Abstract—Recently proposed fast template matching techniques employ rejection schemes derived from lower bounds on the match measure. This paper generalizes that idea and shows that in addition to lower bounds, upper bounds on the match measure can be used to accelerate the search. An algorithm is proposed that utilizes both lower and upper bounds to detect the k best matches in an image. The performance of this dual-bound algorithm is guaranteed; it always detects the k best matches. Theoretical analysis and experimental results show that its runtime compares favorably with previously proposed real-time exact template-matching schemes.

Index Terms—Template matching, Walsh transform, pattern matching, real-time matching, priority queues.

1 INTRODUCTION

Research aimed at developing fast template matching techniques can be traced back to early work in pattern recognition [1]. For example, Goshtasby et al. [2] performs a first stage where matching is computed for a small subset of the template pixels. Exact values are computed in a second stage, but only at image locations that rank high in the first stage. A related approach [3] uses a multistage coarse-to-fine search.

Much of the recent work on fast matching is based on the observation that many unlikely candidates can be pruned with little computation. This can be done in a probabilistic sense, rejecting candidates that are most likely not a good match [4], or, in an exact sense, by utilizing bounds on the match measure [5], [6], [7], [8], [9], [10], [11], [12]. The computational savings come from efficient evaluation of these bounds by various techniques. Examples include sampling [4], multiresolution [7], running sums or integral images [6], [11], [13], and orthogonal transforms [9], [10], [11].

1.1 The Problem Being Addressed

In a typical template-matching setting, one attempts to locate a small template (a rectangular window of pixels) in a big image. Each location in the image is viewed as a candidate for a good match. The match quality is measured as the similarity between the rectangular window centered at that location and the template. We denote the template by t and the candidates by y_1, \ldots, y_n. Our goal is to compute the k best matches for t among the candidates. Let $J(t, y)$ be a match measure. We are interested in cases where it is possible to efficiently compute lower and upper bounds on $J(t, y)$, with increasing degrees of accuracy. Let d denote the degree of accuracy, and let $l^d(t, y)$, $u^d(t, y)$ be the lower and upper bounds on $J(t, y)$ computed at degree d. For all values of d, these bounds satisfy:

$$l^d(t, y) \leq l^{d+1}(t, y) \leq J(t, y) \leq u^{d+1}(t, y) \leq u^d(t, y).$$

We also assume that there is a number N such that for any y:

$$J^{N+1}(t, y) = J(t, y) = u^{N+1}(t, y).$$

It is easy to make sure that such N exists for any method of computing lower and upper bounds. One can decide on a value of N as a maximal useful degree, and calculate the bounds at degree $N + 1$ of accuracy by computing the exact match values. Thus, N can be taken as a parameter and not as a condition that limits the choice of a bounding scheme.

In Section 2, we show that it is possible to compute such bounds using Walsh transform kernels. The commonly used match measure that we consider is the euclidean distance (distance in the l_2 norm). In vector notation, the (squared) euclidean distance can be written as:

$$J(t, y) = ||t - y||^2.$$

This measure is used, for example, in [8], [9], [10], [11].

1.2 Related Work

Without loss of generality, we assume that good matches are identified by small values of the match measure. Pruning with lower bounds was used in some recent studies as follows: Suppose T is a match value computed exactly for y, one of the candidates: $T = J(t, y)$. If a candidate $y \neq y$ has a lower bound value satisfying $l^d(t, y) \geq T$ for some d, then y cannot be better than y and can be pruned. In particular, there is no need to evaluate its bounds at higher degrees of accuracy.

If the user knows what match value is acceptable, that value can be provided as the parameter T. This approach was taken in [9], [10], [11]. It is not clear, however, how easy it is to determine such a value so that a predetermined number k of best matches is detected even for $k = 1$. It may be possible to design some type of binary search, but it was not discussed in the cited references and may lead to a significant increase in the complexity of these algorithms.

A practical approach for computing a pruning threshold T is to run a preliminary crude search for a good match. The
exact match value of the candidate found can then be used for initial pruning. That value can be updated whenever a better solution is discovered. See, e.g., [6], [7], [11].

1.3 Our Contribution

1.3.1 Dual Bounds

We show that upper bounds can be used together with lower bounds to improve the speed of the search. The dual bounds can be used to perform pruning and to detect early termination conditions. Fig. 1 illustrates this for a particular case of three candidates. Each candidate is shown as a line segment connecting its lower bound value with its upper bound value. The true matching value of each candidate is at an unknown position along the line segment. If the goal is to detect the best matching candidate \(k = 1 \), we can prune \(y_2 \) since its lower bound value is greater than the upper bound value of \(y_1 \), so that it can never be better than \(y_1 \). If the goal is to detect the best two matching candidates \(k = 2 \), pruning cannot be applied but we can determine that \(y_1 \) is one of the two best candidates since its upper bound value is less than the lower bound value of \(y_2 \).

To the best of our knowledge, the use of dual bounds for accelerating the search is new in the context of fast template matching.

1.3.2 The Dual-Bound Algorithm

As discussed at the beginning of this section, the main approach used in previous studies was to incrementally update the pruning threshold, examining the candidates one by one. The order in which the candidates are examined affects the runtime of the algorithm. The best case occurs when the first examined candidate is the best match, so that the initially computed pruning threshold turns out to be the correct one.

We show that there is an optimal ordering for examining the candidates which can be determined by a priority queue. An algorithm that uses this ordering spends the same amount of time evaluating bounds as an algorithm that is given the best possible pruning threshold as input. The implementation of this idea leads to an algorithm with the best possible runtime in terms of the cost of computing bounds. However, this algorithm has an additional overhead of maintaining the priority queue.

