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Abstract

This paper introduces the use of static information flow
analysis for the specification and enforcement of end-to-
end availability policies in programs. We generalize the de-
centralized label model, which is about confidentiality and
integrity, to also include security policies for availability.
These policies characterize acceptable risks by representing
them as principals. We show that in this setting, a suitable
extension of noninterference corresponds to a strong, end-
to-end availability guarantee. This approach provides a nat-
ural way to specify availability policies and enables exist-
ing static dependency analysis techniques to be adapted for
availability. The paper presents a simple language in which
fine-grained information security policies can be specified
as type annotations. These annotations can include require-
ments for all three major security properties: confidential-
ity, integrity, and availability. The type system for the lan-
guage provably guarantees that any well-typed program has
the desired noninterference properties, ensuring confiden-
tiality, integrity, and availability.

1. Introduction

Although availability is often considered one of the three
key aspects of information security (along with confiden-
tiality and integrity), availability assurance has been largely
divorced from other security concerns. This paper starts to
bridge the gap by giving a single, common framework for
reasoning about confidentiality, integrity, and availability.

The first part of this framework is a language for specify-
ing confidentiality, integrity, and availability policies. This
policy language extends the decentralized label model [21],
and thus is able to describe security policies involving mu-
tually distrusting principals.

The second part of the framework is a semantics for
the policy language, which characterizes precisely what it
means for a system to enforce a policy. In the context of con-

fidentiality and integrity, end-to-end security policies have
generally been interpreted as information flow policies re-
quiring that the system obey noninterference. As this paper
shows, availability policies too can be interpreted as requir-
ing a form of noninterference.

The third part of the framework is a static program anal-
ysis for enforcing confidentiality, integrity, and availability
policies. Previous work has shown that it is possible to en-
force end-to-end confidentiality and integrity properties by
static, compile-time analysis of program text (for a survey
see [24]). What is new here is a demonstration that the same
approach applies to availability: an availability analysis can
be expressed in tractable form as a programming language
type system that also enforces confidentiality and integrity.

The paper is structured as follows. Section 2 presents the
new policy language for expressing requirements for avail-
ability, integrity, and confidentiality. Section 3 instantiates
this label system as program annotations in a simple pro-
gramming language. Section 4 uses the operational seman-
tics of the language to express trace-based security proper-
ties that correspond to availability, integrity, and confiden-
tiality policies. Section 5 gives a type system for this pro-
gramming language and states the corresponding security
theorem: well-typed programs are semantically secure (see
the appendix for proofs). Section 6 extends the simple pro-
gramming language to express richer notions of availabil-
ity and also to describe some aspects of distributed systems.
Section 7 discusses related work, and Section 8 concludes.

2. Availability policies

We begin by precisely defining what is meant by “avail-
ability”; then we define an expressive policy language for
availability, and we demonstrate the policy language can be
used for confidentiality and integrity too.

2.1. Availability

A system output is considered to beavailable if it will
be produced eventually. The output does not have to be



correct—that is the province of integrity.
There are two common ways to specify availability.

The first approach is to quantify system reliability using
measurable criteria, such as the failure probability or the
MTTF/MTTR (mean time to fail/ mean time to recover) ra-
tio [27]. The second approach is to specifyfailure factors
(factors that could cause the system to fail), for example,
the minimum number of host failures needed to bring down
the system [25]. We adopt this second approach here.

The above description of availability glosses over an-
other aspect of availability: timeliness. How soon does an
output have to occur in order to be considered to be avail-
able? For real-time services, there may be hard time bounds
beyond which a late output is useless. Reasoning about how
long it takes to generate an output adds considerable com-
plexity, so for now let us consider an output to be available
if it arrives eventually. Section 6 presents an extension to
this framework that supports reasoning about timeliness.

2.2. Failures and principals

We assume that the unavailability of a system output is
attributed to afailure. There are many kinds of possible fail-
ures: for example, hardware failures such as losing power,
software failures such as subversion by an attacker, and hu-
man failures such as a user who provides incorrect or even
malicious inputs. Our goal is a policy language that can de-
scribe all these kinds of failures and how the availability of
the system should be affected by them.

We consider a failure to be the malfunction of aprin-
cipal, an entity that may affect the behavior of a system.
Therefore, a failure can be denoted by the responsible prin-
cipal. For some failures, the corresponding principal is sim-
ply an abstract name, which might represent hardware,
users, attacks or defense mechanisms, as shown in the fol-
lowing examples:

• power: the main power supply of a system, whose fail-
ure may bring down the entire system.

• root: the “superuser”, which has the ability to control
(or shut down) a system, and to act on behalf of users.

• DDoS1000: a distributed denial of service attack
launched from 1000 machines. This principal can be
used to specify the availability of a system that tol-
erates DDoS attacks launched from fewer than 1000
machines.

• puzzle: the puzzle generated by a puzzle-based de-
fense mechanism [13] for DoS attacks. This princi-
pal fails if attackers can feasibly solve the puzzle and
launch DoS attacks successfully.

More complex failure scenarios are described by using
composite principals[1]. For example, suppose that there is
a principalups representing a back-up power supply. And

to make the system unavailable, bothpower andups need
to fail. This joint failure is represented by a composite prin-
cipal given by the conjunctionpower∧ups.

More generally, principalsp may be constructed using
conjunction and disjunction operators∧ and∨:

p ::= a | p1∧p2 | p1∨p2

The notationa is an abstract name representing a principal.
The composite principalp1 ∧ p2 represents a joint failure
factor:p1∧p2 fails only if bothp1 andp2 fail. Another con-
structor∨ is used to construct a group (disjunction): princi-
palp1∨p2 represents a failure that happens if eitherp1 or p2

fails. For example, the principalroot∨power can make a
system fail if the superuser and the power supply each can
cause the failure.

