T}.
trans(s1,a,s1,T,Tr,To,C,[1|C]):-{To=Tr}.
trans(s1,b,s2,T,Tr,To,[1|C],C):-

{T - Tr < 5, To = Tr}.
trans(s2,b,s2,T,Tr,To,[1|C],C):-{To=Tr}.
trans(s2,b,s0,T,Tr,To,[1|C],C):-

{T - Tr < 20, To = Tr}.

:-coinductive(driver/6).
driver([X| R],Si,C1,Tr,T,[(X, T)| S]) :-

trans(Si,X,Sj,T,Tr,To,C1,C2),
{Ta > T},
driver(R,Sj,C2,To,Ta,S).

Given this program one can pose queries to it to check if a
timed string satisfies the timing constraint. Alternatively, one
can generate possible (cyclical) legal timed strings. Finally,
one can verify properties of this timed language (e.g.,
checking the trivial property that all the a’s are generated
within 5 units of time, in any timed string that is accepted).

Next we show how our coinductive CLP(R) realization of
PTAs can be used to elegantly solve the generalized railroad
crossing problem.

V. THE GENERALIZED RAILROAD CROSSING

The Generalized Railroad Crossing(GRC) problem has
been proposed [9] as a benchmark problem in order to
compare the formal methods that have been invented for
specifying, designing, and analyzing real-time systems. It
also provides a better way to understand the use of these
methods in developing practical real-time systems. Infor-
mally, the GRC problem consists of several tracks and an
unspecified number of trains traveling in both directions.
There is a gate at the railroad crossing that should be
operated in a way that guarantees the safety and utility
properties. The safety property stipulates that the gate must
be down while one or more trains are in the crossing. The
utility property states that the gate must be up when there is
no train in the crossing. The formal statement of the GRC
problem, taken directly from [9], is as follows.



The system to be developed operates a gate at
a railroad crossing. The railroad crossing I lies
in a region of interest R, i.e., I ⊆ R. A set
of trains travel through R on multiple tracks in
both directions. A sensor system determines when
each train enters and exits region R. To describe
the system formally, we define a gate function
g(t) ∈ [0, 90], where g(t) = 0 means the gate
is down and g(t) = 90 means the gate is up.
We also define a set {λi} of occupancy intervals,
where each occupancy interval is a time interval
during which one or more trains are in I. The ith
occupancy interval is presented as λi = [τi, νi],
where τi is the time of the ith entry of a train
into the crossing when no other train is in the
crossing and νi is the first time since τi that no
train is in the crossing (i.e., the train that entered
at τi has exited as have any trains that entered
the crossing after τi). Given two constants ξ1 and
ξ2, ξ1 > 0, ξ2 > 0, the problem is to develop a
system to operate the crossing gate that satisfies
the following two properties:
Safety Property: t ∈ ∪iλi ⇒ g(t) = 0
Utility Property: t /∈ ∪i[τi−ξ1, νi+ξ2]⇒ g(t) =
90

Note that in the problem description above, I and R are
used respectively to denote the railroad crossing, and the
region from where a train passes a sensor until it exits
the crossing. Some positive real-valued constants are also
defined by the GRC as follows:
• ε1, a lower bound on the time from when a train enters

R until it reaches I .
• ε2, an upper bound on the time from when a train enters

R until it reaches I .
• γdown, an upper bound on the time to lower the gate

completely.
• γup, an upper bound on the time to raise the gate

completely.
• ξ1, an upper bound on the time from the start of

lowering the gate until some train is in I .
• ξ2, an upper bound on the time from when the last

train leaves I until the gate is up (unless the raising is
interrupted by another train getting “close” to I ).

• β, an arbitrarily small constant used to take care of
some technical race conditions.

• δ, the minimum useful time for the gate to be up. (For
example, this might represent the minimum time for a
car to pass through the crossing safely.)

Some restrictions are placed on the values of the various
constants:

1) ε1 ≤ ε2.
2) ε1 > γdown. (The time from when a train arrives until

it reaches the crossing is sufficiently large to allow the

gate to be lowered.)
3) ξ1 ≥ γdown +β+ ε2− ε1. (The time allowed between

the start of lowering the gate and some train reaching I
is sufficient to allow the gate to be lowered in time for
the fastest train, and then to accommodate the slowest
train.)

4) ξ2 ≥ γup. (The time allowed for raising the gate is
sufficient.)