1.4 Paper Organization

The remainder of the paper is organized as follows: Lower and upper bounds that can be computed using orthogonal projections are derived in Section 2. The use of Walsh transform kernels is discussed in Section 3. Pruning and early termination conditions are discussed in Section 4. The dual-bound algorithm is described in Section 5. Experimental results with the algorithm are reported in Section 6. Comparison with some alternative methods is given in Section 7. Conclusions and future work are discussed in Section 8.

2 Bounding Match Measures

In this section, we derive lower and upper bounds on the euclidean match measure defined in (2). The results are described in terms of general projections, and the lower bounds that we derive unify and generalize results that appear in [7], [9], [11].

The template \(t \) and the candidates \(y_1, \ldots, y_m \) are viewed as vectors in \(\mathbb{R}^n \), where \(n \) is the number of template pixels. We write \(\| x \| \) for the \(l_2 \) norm of the vector \(x \). We make use of the following inequalities:

\[
\| x - y \| \leq \| x \| + \| y \|.
\]

These triangle inequalities follow from the Minkowski’s inequality (e.g., [14]). This form of the left-hand side was used by Tombari et al [11] to derive their lower bounds.

Let \(V = (v_1, \ldots, v_d) \) be an \(n \times d \) matrix with orthonormal columns. The projection of a vector \(x \) on the subspace spanned by the columns of \(V \) is given by:

\[
x_p = Px = VV^T x = Vx_p,
\]

where \(P = VV^T \) is called the projection matrix, and \(x_p = V^T x \) is called the coefficients vector of \(x \). Any vector \(x \in \mathbb{R}^n \) can be expressed as:

\[
x = x_p + x_q,
\]

where \(x_q = x - x_p \) is orthogonal to \(x_p \). Our goal is to approximate the match in terms of projections on the subspace spanned by \(V \). For efficient computation, such projections should be easy to compute, and the column vectors of \(V \) should have good “energy compaction.” By this, we mean that the projection \(Px \) is a good approximation of \(x \) when \(x \) is a typical image. Three explicit examples from previous studies can be described in this way:

- **DCT kernels.** This choice gives very good energy compaction, but it is inefficient to compute at each point in the image. See [8].
- **Walsh transform kernels.** This choice gives slightly worse energy compaction than the DCT [15], but there are methods for computing projections on the subspace spanned by these kernels efficiently at each point in the image. See [9], [10], [16], and Section 3.
- **Disjoint subsets.** Tombari et. al [11] and Mattoccia et al. [6] proposed dividing the image into \(r \) disjoint subsets of pixels. Let \(s_1, \ldots, s_r \) be these subsets. To enable fast computation of projections, these subsets are selected as pixels in axis-parallel rectangles. Define the vectors \(v_j \) for \(j = 1, \ldots, r \) as follows:

\[
v_j(i) = \begin{cases}
1, & \text{if } i \in s_j, \\
0, & \text{otherwise}.
\end{cases}
\]
Several Walsh and disjoint subsets kernels are shown in Fig. 2. Several Walsh and disjoint subsets kernels are shown in Fig. 2. Applying (3) to \(f \) computed by the following steps:

\[
\begin{align*}
\hat{f} &= \sum_{ij} v_i(i, j) t(i, j), \\
g &= \sum_{ij} v_i(i, j) y(i, j),
\end{align*}
\]

where the summation is over all coordinates (pixel values). It is shown later that these summations can be calculated very fast when the \(v_i \) are Walsh transform kernels. (The value of \(f \) is independent of \(y \) and can be precomputed.) Once \(f, g \) are calculated, we apply the following update formulas:

\[
\begin{align*}
\|t_p - \hat{t}_p\|^2 &= \|t_p - \hat{t}_p\|^2 + (f - g)^2, \\
\|\hat{t}_q\|^2 &= \|t_q - \hat{t}_q\|^2 - 2f, \\
\|\hat{y}_q\|^2 &= \|y_q - \hat{y}_q\|^2 - g^2.
\end{align*}
\]

From (7), it follows that at accuracy \(d \), the lower bound \(l^d(t, y) \) and the upper bound \(u^d(t, y) \) can be computed from:

\[
\begin{align*}
l^d(t, y) &= \|t_p - \hat{t}_p\|^2 + \|\hat{t}_q\|^2, \\
u^d(t, y) &= \|t_p - \hat{t}_p\|^2 + \|\hat{t}_q\|^2.
\end{align*}
\]

3 Walsh Transform Kernels

To compute bounds as described in Section 2, we need a set of orthonormal vectors \(V = (v_1, \ldots, v_d) \). Following [9], we select them to be low-sequence Walsh transform kernel functions. The 1D Walsh transform kernel \(w_i \) of length \(2^k \) can be defined as follows [15]:

\[
w_i(i) = \begin{cases}
1, & \text{if } \sum_{j=0}^{i-1} b(k)(i)b_{i-1-k}(a) \text{ is even}, \\
-1, & \text{otherwise},
\end{cases}
\]

where \(b(k)(z) \) is the \(k \)th bit in binary representation of \(z \). The 2D Walsh transform kernel is defined by:

\[
w_{ij}(i, j) = w_i(i) w_j(j).
\]

Several Walsh transform kernels are shown in Fig. 2. Observe that Walsh transform kernels consist of uniform rectangular regions of “1” or “-1” values. It was pointed out in [17] and [9] that running sums, or integral images, can be used to efficiently compute projections on Walsh Transform kernels, although this requires time proportional to the kernel sequence. (The sequency is a measure of the sign changes in a Walsh transform kernel.)