To demonstrate the expressiveness of this principal lan-
guage, we specify the availability of a quorum system [17].
A quorum system is a collection{Q1, . . . , Qn} of sets (quo-
rums) of hosts, every two of which intersect. A quorum sys-
tem is available as long as there is some quorum in which
no hosts fail. Therefore, a quorum system cannot tolerate
the failure of a set of hostsB such that for every quorum
Qi, B ∩ Qi is not empty. Thus, if the principalh repre-
sents a host, availability of a quorum system can be speci-
fied by the principal

∨
B | ∀Qi.B∩Qi 6=∅(

∧
h∈B h).

2.3. Principal hierarchy

We write p1 � p2 if the principalp1 acts for another
principalp2—that is,p1 has all the powers ofp2 and is at
least as trustworthy [21]. Interpreting principals as failure
factors, this means the failure ofp1 is worse than the failure
of p2 (or the same). The acts-for relation is useful for an-
alyzing availability, becausep1 � p2 means that the avail-
ability represented byp1 is at least as high as the availabil-
ity represented byp2. For example, if hostsh1 andh2 are
two principals, thenh1∧h2 � h1 holds becauseh1 fails
if both h1 andh2 fail. And information with the availabil-
ity h1∧h2 also achieves the availabilityh1, because ifh1

does not fail,h1∧h2 does not fail.

The acts-for relation between principals creates aprinci-
pal hierarchyH, an ordering (actually, a pre-order) on the
set of principals. By the definition of acts-for, a principal hi-
erarchy must satisfy the following deductive rules:

p1∧p2 � p1
p1 � p2 p2 � p3

p1 � p3

p1 � p2

p1 � p2∨p3

p1 � p3 p2 � p3

p1∨p2 � p3

p1 � p2 p1 � p3

p1 � p2∧p3
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2.4. Owned policies

An end-to-end availability policyspecifies the availabil-
ity that a user requires of a system input or output. In this
work, availability is specified as a principal representing
a failure factor. Accordingly, an availability policy has the
form u : p, where principalu is thepolicy owner(the user
who specifies the policy), and principalp represents the re-
quired availability. For example, if Alice specifies the avail-
ability policy Alice : h1∧h2 on one of her files, it means
that Alice requires the file to be available if hostsh1 andh2

do not both fail.
In general, security (including availability) rests on as-

sumptions. In particular, the enforcement of a policy owned
by useru is contingent on the assumptions made byu. For
example, system security commonly depends on a trusted
computing base (TCB). If the assumption that the TCB is
trustworthy is false, security may not be enforced. In a sys-
tem with mutual distrust, such as a distributed system cross-
ing administrative domains, different users might assume
different components of the system trustworthy. Thus it is
important to specify policy owners explicitly to indicate
whose assumptions are relevant to policy enforcement.

We build on the decentralized label model (DLM) [21],
which applies the notion of policy ownership to confiden-
tiality and integrity. In the DLM, a confidentiality or in-
tegrity policy has the formu : p1, . . . , pn, meaning thatu
allows only principalsp1, . . . , pn to read or update the in-
formation protected by the policy. Using disjunctive princi-
pals, the policyu : p1, . . . , pn can be written in the form
u : p1 ∨ . . .∨ pn, just like an availability policy. Further-
more, for each security property (confidentiality, integrity
or availability), a policyu : p can be interpreted as an as-
sumption byu thatp does not fail. A confidentiality policy
u : p means thatu requires the data will remain confiden-
tial as long asp does not fail to keep it confidential. For in-
tegrity,u requires the data will have integrity unlessp fails
to provide correct data. As an availability policy, it says that
u requires that the data is available ifp does not fail.

Based on this commonality, we can separate a notion of
owned policiesfrom the security properties these policies
apply to. Letπ abstractly represent a security property of
the system; it may be a confidentiality, integrity, or avail-
ability property. Formally, we treatπ as an abstract proposi-
tion that is true if the corresponding security property holds,
and false otherwise. In general, if the policyu :p is applied
to a security propertyπ, it means thatu requiresπ to hold
if p does not fail.

Treating owned policies separately from the underlying,
abstract security properties is useful for two reasons. First,
it enables a uniform semantics for security policies. Second,
it may in general be infeasible to formally specify or ana-
lyze what it means for a security property to hold, particu-

larly if the security violation might occur outside the com-
puting system; some form of abstraction is needed. This ab-
straction does not create a problem for security enforcement
as long as the dependencies between security properties in-
duced by a computing system can be analyzed precisely.

2.5. Policy semantics

Whether the policyu : p is applied to confidentiality, in-
tegrity, or availability properties, it corresponds to two se-
curity assumptions: thatp does not fail, and the assumptions
made byu are true.

These assumptions can be formalized as a propositionσ
using the following syntax:

σ ::= ok p | σ1∧σ2 | σ1∨σ2

whereok p means that principalp does not fail. The prop-
erties of the acts-for relation can be captured formally us-
ing these propositions. Ifp1 acts forp2, this means the fail-
ure ofp1 implies the failure ofp2:

ok p2 ⇒ ok p1 iff p1 � p2 (1)

Consequently, composite principals satisfy the following
conditions:

ok p1 ∨ ok p2 iff ok (p1∧p2)
ok p1 ∧ ok p2 iff ok (p1∨p2)

In addition, we assume there exists anassumption config-
uration Σ that maps each principalu to its assumptions
σ = Σ(u). In general, ifu1 � u2, then any assumption
made byu1 is considered an assumption made byu2. Con-
sequently,Σ must satisfy the following condition:

u1 � u2 ⇒ (Σ(u2) ⇒ Σ(u1)) (2)

A security policy can be given a formal semantics in
terms of these propositions. Using brackets[[·]] to indicate
the semantic function, the meaning of a policyu :p is:

[[u :p]] = Σ(u) ∧ ok p

Suppose a policyP is applied to a security propertyπ. Then
the meaning of the policy is a characterization of when the
property is guaranteed to hold. To enforce the policy is to
guaranteeπ under the assumption that[[P ]] is true, that is, to
ensure[[P ]] ⇒ π.