We show that the GRC problem can be elegantly modeled
as a PTA. The PTA has been implemented as a coinductive
CLP(R) program. We have verified the safety and utility
properties, as well as other interesting properties of the
system, by posing appropriate queries to the program.

VI. SOLVING THE GRC WITH COINDUCTIVE CLP(R)

For simplicity of presentation, we present our problem in
two steps. We first restrict the number of tracks to one, but
allow arbitrary number of trains to travel on it, one after the
other (it is theoretically possible for the gate to never go
up once it goes down, if an infinite number of trains arrive
one after the other within close enough interval). Next, we
address the full GRC.

A. 1-Track Generalized Railroad Crossing Problem

The 1-Track Generalized Railroad Crossing Problem con-
sists of one track and an unspecified number of trains travel-
ing through the track in one direction. Our task is to develop
(specify and prove correct) the system to control the gate at
the crossing. The system consists of three components, an
automaton to control the gate (gate automaton), an automa-
ton that corresponds to the track and models the behavior
of trains traveling through the track (track automaton), and
an automaton that acts as an overall controller (controller
automaton).

The gate automaton is modeled as a timed automaton
with four states which takes actions based on four different
events: (i) lower indicates starting of lowering the gate; (ii)
down indicates the gate being down; (iii) raise indicates
starting of raising the gate; and, (iv) up indicates the gate
being up.

The track is modeled as a timed automaton with five states
which takes actions based on three events: (i) approach
indicates a train approaching the crossing area; (ii) in
indicates the train being in the crossing area; and, (iii)
exit indicates that the train has left the crossing area. The
track automaton assumes that there cannot be two trains at
the same time in the crossing area. In other words trains
travel in a safe distance from each other. If there is a new
approach signal received while there is a train already
in the crossing, the previous train should leave the crossing
area before the new train can enter the crossing area. The
range of sensors is such that the approach signal of only at
most one approaching train is registered (thus, there could
be one train in the crossing and another one approaching



that the system reacts to). There could be a situation in
which multiple trains travel one after the other (in a safe
distance from each other). In this situation, the system will
work properly in the sense that the first train will enter the
crossing area, the second train will enter the crossing area
after exiting the first train, the third train will take the place
of the second train and so on. Therefore the gate remains
down until the last train exits the crossing area. Note that
the gate crossing system is not responsible for ensuring safe
distance between trains, its task is to ensure the safety and
utility of the crossing.

The controller automaton is modeled as a PTA with four
states. The controller automaton must keep track of trains
currently in the system (i.e., those trains whose approach
signal has been received): it has to ensure that the number
of approach events is identical to those of exit events.
Timed automata are not appropriate for specifying the con-
troller automaton, for two reasons: (i) we don’t know the
number of approach events in advance, so we cannot
design one general timed automaton for the controller that
works for an arbitrary number of tracks and trains. In other
words, we would have to have different timed automata for
different numbers of tracks. (ii) The controller automaton
would become too complicated as the number of tracks
increases. More tracks means more states and transitions,
therefore a more complicated automaton. Then use of a
stack in a PTA eliminates the need for new extra states and
transitions as the number of approach signals and tracks
increase.

The controller automaton must respond to four events:
approach, lower, exit, and raise described above.
On receiving an approach signal at state s0 the controller
clock will be reset. This will ensure lowering of the gate
before the train gets into the crossing area. The controller
clock will not get reset if the approach signal is received
while in other states. The stack in PTA is used to keep
track of the number of trains in the system. On receiving
an approach signal the controller pushes the symbol “1”
onto the stack and on receiving the exit signal, it pops a
“1” from the stack. When the stack is empty, the controller
sends the raise signal to the gate as the last train has left
the system and it is safe to raise the gate. To implement this,
we have used a counter which is increased by 1 on receiving
an approach signal and decreased by 1 on receiving an
exit signal. A transition is activated by a pair (event, state
of counter) and triggers an action on the counter. Testable
states of the counter are “= 0” and “6= 0”, and counter
actions are increment and decrement. The automaton
may ignore the state of the counter and act on the input
signal. For example on receiving an approach signal at
any state, the automaton increments the counter regardless
of its current state. The automaton can act based on both the
input signal, and the counter state. On receiving the exit
signal in state s2, the automaton checks the state of the

counter and it might stay in the same state or move to state
s3. If the counter is equal to zero, the controller will go to
state s3 and reset its clock. This will ensure that a raise
signal will be sent to the gate automaton within ξ2 − γup
units of time after the controller clock is reset. If the counter
is not equal to zero, the controller remains in state s2 and its
clock will not get reset. Figure 4 shows the timed automata
for track (i), gate (iii), and the PTA for controller (ii). Note
that in the controller automaton in Figure 4, s is the stack
(modeled via a counter in the CLP(R) code, as mentioned
above).