Recently, it was shown that projections on the subspace of Walsh transform kernels can be computed very fast, regardless of their sequency [9], [10], [16]. Exploiting redundancy in the computation of projections from neighboring image windows and contiguous kernel orders, Ben-Artzi et al. [10] have shown that it is possible to compute the projection of a single window on a single Walsh transform kernel with only two operations per pixel. This result was further reduced from 2 to 1.5 operations per pixel by [16]. Unfortunately, the speed of the fast approaches of [9], [10], [16] is only fully apparent when one needs to compute projections on the same Walsh transform kernels at every location in the image. When used with selective or pruning techniques such as the one proposed in this paper, one may end up computing many unnecessary projections [18].

To fully exploit the selective power of our algorithm and to enable a clear analysis of its complexity, we implemented an integral images approach to evaluate projections on the subspace of Walsh transform kernels. It computes each
projection independently of other projections, with cost proportional to the number of corners in the corresponding Walsh transform kernel.

3.1 The Corners Method

The corners method was mentioned as a possible algorithm for computing projections on the subspace of Walsh transform kernels in [17] and [9]. Let \(\mathbf{w} \) be a Walsh transform kernel. Since \(w(i, j) \) is either 1 or -1, the projection of an image window \(\mathbf{p} \) (of the same dimensions as \(\mathbf{w} \)) on \(\mathbf{w} \) can be expressed as follows:

\[
\mathbf{p}^T \mathbf{w} = \sum_{i,j} p(i, j) w(i, j) = 2 \sum_{\mathbf{w}(i,j)=1} p(i, j) - \sum_{i,j} p(i, j) = 2R_w - \alpha_{00}.
\]

Here, \(\alpha_{00} \) is the sum of all pixel values in \(\mathbf{p} \) and \(R_w \) is the sum of the pixel values in \(\mathbf{p} \) over the regions defined by rectangles of “1” value in \(\mathbf{w} \). These sums can be computed using the “integral images” approach (see [17]), i.e., by adding or subtracting the integral image value at the four corners of the rectangle. The complexity of this method is the number of corners, which grows linearly in the order of the kernel. This linear relation is shown in Fig. 3. (The kernels order was computed by ranking the kernels according to the number of corners.) For additional details, see [18].

4 PRUNING AND EARLY TERMINATION

As was illustrated in Fig. 1, lower and upper bounds can identify both pruning and early termination conditions. In this section, we discuss how to use these conditions to detect a set of \(k \) matches that forms an optimal solution.

Consider an algorithm for detecting the best \(k \) matches of the template \(\mathbf{t} \) among the \(m \) candidates \(\mathbf{y}_1, \ldots, \mathbf{y}_m \). An optimal solution to this problem is a set \(A \) of \(k \) candidates such that the matching value of any candidate in \(A \) is at least as good as the matching value of any candidate not in \(A \).

Bounds on the matching values of these candidates can be computed at different degrees of accuracy during the runtime of the algorithm. At any time during the run, we write \(u(y) \) for the most current upper bound of \(y \), and \(l(y) \) for its most current lower bound. The set of all candidates with their associated bounds at any given time is denoted by \(G \).

Consider a partition of \(G \) into the two disjoint subsets \(A, B \), where \(A \) contains \(k \) candidates and \(B \) contains \(m - k \) candidates. We identify two “extreme” candidates. The extreme candidate in \(A \), denoted by \(\mathbf{y}_A \), has the largest upper-bound value among all candidates in \(A \). The extreme candidate in \(B \), denoted by \(\mathbf{y}_B \), has the smallest lower-bound value among all candidates in \(B \):

\[
\mathbf{y}_A = \arg \max_{y \in A} u(y), \quad \mathbf{y}_B = \arg \min_{y \in B} l(y).
\]

These values can be used to detect pruning and early termination as follows:

- **Pruning.** \(y \in B \) can be pruned if \(l(y) \geq u(y_A) \).
- **Global Pruning.** If all members of \(B \) can be pruned, then the set \(A \) is an optimal solution. (There may be several equally good solution sets.)
- **Early Termination.** If \(y \in A \) satisfies \(u(y) \leq l(y_B) \), then \(y \) can be taken as part of an optimal solution.
- **Global Early Termination.** If \(u(y_A) \leq l(y_B) \), then the set \(A \) is an optimal solution.

Clearly, the global early termination condition holds if and only if the global pruning condition holds. Early termination suggests a different approach to designing matching algorithms than pruning. Trying to prune all candidates in \(B \) suggests intermediate steps in which as much pruning as possible is applied. This is the approach taken by [6], [7], [8], [9], [10], [11]. By contrast, an algorithm that attempts to establish the global early termination condition may choose to focus on steps that evaluate the two extreme candidates \(\mathbf{y}_A \) and \(\mathbf{y}_B \). We describe such an algorithm in the next section.

5 THE DUAL-BOUND ALGORITHM

This section describes our main result: an algorithm that uses lower and upper bounds to compute the \(k \) best matching candidates. The main idea is to create the partitioning of the candidates into the sets \(A, B \), as discussed in Section 4, so that at any given time, the set \(A \) consists of \(k \) candidates with the smallest lower bound values. As we show later, this enables us to easily identify candidates with bound values that must be computed at higher accuracy.

The input to the algorithm is the template \(\mathbf{t} \), the set \(G \) of candidates, and the parameters \(k, N, d_0 \). The parameter \(k \) is the number of desired matches, \(N \) is the maximal useful degree of accuracy, and \(d_0 \) is an initial degree of accuracy. The algorithm starts by computing initial bounds at degree \(d_0 \) for all candidates. The set \(G \) is then pruned with the threshold \(U \), the \(k \)th smallest upper bound. Among the remaining candidates, those with the \(k \) lowest lower bound values are put in the “\(A \)” set, and all other candidates are put in the “\(B \)” set.