Consider the example of enforcing the availability policy
Alice : h1∧h2 on Alice’s file. The goal is to ensure that
the file is available under the assumption thatΣ(Alice) ∧
ok(h1∧h2) is true. Therefore, one way to enforce the policy
is to replicate the file on hostsh1 andh2 becauseok (h1∧
h2) means thath1 andh2 cannot both fail, which ensures
that at least one host is available to serve accesses to the file.
Moreover, ifΣ(Alice) impliesok h3, storing the file onh3

is another way to enforce the policy.
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2.6. Dependency analysis and policy ordering

A system processes inputs and produces outputs, creat-
ing dependencies between security properties of those in-
puts and outputs. Such dependencies capture influences of
the system on security and induce constraints on security
policies. For example, consider a system running the fol-
lowing pseudo-code:

while (i > 0) skip;
send i to o;

This program sends the inputi to the outputo if the value
of i is not positive. Otherwise, the program diverges, so the
output is unavailable. Thus, the availability ofo depends on
the integrity ofi. For simplicity, suppose there is only one
policy applied to these properties, and letAo represent the
availability policy of o, andIi represent the integrity pol-
icy of i. Then[[Ao]] ⇒ [[Ii]] must hold in order to enforce
Ao. If [[Ao]] 6⇒ [[Ii]], then [[Ao]] and¬[[Ii]] may both hold.
In this case the integrity ofi is not guaranteed, and the pro-
gram may compromise the availability ofo. But this vio-
lates the availability policyAo because[[Ao]] holds.

In general, given two security propertiesπ1 and π2,
and their policiesP1 and P2, if π1 depends onπ2, then
[[P1]] ⇒ [[P2]] must hold in order to enforceP1. The con-
straint [[P1]] ⇒ [[P2]] corresponds to a natural ordering on
the two policies:P2 is at least as strong asP1, written
P1 ≤ P2, meaning that for any configurationΣ and any se-
curity propertyπ, P1 is enforced onπ if P2 is enforced on
π. It is clear thatP1 ≤ P2 is equivalent to∀Σ.[[P1]] ⇒ [[P2]].
The quantification overΣ ensures that analyses based on the
policy ordering are insensitive toΣ.

From the semantics of policies and formulas (1) and (2)
in Section 2.5, the following rule for ordering policies im-
mediately follows:

[CP ]
u2 � u1 p2 � p1

u1 :p1 ≤ u2 :p2

2.7. Combining owned policies

In general, different principals may have different secu-
rity requirements. It is convenient to incorporate the security
policies of several principals into one entity so that they can
be analyzed and manipulated together. This is accomplished
by writing asetof policiesβ = {P1, . . . , Pn}, where each
Pi is an owned policyui : pi applied to the same security
property.

A combined policyβ is enforced if and only if all the
policies inβ are enforced. As a result, the security assump-
tion described byβ must be weaker than or equal to the se-
curity assumptions described by policies inβ. Therefore,
the semantics ofβ is the proposition[[β]] =

∨
P∈β [[P ]]. Just

as with simple policies, combined policyβ2 is as strong as

combined policyβ1, writtenβ1 ≤ β2, if ∀Σ. [[β1]] ⇒ [[β2]].
From the semantics, the≤ ordering on policies can be lifted
up to an ordering on combined policies by the following
rule:

∀P ∈ β1. ∃P ′ ∈ β2. P ≤ P ′

β1 ≤ β2

Importantly, the set of all the combined policies form a
lattice with the followingjoin (t) andmeet(u) operations:

β1 t β2 = β1 ∪ β2

β1 u β2 = {u1∨u2 :p1∨p2 | u1 :p1 ∈ β1 ∧ u2 :p2 ∈ β2}

The join and meet operations are sound with respect to the
policy semantics, because it is easily shown that[[β1tβ2]] =
[[β1]] ∨ [[β2]] and[[β1 u β2]] = [[β1]] ∧ [[β2]].

Having a lattice of policies supports static program anal-
ysis [7]. For example, consider an addition expressione1 +
e2. Let A(e1) andA(e2) represent the availability policies
of the results ofe1 ande2. Since the resulte1 + e2 is avail-
able if and only if the results ofe1 ande2 are both avail-
able, we haveA(e1 + e2) ≤ A(e1) and A(e1 + e2) ≤
A(e2). Because the policies form a lattice,A(e1 + e2) =
A(e1) u A(e2) is the least restrictive availability policy we
can assign to the result ofe1 + e2. Dually, if C(e1) and
C(e2) are the confidentiality policies ofe1 and e2, then
C(e1) ≤ C(e1 +e2) andC(e2) ≤ C(e1 +e2). The least re-
strictive confidentiality policy that can be assigned to the re-
sult ofe1 + e2 is C(e1) t C(e2).

2.8. Security labels

In general, a system will need to simultaneously enforce
policies for confidentiality, integrity, and availability of the
information it manipulates. These policies can be applied
to information assecurity labels. A label ` is written as a
triple 〈βC , βI , βA〉, whereβC represents the (possibly com-
bined) policy for confidentiality,βI represents the integrity
policy, andβA represents availability. The notationsC(`),
I(`), andA(`) represent the confidentiality, integrity, and
availability components of̀.