For modeling the 1-track GRC problem we set ε1 = 2, ε2 =
3, γdown = 1, γup = 2, ξ1 = 2, ξ2 = 3. Note that these values
are taken directly from [2]. A real-time system designer can
choose other values for these parameters. The GRC does
not put any restrictions on how long a train can take to pass
the gate crossing (theoretically speaking, a train can even
stop at the gate and stay their indefinitely). To disallow such
behaviors, we put an upper bound on the maximum time a
train should take to exit the crossing. We introduce a constant
σ, which is the maximum time in which the exit signal
should appear since the approach signal was seen. For
GRC, σ =∞. Following [2] we set σ = 5.

The behavior of the timed automaton for the track can be
specified by the following CLP(R) rules.

track(s0, approach, s1, GT, TI, TO, L) :-
{TO = GT}.

track(s1, in, s2, GT, TI, TO, L) :-
{GT - TI > 2, GT - TI < 3, TO = TI}.

track(s2, approach, s3, GT, TI, TO, L) :-
{TO = GT}.

track(s4, in, s2, GT, TI, TO, L) :-
{GT - TI > 2, GT - TI < 3, TO = TI}.

track(s3, exit, s4, GT, TI, TO, L) :-
first(L, First),
{GT - First < 5, TO = TI}.

track(s2, exit, s0, GT, TI, TO, L) :-
first(L, First),
{GT - First < 5, TO = TI}.

track(X, lower, X, GT, TI, TI, L).
track(X, down, X, GT, TI, TI, L).
track(X, raise, X, GT, TI, TI, L).
track(X, up, X, GT, TI, TI, L).

The first argument of the track predicate is the current
state of the track. The second argument is one of the events
triggering an action explained above. The third argument
is the new state that results. GT represents the global wall
clock. TI is the last time the track clock was reset. TO is the
new reset time which depends on whether the track clock
gets reset in this transition or not (it is set to either GT or
TI). The last argument, L, keeps track of all the reset times:
since there might be more than one train in the system at any
given time, every time a train gets into or exits the crossing



Figure 4. track, controller, and gate automaton

area, it should use its own approach time rather than the
last approach time. The list L keeps track of all the stop-
watches that are active due to multiple trains signaling an
approach.

Since trains enter into and exit the crossing area in the
order they arrive in the system,2 each train on exit event
uses the first element of list L as its own approach time.
After each exit the first element of list L is removed from
the list.

gate(s0, lower, s1, GT, TI, TO) :-
{TO = GT}.

gate(s1, down , s2, GT, TI, TO) :-
{TO = TI, GT - TI < 1}.

gate(s2, raise, s3, GT, TI, TO) :-
{TO = GT}.

gate(s3, up, s0, GT, TI, TO) :-
{TO = TI, GT - TI < 2}.

gate(X, approach, X, GT, TI, TI).
gate(X, in, X, GT, TI, TI).
gate(X, exit, X, GT, TI, TI).

The gate predicate has the same arguments as the track
predicate except for the last argument, L.

contr(s0,approach,C1,C2,s1,GT,TI,TO):-
C2 is C1 + 1, {TO = GT}.

contr(s1,lower, C1,C1,s2,GT,TI,TO):-
{GT - TI = 1, TO = TI}.

contr(s2,exit, C1,C2,s3,GT,TI,TO):-

2For the GRC (multiple tracks), this assumption may not hold: a long
slow train in one track that approaches first, may be overtaken by a fast
short train that approaches later but exits first. However, this situation can
be handled easily in our framework and indeed we handle it in our treatment
of the full GRC (see the code for the driver/12 predicate in Section
VI-B).