Once the sets \(A, B \) are initialized, the extreme candidates \(\mathbf{y}_A, \mathbf{y}_B \) are computed according to (10). An optional pruning step and the global early termination condition are evaluated. If termination conditions are satisfied, the algorithm terminates with the candidates in \(A \) as an optimal solution. Otherwise, new bounds at a higher degree of accuracy are calculated for the extreme candidate \(\mathbf{y}_A \). This continues until
nonterminating iteration. It is always reached with
always terminates. conditions guarantee that the candidates in
when the global pruning or the global early termination
5.1 Correctness
the global early termination condition holds or different
extreme candidates must be selected. The algorithm steps are
detailed in Fig. 4.
Notes:

- The template \(t \) and the parameter \(N \) are needed for computing the bounds.
- The notations \(l(y), u(y) \) always refer to the most accurate lower and upper bounds of \(y \) available to the algorithm.
- Step 4.1 is optional. It does not affect the correctness of the algorithm, but may improve its runtime. The value of \(U \) is the maximum of the upper bounds of \(k \) candidates. As was shown in Section 4, it can be used for pruning. A pruning step takes place whenever a tighter (smaller) upper bound is found (see Section 4).
- The algorithm makes sure that the set \(A \) always contains the \(k \) candidates with the smallest lower bounds. If this is violated at Step 4.3.1, it is immediately fixed at Step 4.3.2.

5.1 Correctness
The algorithm terminates either at Step 4.1 or at Step 4.2, when the global pruning or the global early termination condition of Section 4 hold. As discussed in Section 4, these conditions guarantee that the candidates in \(A \) are an optimal solution. It remains to show that the algorithm always terminates.

Observe that Step 4.3.1 must be executed at each nonterminating iteration. It is always reached with
\(l(y_A) < u(y_A) \) since, at that point, \(u(y_A) > l(y_B) \) and \(l(y_B) \geq l(y_A) \). This means that the degree of accuracy of \(y_A \) bounds at that point cannot exceed \(N \). This shows that if there are \(m \) candidates in \(G \), then Step 4.3.1 cannot be executed more than \(m(N + 1) \) times.

5.2 Complexity of the Dual-Bound Algorithm
In this section, we analyze the runtime of the dual-bound algorithm. From Section 5.1 we know that the worst-case runtime is \(O(mN) \), but this is no better than computing the exact matching values for all candidates. The analysis in this section shows that the number of estimates of lower and upper bounds required by the algorithm is nearly the best possible.

The runtime has two components. The first is the computation of lower and upper bounds, carried out in Steps 1 and 4.3.1. We call this component the inherent cost of the algorithm. The second component is the creation and maintenance of the sets \(A, B \), including the repeated computation of the extreme candidates \(y_A \) and \(y_B \). We show that this can be done with priority queues, and refer to this component as the queue cost of the algorithm.

5.2.1 Inherent Cost
We show that in terms of inherent cost, the dual-bound algorithm performs as well as algorithms that have access to a perfect pruning threshold. Without loss of generality, assume that the candidates are numbered so that \(J(y_i, t) \leq J(y_{i+1}, t) \) for \(i = 1, \ldots, m - 1 \). Define:

\[
T_r = J(y_{kr}, t), \quad T_{a} = J(y_{k+1}, t).
\]

Thus, \(T_r \) is the \(k \)th smallest match value, and \(T_a \) is the \(k+1 \)th smallest match value. If we know these values, then it is possible to apply the following best possible acceptance/rejection scheme:

\[
\text{if for some } d, u^d(y) < T_r, \text{ then } y \text{ belongs to solution,} \\
\text{if for some } d, l^d(y) > T_r, \text{ then reject (prune) } y. \tag{11}
\]

Therefore, the bounds of a candidate \(y \) need only be calculated up to an accuracy \(d \) where one of the conditions in (11) holds. We refer to \(T_r \) as the perfect pruning threshold and to \(T_a \) as the perfect acceptance threshold. We show that the dual-bound algorithm behaves as if \(T_r \) is known so that the bounds of candidates that can be pruned are never evaluated unnecessarily.

Theorem. Let \(d \) be the smallest degree of accuracy in which the candidate \(y \) can be pruned with the perfect pruning threshold \(T_r \). The dual-bound algorithm never calculates the bounds of \(y \) to a degree higher than \(d \).

Proof. We need to show that if bounds are calculated for \(y \) in Step 4.3.1, then \(l(y_A) \leq T_r \). Suppose this condition does not hold so that \(l(y_A) > T_r \). Observe that at Step 4.3.1, \(l(y) \geq l(y_A) \) for all candidates in \(B \), and therefore, if \(y \in B \), then \(l(y) \geq l(y_A) > T_r \). This means that all candidates in \(B \) and at least one in \(A \) can be pruned, which leaves at most \(k - 1 \) unpruned candidates. This contradicts the fact that there are at least \(k \) candidates that cannot be pruned. \(\Box \)

The proof of the theorem holds as long as the candidate chosen in Step 4.3.1 belongs to \(A \), the set of the
k candidates with the smallest lower bounds. The extreme candidate y_1 is chosen since other candidates in A are more likely to be identified as part of the solution by the early termination condition.

As shown in Fig. 5, the dual-bound algorithm is not optimal with respect to the perfect acceptance threshold T_a. Candidates that end up as part of the solution may be evaluated to higher accuracy than necessary (if T_a is known). This applies to at most k candidates.

5.2.2 Queue Cost

Step 2 of the algorithm requires that the candidate with the kth smallest upper bound value is identified. This can be done in time linear in m when k is a small constant, by using a binary heap of size k [19]. Similarly, computing the sets A, B in Step 3 can be achieved by first building a MIN-HEAP of size m, ranking all candidates according to their lower bound values, and then extracting the k elements of A. When k is a small constant this process requires only linear time in m.