For example, suppose expressione1 has a security label
`1, ande2 has label̀ 2. Thene1 + e2 has a label〈C(`1) t
C(`2), I(`1) u I(`2), A(`1) uA(`2)〉.

3. Applying policies to computation

In this paper, a system is modeled by a program with
which users (including attackers) can interact only by af-
fecting its inputs and observing its outputs. Security
policies, including confidentiality, integrity and availabil-
ity policies, are specified on the inputs and outputs of a
program. This section shows this approach with a sim-
ple programming language.
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3.1. Security model

This section introduces two security assumptions that en-
ables enforcing security policies in a system by noninterfer-
ence. One assumption specifies which policies are already
enforced, and the other designates the power of attackers.

Our goal is to ensure that a program does not allow at-
tackers to violate its security policies at run time. A pro-
gram itself has no influence on how its inputs are generated
or how its outputs are used by external users. Therefore,
a program is not responsible for the enforcement of the in-
tegrity and availability policies of its inputs, or the confiden-
tiality policies of its outputs. Therefore, we have the follow-
ing security assumption:

SA1 Confidentiality policies specified on inputs,
and integrity and availability policies specified on
outputs are already enforced.

We are interested in the security violations that may be
caused by attackers, and we assume that the power of an at-
tacker is limited to affecting the inputs and observing the
outputs of the system. This leads to our second security as-
sumption:

SA2 If the integrity or availability of an output
is compromised by attackers, it is because the in-
tegrity or availability of some input is compro-
mised by attackers.

By (SA1) and (SA2), the availability policyAo specified
on an outputo can be enforced by a noninterference prop-
erty: the availability of the outputo is not interfered with
by the availability of any input whose availability policy is
not as strong asAo, or by the value of any input whose in-
tegrity policy is not as strong asAo.

Indeed, suppose the outputo is made unavailable by at-
tackers. By (SA2), it is because the availability or integrity
of some inputi is compromised by attackers. Without loss
of generality, suppose the availability ofi is compromised.
Let Ai be the availability policy ofi. By (SA1), Ai is en-
forced, which, plus the unavailability ofi, implies that[[Ai]]
is false. By the noninterference property, we haveAo ≤ Ai,
which implies[[Ao]] ⇒ [[Ai]]. Thus,[[Ao]] is false because
[[Ai]] is false. Therefore, the unavailability ofo implies that
[[Ao]] is false. In other words, if[[Ao]] is true, theno must be
available, which means thatAo is enforced.

One advantage of enforcing an availability policy by
noninterference is to avoid proving that a program will
eventually produce an output, which generally amounts to
solving the halting problem.

3.2. The Aimp programming language

It is well known that confidentiality and integrity poli-
cies can be enforced by static program analyses that ver-

Values v ::= n | none
Expressions e ::= n | !m | e1 + e2

Statements s ::= skip | m := e | s1; s2

| if e then s1 else s2

| while e do s

Figure 1. Syntax of Aimp

ify whether a program satisfies a noninterference prop-
erty [30, 11, 32]. Since availability policies also correspond
to a noninterference property in our security model, a static
program analysis can be used to determine whether a system
satisfies these policies. We now demonstrate this approach
by formally representing the system as a program written in
a security-typed imperative language called Aimp.

The Aimp language is a basic imperative language
with assignments, sequential composition, condition-
als and loops. What distinguishes Aimp from other
security-typed imperative languages [30] is the valuenone,
which is used to representunavailability: a value is un-
available if and only if it isnone. Intuitively, there are three
rules on using the valuenone:

• The valuenone cannot appear in program code.
• The result of expressione is none if the evaluation of

e depends onnone.
• The execution of a statement gets stuck if the execu-

tion depends onnone.

A program of Aimp is just a statement, and the state of
a program is captured by a memoryM that maps memory
references (memory locations) to values. We assume that
memory is observable to users, so memory references can
be used to represent I/O channels. A reference represent-
ing an input is called aninput reference. If the value of an
input reference isnone, then the corresponding input is un-
available. Similarly, a reference representing an output is
called anoutput reference. Supposem is an output refer-
ence, then the corresponding output becomes available ifm
is assigned an integer value. An unassigned output refer-
ence represents an output still expected by users.

The syntax of Aimp is shown in Figure 1. Letm range
over memory locations. In Aimp, values include integern,
andnone. Expressions include integern, dereference ex-
pression!m, and addition expressione1+e2. Note thatnone
is not a valid expression so that it cannot appear in program
text. Statements include the empty statementskip, the as-
signment statementm := e, sequential compositions1; s2,
if andwhile statements.

Let β range over a latticeL of base labels, such as poli-
cies as defined in Section 2. The top and bottom elements
of L are represented by> and⊥, respectively. The syntax
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for types in Aimp is shown as follows:

Base labels β ∈ L
Labels `, pc ::= 〈βC , βI , βA〉
Types τ ::= int` | int` ref | stmtR

In Aimp, the only data type isint`, an integer type anno-
tated with security label̀, which contains three base labels
as described in Section 2.8.

A memory referencem has typeint` ref, indicating the
value stored atm has typeint`. In Aimp, types of mem-
ory references are specified by atyping assignmentΓ that
maps references to types so that the type ofm is τ ref if
Γ(m) = τ .

The type of a statements has the formstmtR whereR
contains the set of unassigned output references whens ter-
minates. Intuitively,R represents all the outputs that are still
expected by users afters terminates.

3.3. Operational semantics

The small-step operational semantics of Aimp is given
in Figure 2. LetM represent a memory that is a finite map
from locations to values (includingnone), and let〈s, M〉
be a machine configuration. Then a small evaluation step is
a transition from〈s, M〉 to another configuration〈s′, M ′〉,
written 〈s, M〉 7−→ 〈s′, M ′〉.