C1 = 1, C2 is C1 - 1, {TO = GT}.
contr(s2,approach,C1,C2,s2,GT,TI,TO):-

C2 is C1 + 1, {TO = TI}.
contr(s2,exit, C1,C2,s2,GT,TI,TO):-

C1 > 1, C2 is C1 - 1, {TO = TI}.
contr(s3,approach,C1,C2,s2,GT,TI,TO):-

C2 is C1 + 1, {TO = TI}.
contr(s3,raise, C1,C1,s0,GT,TI,TO) :-

{GT - TI < 1, TO = TI}.
contr(s2,in,C1,C1,s2,GT,TI,TI).
contr(s0,up,C1,C1,s0,GT,TI,TI).
contr(s2,down,C1,C1,s2,GT,TI,TI).

The controller predicate has the same arguments as
the gate predicate with two extra arguments, C1 and C2.
C1 is the current counter in the system (the number of
active approach signals), and C2 is the new counter after
the transition. If the event is approach the counter will
be incremented by one, if the event is exit it will be
decremented by one, otherwise it will not change.

The main driver predicate is shown below.

driver(C1,ST,SC,SG,GT,CT,CC,CG,[X|Rest],
Resets,[(X,GT)|R])

:-
track(ST,X,STO,GT,CT,CTO,Resets),
contr(C1,SC,X,C2,SCO,GT,CC,CCO),
gate(SG,X,SGO,GT,CG,CGO),
{TA > GT},
(X = approach ->
add-to-list(GT,Resets,NewResets);

(X = exit ->
delete-first(Resets,NewResets);

NewResets = Resets)),
driver(C2,STO,SCO,SGO,TA,CTO,CCO,CGO,



Rest,NewResets,R).

The driver takes as input (i) the system counter, starting
at zero; (ii) the current states of track, controller, and gate;
(iii) The current global time; (iv) The last reset time for
each of the automaton; (v) the list of events; and, (vi) the
list of approach times, starting with empty set, []. The
driver generates output as a list of pairs which is the last
argument of driver. The first element of the pair is the
event name and the second element is the time at which
the event happened. Note that driver/11 is specified
coinductively, as it executes forever. The add-to-list/3
and the delete-first/2 predicates manage the stop-
watches that have to maintained for each track.

Given the logic programming definitions of controller,
track, and gate automata and the driver routine that composes
the three automata, one can check if a given sequence of
timed events is legal or not, i.e., use the logic program as a
simulator. One can also generate a sample sequence of timed
events accepted by the system (here we use the generational
power of logic programming). Finally, properties of interests
are verified as follows: given a property Q to be verified,
specify its negation as a logic program. Let’s call this
predicate notQ. If the property Q holds, the query notQ
will fail w.r.t. the logic program that models the system. If
the query notQ succeeds, the answer provides a counter
example to why the property Q does not hold.

We prove the safety property of the system in two
phases. In the first phase we show that system is
safe after the first approach signal. We define the
firstinbeforedown/1 predicate in which we have
negated the safety property by looking for any solution that
contains in before down after the first approach. In other
words we look for any possibility that the first train is in the
crossing area before the gate is down. In this predicate we
assume that the first approach occurs at time T = 0.0. The
call to firstinbeforedown will fail which indicates
that the system is safe after the first train approaches.

firstinbeforedown(X) :-
driver(0,s0,s0,s0,0,0,0,0,X,[],R),
append(B, [(in, _)|_], R),
append([(approach, 0)], A, B),
\+member(down, A).

In second phase we show that the safety property holds
for the subsequent approaches of the trains. We define the
inbeforedown/1 predicate in which we have negated
the safety property again. In this predicate we check for any
possibility of the gate being up followed by in without
down in between. The call for this query also fails.

inbeforedown(X) :-
driver(0,s0,s0,s0,0,0,0,0,X,[],R),
append(C, [(in, _)|_], R),
append(A, B, C),

append(_, [(up, _)], A),
\+member((down, _), B).

Similarly we can check the utility property using the
utility/1 predicate defined below. In this predicate we
ensure that the gate is up when there is no train in the
crossing area or approaching the crossing. In other words it
looks for feasibility of situations in which the gate is down
without any train being in the crossing area. So, if a call
to the utility predicate fails we know that the utility
property is satisfied.

utility(X) :-
driver(0,s0,s0,s0,0,0,0,0,X,[],R),
append(A, B, R),
member([(down, _)], A),
\+member((in, _), B).