The following operations are performed on the sets A, B during the iterations (Step 4):

- Select the extreme candidates as the largest (y_1 in A) or the smallest (y_B in B) in the set.
- Update bound values of extreme candidates.
- Replace extreme candidates.
- Remove (not necessarily extreme) candidates at Optional Step 4.1.

With the exception of the candidates removal at Optional Step 4.1, these are standard operations on a priority queue, a heavily researched abstract data type [20]. We describe a simple implementation using the binary heaps data structure with a partial implementation of Step 4.1.

We implemented the priority queues of both A and B as binary heaps [19]. The A heap was implemented as a MAX-HEAP, ranking the candidates in A according to their upper-bound values. The B heap was implemented as a MIN-HEAP, ranking the candidates in B according to their lower bound values.

The creation of a heap takes linear time. Retrieving the values of the extreme candidates y_A, y_B as the top elements of the heaps is instantaneous. The two expensive operations are the repeated deletions of candidates (at Step 4.1) and the replacement of the candidate at the top of the heap (Steps 4.3.2.2 and 4.3.3). We provide some additional details on the partial implementation of these steps and their expected performance.

5.2.3 Handling Deletions

From the heap property (see [19]), it follows that the deletions at Step 4.1 are of entire subtrees with root values above U. There does not seem to be an efficient method for performing these deletions in a binary heap. Since this step affects only the queue cost and not the correctness of the algorithm, we have decided not to fully implement it. Instead, we just ignore subtrees of the heap when the root value is above U. We found that this reduces the queue cost by about 5 percent, which is not significant. It appears that ignoring Step 4.1 altogether does not significantly change the runtime of the algorithm. Not implementing Step 4.1 also allows for an implementation using off-the-shelf binary heap software.

5.2.4 Updating the Top Element

The cost of updating the candidate at the top of a size m heap is at worst $\log_2 m$. We argue here that the average cost in our case should be much smaller, and support this claim by experimental evidence in Section 6.

The updating of the heap top element (when it needs to be updated) is carried out by swapping it with its child of smallest value (see [19]). This is continued until the “percolated down” element is no bigger than its two children (the heapify-down procedure).

The updating at Steps 4.3.2.1 and 4.3.2.2 replaces y_B with an upgraded y_B', whose upgraded lower bound value is bigger than $l(y_B)$. That upgraded y_B' is percolated down the heap B. Observe that before the upgrade, $l(y_B)$ was smaller than the lower bound of all candidates in B. One would expect that the upgraded lower bound value would still be among the smallest in B. Suppose the lower bound of the upgraded y_B is the t-smallest in B. Then, it is known that its expected location in the heap would be at depth $\log_2 t$ [21]. This suggests expected runtime of $\log_2 t$, which is much better than $\log_2 m$.

6 Experimental Results

This section describes experimental results with the dual-bound algorithm. The implementation that we used did not include the optional pruning in Step 4.1 of the algorithm. With the exception of Experiment 5, all runs were with $d_0 = 1$. In evaluating the inherent cost, we ignored terms that are independent of the candidates and can be precomputed, such as the values of f in (9). The following parameters were measured in each run:

- p_d: fraction of candidates requiring bounds computed at degree d of accuracy,
- c: fraction of candidates that had to be computed exactly (at degree $N+1$),
- s: total number of heap swaps.

The inherent cost was calculated per image pixel as follows:

$$\text{Inherent cost per pixel} = \text{InitCost} + \sum_{d=1}^{N} c_d p_d + \text{ExactCost}.$$

The value of c_d is the cost of updating the bounds from degree $d - 1$ to d. In our case, the number of arithmetic
operations that the upgrade takes is the number of corners of the dth Walsh kernel (see Section 3).

The value of InitCost was taken as five operations per pixel. It is the cost of computing two integral images. The first integral image is used for computing sums of squared pixel values over rectangles, which is needed for computing norms. Its creation cost is three operations per pixel. The second is for computing pixel sums over rectangles, which is needed for computing projections on Walsh kernels. Its cost is two operations per pixel.

Computing the exact match value, as defined in (2), takes three operations per template pixel. The value of ExactCost was computed as:

$$\text{ExactCost} = \frac{3}{C_2} n / C_2 e,$$

where n is the number of template pixels.

As discussed in Section 5.2.2, all operations involving the priority queues can be implemented with heaps. (This includes Step 2 of the algorithm.) The cost parameter of heap operations is the number of swaps. The value of the parameter s gives the total number of heap swaps during the run of the algorithm. There are two “machine-dependent” parameters that affect the runtime:

H_1: The cost of an arithmetic operation.

H_2: The cost of swapping two array elements.

The inherent cost is proportional to H_1, and the queue cost is proportional to H_2. In order to represent the queue cost in the same units as the inherent cost, we multiply the queue cost by the following ratio:

$$r = \frac{H_2}{H_1}.$$

This gives the following expression for the queue cost per pixel, measured in the same units as the number of arithmetic operations:

$$\text{Queue cost per pixel} = \frac{sr}{m}.$$

The total cost per pixel was computed as the sum of the inherent cost per pixel and the queue cost per pixel.

We found the value of r to vary roughly in the range of two to 10, depending on the hardware used, the amount of memory available, and the size of the array allocated for the heaps. In reporting the experimental results, we use $r = 5$.