The evaluation rules (S1)–(S6) are standard for an imper-
ative language. Rules (E1) and (E2) are used to evaluate ex-
pressions. Because an expression has no side-effect, we use
the notation〈e, M〉 ⇓ v to mean that evaluatinge in mem-
ory M results in the valuev. Rule (E1) is used to evaluate
dereference expression!m. In rule (E2),v1 + v2 is com-
puted using the following formula:

v1 + v2 =
{

n1 + n2 if v1 = n1 andv2 = n2

none if v1 = none or v2 = none

Rules (S1), (S4) and (S5) show that if the evaluation of
configuration〈s, M〉 depends on the result of an expression
e, it must be the case that〈e, M〉 ⇓ n. In other words, if
〈e, M〉 ⇓ none, the evaluation of〈s, M〉 gets stuck.

3.4. Examples

By its simplicity, the Aimp language helps focus on the
essentials of an imperative language. Figure 3 shows a few
code segments that demonstrate various kind of availability
dependencies, some of which are subtle. In all these exam-
ples,mo represents an output, and its initial value isnone.
All other references represent inputs.

In code segment (A), ifm1 is unavailable, the execution
gets stuck at the first assignment. Therefore, the availability
of mo depends on the availability ofm1.

[E1 ]
m ∈ dom(M)

〈!m, M〉 ⇓ M(m)

[E2 ]
〈e1, M〉 ⇓ v1 〈e2, M〉 ⇓ v2 v = v1 + v2

〈e1 + e2, M〉 ⇓ v

[S1 ]
〈e, M〉 ⇓ n

〈m := e, M〉 7−→ 〈skip, M [m 7→ n]〉

[S2 ]
〈s1, M〉 7−→ 〈s′1, M ′〉

〈s1; s2, M〉 7−→ 〈s′1; s2, M ′〉

[S3 ] 〈skip; s, M〉 7−→ 〈s, M〉

[S4 ]
〈e, M〉 ⇓ n n > 0

〈if e then s1 else s2, M〉 7−→ 〈s1, M〉

[S5 ]
〈e, M〉 ⇓ n n ≤ 0

〈if e then s1 else s2, M〉 7−→ 〈s2, M〉

[S6 ]
〈while e do s, M〉 7−→

〈if e then s; while e do s else skip, M〉

Figure 2. Operational semantics for Aimp

(A) m2:=!m1; mo:= 1;

(B) while (!m1) do skip; mo:=1;

(C) if (!m1) then while (1) do skip; else skip;

mo:=1;

(D) if (!m1) then mo:=1 else skip;

while (!m2) do skip;

mo:=2;

Figure 3. Examples

In code segment (B), thewhile statement gets stuck if
m1 is unavailable. Moreover, it diverges if the value ofm1

is positive. Thus, the availability ofmo depends on both the
availability and the value ofm1.

In code segment (C), theif statement does not terminate
if m1 is positive, so the availability ofmo depends on the
value ofm1.

In code segment (D),mo is assigned in one branch of the
if statement, but not in the other. Therefore, when theif
statement terminates, the availability ofmo depends on the
value ofm1. Moreover, the program executes awhile state-
ment that may diverge beforemo is assigned value 2. There-
fore, for the whole program, the availability ofmo depends
on the value ofm1.
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4. Noninterference properties

This section formalizes the noninterference properties
(in particular, availability noninterference) that correspond
to the security policies of Section 2. Although this formal-
ization is done in the context of Aimp, it can be easily gen-
eralized to other state transition systems.

For both confidentiality and integrity, noninterfer-
ence has a simple, intuitive description: equivalent
low-confidentiality (high-integrity) inputs always re-
sult in equivalent low-confidentiality (high-integrity) out-
puts. The notion of availability noninterference is more
subtle, because an attacker has two ways to compro-
mise the availability of an output. First, the attacker can
make an input unavailable and block the computation us-
ing the input. Second, the attacker can try to affect the in-
tegrity of control flow and make the program diverge (fail
to terminate). In other words, the availability of an out-
put may depend on both the integrity and availability of an
input. The observation is captured by this intuitive descrip-
tion of availability noninterference:

With all high-availability inputs available, equiva-
lent high-integrity inputs will eventually result in
equally available high-availability outputs.

As far as we are aware, no previous work has proposed a no-
tion of noninterference between the availability of outputs
and both the integrity and availability of inputs. This formu-
lation of noninterference provides a separation of concerns
(and policies) for availability and integrity, yet prevents the
two attacks discussed above.

The intuitive concepts of high and low security are based
on the power of the potential attacker, which is represented
by a base labelL. In the DLM, suppose the attacker is able
to act for principalsp1, . . . , pn, and that there exists a top
principal (denoted by∗) that acts for every principal. Then
we haveL = {∗ : p1∧. . .∧pn}, becausep1∧. . .∧pn is the
most powerful principal that the attacker controls. Given a
base labelβ, if β ≤ L then the label represents a low-
security level that is not protected from the attacker. Oth-
erwise,β is a high-security label.

For an imperative language, the inputs of a program are
just the initial memory, and the outputs are the observable
aspects of a program execution, which is defined by theob-
servation modelof the language. In Aimp, we have the fol-
lowing observation model:

• Memories are observable.
• The valuenone is not observable. In other words, if

M(m) = none, an observer cannot determine the
value ofm in M .

Supposes is a program, andM is the initial memory. Based
on the observation model, the outputs ofs are a setT of fi-
nite traces of memories, and for any traceT in T , there

exists an evaluation〈s, M〉 7−→ 〈s1, M1〉 7−→ . . . 7−→
〈sn, Mn〉 such thatT = [M,M1, . . . ,Mn]. Intuitively, ev-
ery trace inT is the outputs observable to users at some
point during the evaluation of〈s, M〉, andT represents all
the outputs of〈s, M〉 observable to users. Since the Aimp
language is deterministic, for any two traces inT , it must
be the case that one is a prefix of the other.