Other interesting properties of the system can also be veri-
fied using appropriate queries. For example one can compute
the minimum time distance between two consecutive trains
(i.e., two consecutive approach signals) through a call to
the distance/2 predicate below. The solution produced
by this query is N > 2, and M < 5, which indicates the
range of this minimum for the system to operate safely.

distance(M, N) :-
driver(0,s0,s0,s0,0,0,0,0,X,[],R),
append(A, [(approach, T2)|_], R),
append([(approach, T1)], B, A),
\+member((approach, _), B) ,
{T2 - T1 >= M, T2 -T1 =< N}.

B. Solution for the GRC Problem

We next tackle the fully general case of the GRC. Note
that most of the issues that are raised by GRC problem have
to be handled in the 1-Track GRC problem, too, so solving
the GRC problem is straightforward. We use the solution
for the 1-track GRC problem and generalize it to handle
any number of tracks and an unspecified number of trains
traveling through the tracks in both directions. We assume
that at most one train can be in the crossing area in each
track at any given time. In other words if the number of
tracks is equal to some number n then there can be at most
n trains in the crossing area at any given time.

In modeling the GRC problem we make use of the same
PTA for the controller that we used for 1-track GRC problem
with a slight difference: it has to be cognizant of all the
approach signals coming from trains on different tracks.
Approach signals from trains on different tracks can arrive
arbitrarily close to each other. On receiving an approach
signal in state s1 the extended controller automaton stays in
state s1 and increments the counter. This addition allows
the automaton to handle multiple approach signals in
different tracks arriving very close to each other or additional
approach signals arriving after the first approach has been



Figure 5. The Controller Automaton

received but before enough time has elapsed for the gate to
go down. Note that the controller clock doesn’t get reset on
this transition. The reason is that the lower signal is sent
to the gate automaton at ε1 − γdown units of time after the
first approach. Figure 5 shows the controller automaton
for the GRC problem.

To model the full GRC, the number of tracks has to be
given as an input to the system so that any number of tracks
can be handled. A train can arrive on any track at any instant
of time. On receiving a new approach signal from a train
on a given track, the system will respond to it assuming that
there is no other train in that track or that any trains on that
track will exit the crossing area before the new train would
arrive there.

Thus, the controller predicate remains the same as in the
1-Track GRC problem except for one additional rule needed
to handle multiple approaches in different tracks at the
same time as follows.

contr(C1,s1,approach,C2,s1,GT,TI,TO):-
C2 is C1 + 1, {TO = TI}.

We make use of the same timed automaton for the gate
that we used for 1-track GRC problem. Likewise, the gate
predicate remains unchanged. The timed automaton for the
track is the same as in the 1-track GRC problem, except that
each track has its own track automaton that models the trains
running on that track. Tracks are specified by track numbers
which is implemented by adding the track number to the
track predicate that we used for 1-Track GRC problem. All
these track automata are initialized at state s0 and they work
in parallel. When an event takes place in a specified track,
only that track responds to this event and all automata for
other tracks don’t respond to this event and remain in their
current states.

The driver/12 predicate for GRC problem is shown
below.

driver(C1,NoTracks,SC,SG,GT,CC,CG,[X|Rest],
Tracks,TrkResets,Trains,[(X,Track,GT)|R]):-
contr(C1, SC, X, C2, SCO, GT, CC, CCO),
gate(SG, X, SGO, GT, CG, CGO),
{TA > GT},
((X = approach, N is NoTracks + 1,
random(1, N, Track);
(X=in; X=exit), member(Track, Trains))->
nthElement(Track, Tracks, Trk),
arg(1, Trk, CT), arg(2, Trk, ST),
nthElement(Track, TrkResets, TrkReset),
train(Track, ST, X, STO, GT, CT, CTO, TrkReset),
update(Track, Tracks, (CTO,STO), NewTracks),
(X = approach ->

add-to-list(GT, TrkReset, NewTrk),
update(Track,TrkResets,NewTrk,NewTrkResets),
add-to-list(Track, Trains, NewTrains);

(X = exit ->
delete-first(TrkReset, NewTrk),
update(Track,TrkResets,NewTrk,NewTrkResets),
delete-first(Track, Trains, NewTrains);

NewTrkResets = TrkResets,NewTrains = Trains));
NewTrkResets = TrkResets,
NewTrains = Trains,
NewTracks = Tracks),
driver(C2,NoTracks,SCO,SGO,TA,CCO,CGO,
Rest,NewTracks,NewTrkResets,NewTrains,R).