6.1 Experiment 1

In this experiment, we evaluated the performance of the algorithm as a function of the template size. Keeping all other parameters unchanged, we ran the algorithm on image/template pairs obtained by scaling both the template and the image by the same scaling factor. The image size itself is not relevant since the cost was measured per image pixel. In this experiment, we used the “man” image from the USC database, as shown in Fig. 6. The original image size was $1,024 \times 1,024$, and the template size was 128×128. Zero-mean Gaussian noise with $\sigma = 10$ (PSNR ≈ 28 dB) was added to the template. Both image and template were shrunk by factors of 1, 2, 4, 8, 16, and 32.

Results are shown in Fig. 7. The total cost of the algorithm grows very slowly with the template size. While the size grows by a factor of 32, the total cost per pixel increases only by a factor of 1.5. The inherent cost grows even more slowly, going from 9.5 operations per pixel to 12.3 operations per pixel, a factor of 1.3.

6.2 Experiment 2

In order to evaluate the performance of the algorithm on inexact matches, we added various levels of zero-mean Gaussian noise to the template. The experiment was performed on 1,200 images from the MIT’s LabelMe image database [22]. The Harris corner detector was used to automatically select two random templates with a large number of corners from each image. (This is similar to the experimental framework described in [9].) Gaussian noise was added at 26 different levels to each template giving a total of 62,400 image/template pairs. The highest level of noise was $\sigma = 50$, PSNR ≈ 14 dB.

All images were 512×512, and the templates were 64×64. The value of N was kept constant at $N = 100$, and d_0 was set to 1.
The results are shown in Fig. 8. At low noise levels, the queue cost is negligible. At high noise levels, the queue cost is larger than the inherent cost.

6.3 Experiment 3
In this experiment, we evaluated the algorithm with different values of the parameter N, the maximum number of Walsh kernels. We used the same images and templates as in Experiment 2, running the algorithm 96,000 times. The amount of Gaussian noise was held constant at $\sigma = 10$ (PSNR \approx 28 dB).

The results are shown in Fig. 9. They suggest that the number of Walsh kernels has only a minor effect on the total cost of the algorithm unless N is very small. We observed that for very large values of N ($N \approx 200$), the cost starts growing as a function of N.

6.4 Experiment 4
The savings of the algorithm come from its tendency to evaluate very few candidates at high degrees of bound accuracy. In Fig. 10, we plot the number of candidates evaluated at bound accuracy d for three noise levels. The experiment was performed on the “Lena” image, with the template taken from the image center. Observe that the number of candidate bounds evaluated at accuracy d decreases very rapidly with d, especially at low noise levels. In particular, in the noise-free case, it was enough to evaluate bounds based on a single Walsh kernel for all but one candidate. Even at $\sigma = 40$ (PSNR \approx 16 dB), the number of candidates with bounds evaluated at accuracy above 20 was less than 1 percent.

We observed a very similar behavior with other image/template pairs. In particular, consider the case of $k = 1$ when exact matching exists. In this case, we have $T_r = 0$ for the pruning threshold that was discussed in Section 5.2.1. According to the theorem, bounds of candidates that are not the best match need only be evaluated until their lower bound value is above T_r, i.e., nonzero. In all of our experiments, nonzero lower bounds were obtained at $d = 1$.

6.5 Experiment 5
This experiment evaluates the effect of the initial bound accuracy, d_0, on the total cost. A table of the results of runs performed on the “lenna” image is shown in Fig. 11. Observe that, as expected, the inherent cost always increases as a function of d_0, and the queue cost always decreases. For small and moderate noise levels, the choice $d_0 = 1$ is clearly the best, but this may not be the case for high noise levels. Similar behavior was observed with other image/template pairs.

6.6 Experiment 6
In this experiment, we measure the actual runtime of the algorithm and compare it to the runtime of the brute force approach in which all matching values are computed evaluated at bound accuracy d for three noise levels. The experiment was performed on the “Lena” image, with the template taken from the image center. Observe that the number of candidate bounds evaluated at accuracy d decreases very rapidly with d, especially at low noise levels. In particular, in the noise-free case, it was enough to evaluate bounds based on a single Walsh kernel for all but one candidate. Even at $\sigma = 40$ (PSNR \approx 16 dB), the number of candidates with bounds evaluated at accuracy above 20 was less than 1 percent.

We observed a very similar behavior with other image/template pairs. In particular, consider the case of $k = 1$ when exact matching exists. In this case, we have $T_r = 0$ for the pruning threshold that was discussed in Section 5.2.1. According to the theorem, bounds of candidates that are not the best match need only be evaluated until their lower bound value is above T_r, i.e., nonzero. In all of our experiments, nonzero lower bounds were obtained at $d = 1$.

6.6 Experiment 6
In this experiment, we measure the actual runtime of the algorithm and compare it to the runtime of the brute force approach in which all matching values are computed evaluated at bound accuracy d for three noise levels. The experiment was performed on the “Lena” image, with the template taken from the image center. Observe that the number of candidate bounds evaluated at accuracy d decreases very rapidly with d, especially at low noise levels. In particular, in the noise-free case, it was enough to evaluate bounds based on a single Walsh kernel for all but one candidate. Even at $\sigma = 40$ (PSNR \approx 16 dB), the number of candidates with bounds evaluated at accuracy above 20 was less than 1 percent.

We observed a very similar behavior with other image/template pairs. In particular, consider the case of $k = 1$ when exact matching exists. In this case, we have $T_r = 0$ for the pruning threshold that was discussed in Section 5.2.1. According to the theorem, bounds of candidates that are not the best match need only be evaluated until their lower bound value is above T_r, i.e., nonzero. In all of our experiments, nonzero lower bounds were obtained at $d = 1$.