In the intuitive description of noninterference, equiva-
lent low-confidentiality inputs can be represented by two
memories whose low-confidentiality parts are indistinguish-
able. Suppose the typing information of a memoryM is
given by a typing assignmentΓ. Then m belongs to the
low-confidentiality part ofM if C(Γ(m)) ≤ L, where
C(Γ(m)) denotesC(`) if Γ(m) is int`. Similarly, m is
a high-integrity reference ifI(Γ(m)) 6≤ L, and a high-
availability reference ifA(Γ(m)) 6≤ L. Let v1 ≈ v2 de-
note thatv1 andv2 are indistinguishable. By the observation
model of Aimp, a user cannot distinguishnone from any
other value. Consequently,v1 ≈ v2 if and only if v1 = v2,
v1 = none or v2 = none. With these settings, given two
memoriesM1 andM2 with respect toΓ, we define three
kinds of indistinguishability relations betweenM1 andM2

as follows:

Definition 4.1 (Γ ` M1 ≈C≤L M2). The low-
confidentiality parts ofM1 and M2 are indistinguish-
able, writtenΓ ` M1 ≈C≤L M2, if for any m ∈ dom(Γ),
C(Γ(m)) ≤ L impliesM1(m) ≈ M2(m).

Definition 4.2 (Γ ` M1 ≈I 6≤L M2). The high-integrity
parts of M1 and M2 are indistinguishable, writtenΓ `
M1 ≈I 6≤L M2, if for any m ∈ dom(Γ), I(Γ(m)) 6≤ L im-
pliesM1(m) ≈ M2(m).

Definition 4.3 (Γ ` M1 ≈A 6≤L M2). The high-availability
parts of M1 and M2 are equally available, writtenΓ `
M1 ≈A 6≤L M2, if for any m ∈ dom(Γ), A(Γ(m)) 6≤ L
implies thatM1(m) = none if and only if M2(m) = none.

Based on the definitions of memory indistinguishability,
we can define trace indistinguishability, which formalizes
the notion of equivalent outputs. First, we assume that users
cannot observe timing. As a result, traces[M,M ] and[M ]
look the same to a user. In general, two tracesT1 andT2

are equivalent, writtenT1 ≈ T2, if they are equal up to
stuttering, which means the two traces obtained by elimi-
nating repeated elements inT1 andT2 are equal. For ex-
ample,[M1,M2,M2] ≈ [M1,M1,M2]. Second,T1 andT2

are indistinguishable, ifT1 appears to be a prefix ofT2, be-
cause in that case,T1 andT2 may be generated by the same
execution. Given two tracesT1 andT2 of memories with
respect toΓ, let Γ ` T1 ≈C≤L T2 denote that the low-
confidentiality parts ofT1 andT2 are indistinguishable, and
Γ ` T1 ≈I 6≤L T2 denote that the high-integrity parts of
T1 andT2 are indistinguishable. These two notions are de-
fined as follows:
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Definition 4.4 (Γ ` T1 ≈C≤L T2). Given two tracesT1 and
T2, Γ ` T1 ≈C≤L T2 if there existsT ′

1 = [M1, . . . ,Mn]
andT ′

2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′

1, andT2 ≈ T ′
2,

andΓ ` Mi ≈C≤L M ′
i for anyi in {1, . . . , min(m,n)}.

Definition 4.5 (Γ ` T1 ≈I 6≤L T2). Given two tracesT1 and
T2, Γ ` T1 ≈I 6≤L T2 if there existsT ′

1 = [M1, . . . ,Mn]
andT ′

2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′

1, andT2 ≈ T ′
2,

andΓ ` Mi ≈I 6≤L M ′
i for anyi in {1, . . . , min(m,n)}.

Note that two executions are indistinguishable if any two
finite traces generated by those two executions are indis-
tinguishable. Thus, we can still reason about the indistin-
guishability of two nonterminating executions, even though
≈I 6≤L and≈C≤L are defined on finite traces.

With the formal definitions of memory indistinguishabil-
ity and trace indistinguishability, it is straightforward to for-
malize confidentiality noninterference and integrity nonin-
terference:

Definition 4.6 (Confidentiality noninterference). A pro-
gram s has the confidentiality noninterferenceprop-
erty w.r.t. a typing assignmentΓ, written Γ ` NIC(s),
if for any two tracesT1 and T2 generated by evaluat-
ing 〈s, M1〉 and〈s, M2〉, we have thatΓ ` M1 ≈C≤L M2

impliesΓ ` T1 ≈C≤L T2.

Note that this confidentiality noninterference property
does not treat covert channels based on termination and
timing. Static control of timing channels is largely orthog-
onal to this work, and has been partially addressed else-
where [28, 2, 23].

Definition 4.7 (Integrity noninterference). A programs
has theintegrity noninterferenceproperty w.r.t. a typing as-
signmentΓ, written Γ ` NII(s), if for any two tracesT1

andT2 generated by evaluating〈s, M1〉 and 〈s, M2〉, we
have thatΓ ` M1 ≈I 6≤L M2 impliesΓ ` T1 ≈I 6≤L T2.