In this predicate, NoTracks is the number of tracks in
the system (given as an input to the program). Tracks
is a list of 〈time, state〉 pairs (one pair for each track),
specifying the status of each track; time indicates the
last time that clock was reset in a particular track and
state indicates the current state of the track automaton
for that track. Initially Tracks is a list of 〈s0, 0〉 pairs,
indicating that all tracks are initially in state s0 at time 0. The
update predicate takes the track number and updates the
status of that track in Tracks list, producing NewTracks
list. TrkResets is a list of lists. The number of lists
in TrkResets is equal to the number of tracks in the
system. Each list in TrkResets contains the approach
times on each track. Initially TrkRestes is a list of
empty lists. On receiving approach and exit signals
on any track, the corresponding list for that track in the
TrkResets is updated. With these changes, our framework
can handle situations where approaches and exits of
various trains on various tracks may be inter-mixed: for
example, a long slow train in one track that approaches
first, may be overtaken by a fast short train in another track
that approaches later but exits first. Being able to handle
such situations is the reason that we store approach times
of each track separately in TrkResets. The predicates,
add-to-list/3, update/4, delete-first/2, and
delete-first/3, thus, all pertain to management of
various track stop-watches (clocks).
Trains, is a list of integers from the domain D, where

D = 1 .. NoTracks. The Trains list (initialized to empty
list, []) consists of all the trains currently in the system,
which are specified by their track number. For example if
Trains gets bound to [2, 1, 3, 2], it means that there
are currently four trains in the system: one train in tracks



1, and 3 each, and two trains in track 2. On receiving an
approach signal on a track, the track number is added to
the Trains list. On receiving an exit signal on a track,
the first occurrence of that track number is removed from
the Trains list by delete-first predicate. The last
argument of driver is the output of the program which
is a list of < X,Track, T > triples where X is an event,
Track is the track number in which the event happened, and
T is the time that event occurred. The rest of the arguments
of driver are as before.

The safety and utility properties along with other
properties of the system can be verified by posing appropri-
ate queries similar to those of the 1-Track GRC problem.
In fact, these queries are identical to those of the 1-Track
problem except that track numbers are added to queries.
Therefore, these queries are not reproduced here.

VII. CONCLUSIONS AND RELATED WORK

Real-time systems have been studied with several types of
real-time logics. Automata based real-time formalisms such
as timed automata [2], [9] and timed transition systems have
been also proposed to model and analyze a wide range of
real-time systems. Jaffar [22] builds on the work of Gupta
and Pontelli and translates timed automata to a CLP program
and uses it for proving assertions (properties of the system
can be expressed in an expressive assertion language). All
these papers do not consider PTAs, they limit themselves to
timed automata.

Discrete pushdown timed automata were originally intro-
duced by Zhe Dang, et al. [4]. Pushdown timed automata
with dense clocks were also considered by Dang [10] and
used to give a decidable characterization of the binary
reachability of a PTA. However, the treatment in their work
is largely theoretical, there is not much focus on how to
elegantly and efficiently realize PTAs. In contrast, we are
more interested in elegantly modeling and analyzing PTAs
applied to complex applications such as the GRC.

Few solutions have been proposed for GRC problem. The
most notable is that of Puchol [24], which is based on the
ESTEREL programming language. In Puchol’s work, time is
discretized and thus is not faithful to the original problem. In
contrast, our solution treats time as continuous. In Puchol’s
approach, the number of trains that the solution comprises
must be chosen at compile time. Our approach, in contrast,
takes the number of tracks as an input and can work on an
unspecified number of trains. Verifying safety properties of
the system in Puchol’s approach is extremely complex: this
complexity is such that one cannot be sure if the verification
process itself is trustworthy. In our approach, in contrast,
safety properties as well as other properties can be verified
elegantly by posing simple queries.

UPPAAL has been also proposed as a toolbox for ver-
ification of real-time systems [25]. In fact, a model for a
Train-Gate example is distributed with UPPAAL. UPPAAL

is based on a timed automata formalism and cannot handle
PTAs. Significant rewriting of the system would be required
to support them. In contrast, PTAs are realized much more
simply in our logic programming based approach.

Thus, a combination of constraint over reals, coinduc-
tion, and the language processing capabilities of logic pro-
gramming provides an elegant, expressive, and easy-to-use
formalism for modeling and analyzing complex real-time
systems.
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