6.6 Experiment 6
In this experiment, we measure the actual runtime of the algorithm and compare it to the runtime of the brute force approach in which all matching values are computed evaluated at bound accuracy d for three noise levels. The experiment was performed on the “Lena” image, with the template taken from the image center. Observe that the number of candidate bounds evaluated at accuracy d decreases very rapidly with d, especially at low noise levels. In particular, in the noise-free case, it was enough to evaluate bounds based on a single Walsh kernel for all but one candidate. Even at $\sigma = 40$ (PSNR \approx 16 dB), the number of candidates with bounds evaluated at accuracy above 20 was less than 1 percent.

We observed a very similar behavior with other image/template pairs. In particular, consider the case of $k = 1$ when exact matching exists. In this case, we have $T_r = 0$ for the pruning threshold that was discussed in Section 5.2.1. According to the theorem, bounds of candidates that are not the best match need only be evaluated until their lower bound value is above T_r, i.e., nonzero. In all of our experiments, nonzero lower bounds were obtained at $d = 1$.
exactly. All experiments were conducted on a 3.0 GHz Intel Pentium IV computer with 3 GB of RAM running Sun’s Java Virtual Machine. (Java’s runtime optimization features were disabled.) The data set is the same as the one used in Experiment 2, running the algorithm on 62,400 image/template pairs. The results are shown in Fig. 12. The values range from a factor of over 300 for low noise levels to slightly less than a factor of 10 at the highest noise levels tested (zero-mean Gaussian noise with $\sigma = 50$, PSNR ≈ 14 dB).

6.7 Experiment 7

We describe the experimental comparison between the dual-bound algorithm and three other exact template matching algorithms. We have implemented the following algorithms:

- Li and Salari (LS), as described in [5],
- the Gray Code Kernels method (GCK), as described in [10],
- the Incremental Dissimilarity Algorithm (IDA), as described in [11],
- the Dual-Bound algorithm (DB).

The algorithms LS, GCK, and IDA use only lower bounds, while the DB uses both lower and upper bounds. Another major difference is that the LS, GCK, and IDA require an estimated or an exact pruning threshold as input, while the DB does not.

Unfortunately, we were unable to quantify the advantage of the DB over the other algorithms with regard to the pruning threshold since the references for these algorithms do not describe a “built in” method of computing an initial threshold. (A discussion of the importance of the initial threshold value and experiments with different threshold values can be found in [11].) To enable comparison, we provide the best possible pruning threshold (T_r in Section 5.2.1) to all algorithms. Observe that the Dual-Bound algorithm does not use this information.

The algorithms were tested on the same data set as in Experiment 2, with each algorithm applied to 62,400 image/template pairs. The results are shown in Fig. 13. They seem to suggest that the IDA beats the DB for low noise values, and that the GCK beats the DB for very high noise values.

We discuss these results and argue that this would not have been the case if the cost of computing the pruning threshold was taken into account.

Mattoccia et al. [6] provide a formula for the cost of estimating an initial threshold (which in most cases is inferior to the optimal threshold used in our experiments). According to that formula, with image size 512×512 and template size 64×64, the cost is 51 operations per pixel. The following table shows the results of adding this cost to the IDA at low noise levels:

<table>
<thead>
<tr>
<th>σ</th>
<th>IDA</th>
<th>IDA + 51</th>
<th>Dual-Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.3</td>
<td>55.3</td>
<td>14.4</td>
</tr>
<tr>
<td>8</td>
<td>25.4</td>
<td>76.4</td>
<td>22.8</td>
</tr>
<tr>
<td>10</td>
<td>43.4</td>
<td>94.4</td>
<td>28.8</td>
</tr>
</tbody>
</table>

At such low noise levels, the cost of the DB algorithm falls significantly below the cost of estimating the initial threshold.

In evaluating the performance of the GCK, we counted projections on Walsh kernels that must to be computed in order to estimate the bounds. The GCK computes them recursively, evaluating additional projections that may not be needed. At low noise levels, where only a few projections are needed, this overhead results in a mediocre performance. At high noise levels, the overhead is much smaller since many more projections are needed. The superior cost per kernel of the GCK pays off and produces the best results in our experiments.

The speed of the GCK as observed in our experiments is largely due to the fact that it is given the perfect pruning threshold. One would expect the cost of computing such threshold to increase with the amount of noise. Practical implementations of the GCK would most likely need to use some sort of binary search to determine the right threshold. At large noise levels, the binary search would have to be performed over a bigger range of values. We expect such implementations to be significantly worse than the one we tested and possibly inferior to the DB algorithm, even for very high noise levels.
6.8 Experiment 8

We evaluated the performance of the algorithm with \(k > 1 \). Running the algorithm with small values of \(k \) typically produces matching candidates surrounding the best match. This is not the case when the image contains repeating patterns or when \(k \) is moderately large. As an example, we show results obtained with the \(1,024 \times 1,024 \) “pentagon” image from the USC database. The results for \(k = 7 \) are shown in Fig. 14. Only a portion of the image containing the seven matches is shown.

We evaluated the cost of running the algorithm with \(k > 1 \) on 10 images taken from the USC database. Five templates were selected for each image, giving a total of 1,150 runs. The level of Gaussian noise was \(\sigma = 5 \) (PSNR \(\approx 34 \) dB). The results are shown in Fig. 15. We observe that the cost is monotonically increasing in \(k \) and grows very rapidly for small \(k \) values. But the cost per candidate decreases rapidly with \(k \). As shown in Fig. 16, for \(k \) values near 60, the cost per candidate goes down to less than four arithmetic operations per candidate per pixel.

7 Comparison with Other Methods

7.1 Gharavi-Alkhansari’s Algorithm

The algorithm presented in [7] performs pruning in a multiresolution setting. It requires an expensive preprocessing step that, according to the analysis in [7], takes approximately 24 operations per pixel for a \(512 \times 512 \) image. This dominates the cost of the algorithm at low noise levels, where the preprocessing cost alone is higher than the total cost of the dual-bound algorithm for the same image size.