Consider the intuitive description of availability non-
interference. To formalize the notion that all the high-
availability inputs are available, we first need to distinguish
input references from unassigned output references. Given
a programs, letR denote the set of unassigned output ref-
erences. In general, references inR are mapped tonone
in the initial memory. Ifm 6∈ R, then referencem repre-
sents either an input, or an output that is already been gen-
erated. Thus, given an initial memoryM , the notion that all
the high-availability inputs are available can be represented
by ∀m. (A(Γ(m)) 6≤ L∧m 6∈ R) ⇒ M(m) 6= none, as in
the following definition of availability noninterference:

Definition 4.8 (Availability noninterference). A program
s has theavailability noninterferenceproperty w.r.t. a typ-
ing assignmentΓ and a set of unassigned output refer-
encesR, written Γ ;R ` NIA(s), if for any two memo-
riesM1,M2, the following statements

• Γ ` M1 ≈I 6≤L M2

• For i ∈ {1, 2}, ∀m ∈ dom(Γ). A(Γ(m)) 6≤ L ∧m 6∈
R ⇒ Mi(m) 6= none

• 〈s, Mi〉 7−→∗ 〈s′i, M ′
i〉 for i ∈ {1, 2}

imply that there exist〈s′′i , M ′′
i 〉 for i ∈ {1, 2} such that

〈s′i, M ′
i〉 7−→∗ 〈s′′i , M ′′

i 〉 andΓ ` M ′′
1 ≈A 6≤L M ′′

2 .

5. Security typing and soundness

The type system of Aimp is designed to ensure that
any well-typed Aimp program satisfies the noninterference
properties defined in Section 4. For confidentiality and in-
tegrity, the type system performs a standard static informa-
tion flow analysis [7, 30]. For availability, the type system
tracks the set of unassigned output references and uses them
to ensure that availability requirements are not violated.

To track unassigned output references, the typing envi-
ronment for a statements includes a componentR, which
contains the set of unassigned output references before the
execution ofs. The typing judgment for statements has the
form: Γ ;R ; pc ` s : stmtR′ , whereΓ is the typing assign-
ment, andpc is theprogram counterlabel [6] used to track
security levels of the program counter. The typing judgment
for expressions has the formΓ ;R ` e : τ

The typing rules are shown in Figure 5. Rules (INT) and
(NONE) check constants. An integern has typeint` where
` can be an arbitrary label. The valuenone represents an un-
available value, so it can have any data type. Sinceint is
the only data type in Aimp,none has typeint`.

Rule (REF) says that the type of a referencem is τ ref
if Γ(m) = τ . In Aimp, a memory maps references to val-
ues, and values always have integer types.

Rule (DEREF) checks dereference expressions. It disal-
lows dereferencing the references inR, because they are
unassigned output references.

Rule (ADD) checks addition expressions. Let`1 t `2 be
〈C(`1)tC(`2), I(`1)uI(`2), A(`1)uA(`2)〉. As discussed
in Section 2.8, the label ofe1 + e2 is exactly`1 t `2 if ei

has the label̀i for i ∈ {1, 2}.
Rule (SEQ) checks sequential statements. The premise

Γ ;R ; pc ` s1 : stmtR1 means thatR1 is the set of
unassigned output references afters1 terminates and be-
fore s2 starts. Therefore, the typing environment fors2 is
Γ ;R1 ; pc. It is clear thats2 ands1; s2 terminate at the same
point. Thus,s1; s2 has the same type ass2.

Rule (ASSIGN) checks assignment statements. The
statementm := e assigns the value ofe to m, creat-
ing an explicit information flow frome to m and an implicit
flow from the program counter tom. To control these infor-
mation flows, this rule requiresC(`′) t C(pc) ≤ C(Γ(m))
to protect the confidentiality ofe and the program counter,
andI(Γ(m)) ≤ I(pc)uC(`′) to protect the integrity ofm.
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[INT ] Γ ;R ` n : int`

[NONE ] Γ ;R ` none : int`

[REF ]
Γ(m) = int`

Γ ;R ` m : int` ref

[DEREF ]
m 6∈ R Γ(m) = int`

Γ ;R `!m : int`

[ADD ]
Γ ;R ` e1 : int`1 Γ ;R ` e2 : int`2

Γ ;R ` e1 + e2 : int`1t`2

[SKIP] Γ ;R ; pc ` skip : stmtR

[SEQ ]

Γ ;R ; pc ` s1 : stmtR1

Γ ;R1 ; pc ` s2 : stmtR2

Γ ;R ; pc ` s1; s2 : stmtR2

[ASSIGN ]

Γ ;R ` m : int` ref Γ ;R ` e : int`′

C(pc) t C(`′) ≤ C(`) I(`) ≤ I(pc) u I(`′)
AΓ(R) ≤ A(`′)

Γ ;R ; pc ` m := e : stmtR−{m}

[IF ]

Γ ;R ` e : int` AΓ(R) ≤ A(`)
Γ ;R ; pc t ` ` si : τ i ∈ {1, 2}

Γ ;R ; pc ` if e then s1 else s2 : τ

[WHILE ]

Γ ` e : int` Γ ;R ; pc t ` ` s : stmtR
AΓ(R) ≤ I(`) u I(pc) uA(`)

Γ ;R ; pc ` while e do s : stmtR

[SUB ]
Γ ;R ; pc ` s : τ Γ ;R ; pc ` τ ≤ τ ′

Γ ;R ; pc ` s : τ ′

Figure 4. Typing rules for Aimp

If the value ofe is unavailable, the assignmentm := e
will get stuck. Therefore, rule (ASSIGN) has the premise
AΓ(R) ≤ A(`′), whereAΓ(R) =

⊔
m∈R A(Γ(m)), to

ensure the availability ofe is as high as the availability
of any unassigned output reference. For example, in the
code segment (A) of Figure 3, the type system ensures that
A(Γ(mo)) ≤ A(Γ(m1)).

Finally, when the assignmentm := e terminates,m
should be removed from the set of unassigned output ref-
erences, and thus the statement has typestmtR−{m}.