According to the results reported in [7], the Gharavi-Alkhansari algorithm performs very well at high noise levels. There is not enough information to enable direct comparison with our implementation of the dual-bound algorithm. We expect that in some cases which are very suitable to multiresolution analysis, Gharavi-Alkhansari’s algorithm may outperform the dual-bound algorithm. In other cases, the Walsh kernels that we use may provide better “energy compaction” than multiresolution, and one would expect the dual-bound algorithm to outperform Gharavi-Alkhansari’s algorithm.

7.2 Fast Convolution Techniques

Fast convolution techniques such as the FFT and the Number Theoretic Transform (see, e.g., [23]) can be used to compute template matching in \(O(m \log m) \) time. This runtime is independent of \(n_t \), the template size, and the quality of the match, as measured by \(\sigma \), the template noise level. Runtime comparisons with fast pruning techniques were reported in [7], [9], [11]. They indicate that at low noise levels, pruning techniques outperform fast convolution techniques for small template sizes.

The results of Experiment 2 show that the dual-bound algorithm performance deteriorates at high noise levels. One would expect fast convolution techniques to perform better in such cases. On the other hand, the results of Experiment 1 suggest that the cost of the dual-bound algorithm is not strongly affected by the template size. We expect that on hardware where the priority queue cost is cheap relative to the inherent cost (small \(r \) values), the dual-bound algorithm may provide an alternative to fast correlation techniques even for very large templates.

7.3 Inexact Methods

Inexact methods do not guarantee a best possible match and can potentially run much faster than exact methods. Pele and Werman [4], [24] describe a very fast sampling-based approach. They report performance of roughly 1.5 percent of brute force methods in [4], and an improved performance of 0.2 percent in [24]. The latter results, which are based on sliding windows, outperform the results reported here. Without sliding windows, their results are comparable to ours.
8 CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a new algorithm that uses both lower and upper bounds on the match measure to compute the k best matches. The algorithm uses a priority queue to decide which bounds need to be improved. Its runtime cost has two components: the inherent cost, which measures the arithmetic operations needed to evaluate the bounds, and the priority queue cost, which measures the cost of creating and maintaining the priority queue.

The inherent cost of the algorithm is nearly optimal, in the sense that bounds for candidates that can be pruned according to an optimal (and typically unknown) threshold value are not computed. Our results show that when good matches exist (as shown in experiments with low noise levels), the dominant cost is the inherent cost, so the overall performance of dual-bound algorithm is nearly optimal.

In cases where a good match does not exist, the queue cost dominates the overall performance cost. Still, as shown in our experiments, a classic binary heap implementation of priority queues compares favorably with the current state-of-the-art. We expect better implementations of the priority queue component to yield further improvements over the results reported here. There are many other possible implementations of priority queues [20], and hardware implementations were also investigated [25].

Our estimate of r, the ratio of memory swap cost to arithmetic operation cost (see (12)) was r = 5. This value was measured on standard dual-core computers that come with highly optimized arithmetic logic units (ALUs) and floating point units (FPUs). We expect this ratio to be much smaller in implementations on simpler hardware such as the one used in hand-held devices. On such hardware, we expect the performance of our algorithm to improve when it is measured relative to the cost of arithmetic operations.

The technique of bounding match measures that was developed in Section 2 may be of independent interest. For example, one may use this technique to improve the pruning bounds used in [8], [9], [10]. The dual-bound algorithm itself is general and can be used in all cases where it is possible to incrementally compute lower and upper bounds on the matching values. It may be possible to use the algorithm with alternative kernels or other methods of computing the bounds. See [26], where a similar algorithm is applied with a normalized correlations match measure. We expect that the same framework may lend itself to many extensions. In particular, we have preliminary results which show that a similar method can be used to detect arbitrarily shaped templates, as well as handling the case of multiple templates. We also expect that a version of the algorithm using the fast Walsh kernels technique, as described in [9], [10], [16], would improve on the results described here.

REFERENCES

[25] F. Hoeg, N. Mellergaard, and J. Staunstrup, “The Priority Queue Component to Yield Further Improvements over the Results Reported Here. There Are Many Other Possible Implementations of Priority Queues [20], and Hardware Implementations Were Also Investigated [25].
Haim Schweitzer received the PhD degree from the Hebrew University of Jerusalem, Israel, in 1986. He is currently with the Faculty of Computer Science at The University of Texas at Dallas. He was a Weizmann postdoctoral researcher at The University of Texas at Austin, Columbia University, and Cornell University. He was MTS at David Sarnoff Research Center in Princeton. His research interests include computer vision, machine learning, and related Internet technology. He is currently an associate editor of *Machine Vision and Applications*. He is a member of the IEEE.

Rui (April) Deng received the BS degree in computer science from Tianjin University of Science and Technology, China, in 2004, and the MS degree in computer science from The University of Texas at Dallas in 2009. She is currently working toward the PhD degree in the Computer Vision Lab, Department of Computer Science at The University of Texas at Dallas. Her main research interests include the areas of computer vision, artificial intelligence, machine learning, as well as Internet-related applications of these fields. She is a student member of the IEEE.

Robert Finis Anderson received the MS degree in 2008 from The University of Texas at Dallas, where he is currently working toward the PhD degree. He also held the positions of Jonsson Distinguished Fellow and Champs Fellow at The University of Texas at Dallas. He is currently studying human activity recognition and gesture recognition in the context of image processing. He is also interested in parallel and distributed computation, and has done work on computer vision leveraging the GPU.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.