Rule (IF) checksif statements. Consider the state-
ment if e then s1 else s2. The value ofe determines
which branch is executed, so the program-counter la-
bels for branchess1 ands2 subsume the label ofe to pro-
tect e from implicit flows. As usual, theif statement has
type τ if both s1 and s2 have typeτ . As in rule (AS-

SIGN), the premiseAΓ(R) ≤ A(`) ensures thate has
sufficient availability.

Rule (WHILE) checkswhile statements. In this rule,
the premiseAΓ(R) ≤ I(`) u I(pc) u A(`) can be decom-
posed into three constraints:AΓ(R) ≤ A(`), which ensures
thate has sufficient availability,AΓ(R) ≤ I(`), which pre-
vents attackers from making thewhile statement diverge
by compromising the integrity ofe, andAΓ(R) ≤ I(pc),
which guarantees the integrity of the control flow reaching
the while statement, because awhile statement may di-
verge without any interaction with attackers.

For example, consider the code segments (B) and (C) in
Figure 3, in whichR = {mo}. SupposeA(Γ(mo)) 6≤ L.
In (B), the constraintAΓ(R) ≤ I(`) of rule (WHILE) en-
suresI(Γ(m1)) 6≤ L, so attackers cannot affect the value of
m1, and whether thewhile statement diverges. In (C), the
constraintAΓ(R) ≤ I(pc) guaranteesI(pc) 6≤ L, and thus
I(Γ(m1)) 6≤ L holds becauseI(pc) ≤ I(Γ(m1)). There-
fore, attackers cannot affect which branch of theif state-
ment would be taken, or whether control reaches thewhile
statement.

Rule (SUB) is the standard subsumption rule. Let
Γ ;R ; pc ` τ ≤ τ ′ denote thatτ is a subtype ofτ ′ with re-
spect to the typing environmentΓ ;R ; pc. The type system
of Aimp has one subtyping rule:

[ST ]

R′ ⊆ R′′ ⊆ R
∀m, m ∈ R′′ −R′ ⇒ A(Γ(m)) ≤ I(pc)

Γ ;R ; pc ` stmtR′ ≤ stmtR′′

SupposeΓ ;R ; pc ` stmtR′ ≤ stmtR′′ andΓ ;R ; pc `
s : stmtR′ . ThenΓ ;R ; pc ` s : stmtR′′ by rule (SUB).
In other words, ifR′ contains all the unassigned output ref-
erences afters terminates, so doesR′′. This is guaranteed
by the premiseR′ ⊆ R′′ of rule (ST). The reference setR
contains all the unassigned output references befores is ex-
ecuted, so rule (ST) requiresR′′ ⊆ R. Intuitively, that the
statements can be treated as having typestmtR′′ is be-
cause there exists another control flow path that bypassess
and does not assign to references inR′′−R′. Consequently,
for any m in R′′ − R′, the availability ofm may depend
on whethers is executed. Therefore, rule (ST) enforces the
constraint∀m, m ∈ R′′ −R′ ⇒ A(Γ(m)) ≤ I(pc).

Consider the assignmentmo := 1 in code segment (D)
of Figure 3. By rule (ASSIGN),Γ ;{mo} ; pc ` mo :=
0 : stmt∅. For the else branch of theif statement,
we haveΓ ;{mo} ; pc ` skip : stmt{mo}. By rule (IF),
Γ ;{mo} ; pc ` mo := 0 : stmt{mo} needs to hold, which
requiresΓ ;{mo} ; pc ` stmt∅ ≤ stmt{mo}. In this ex-
ample, the availability ofmo depends on which branch is
taken, and we need to ensureA(Γ(mo)) ≤ I(Γ(m1)). In-
deed, if (D) is well typed, by rules (ST) and (IF), we have
A(Γ(mo)) ≤ I(pc) ≤ I(Γ(m1)).
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This type system satisfies the subject reduction prop-
erty. Moreover, we can prove that any well-typed program
has confidentiality, integrity and availability noninterfer-
ence properties. These results are formalized in the fol-
lowing two theorems (see the technical report [34] for the
proofs).

Theorem 5.1 (Subject reduction). SupposeΓ ;R ; pc `
s : τ , anddom(Γ) = dom(M). If 〈s, M〉 7−→ 〈s′, M ′〉,
then there existsR′ such thatΓ ;R′ ; pc ` s′ : τ , and
R′ ⊆ R, and for anym ∈ R−R′, M ′(m) 6= none.

Theorem 5.2 (Noninterference).If Γ ;R ; pc ` s : τ , then
Γ ` NIC(s), Γ ` NII(s) andΓ ;R ` NIA(s).

6. Extensions

This section describes two language extensions that can
be used to reduce availability dependencies and allow a pro-
gram to use low-availability data in a more flexible and
practical way.

6.1. Timeout

Timeouts can effectively turn a blocking operation into a
non-blocking operation, and thus provide a strong availabil-
ity guarantee for a computation that uses low-availability in-
puts. To support timeouts, we introduce two syntax exten-
sions to Aimp: timed integer values and a race expression.

Values v ::= . . . | 〈n, t〉
Expressions e ::= . . . | e1#e2

A timed integer〈n, t〉 is similar to integern except that
it would taket units of time to use this value. A race expres-
sione1#e2 evaluatese1 ande2 at the same time and returns
the result of the expression that finishes first. If bothe1 and
e2 finish at the same time, the result ofe1 would be the fi-
nal result. Suppose we want to set a timeoutt for expres-
sione so that if the evaluation ofe does not finish int units
of time, a default valuen is returned as the result ofe. This
can be implemented by the expressione#〈n, t〉.

Using the timeout mechanism, the following program
implements an auction for two clients Alice and Bob. Ref-
erencemA represents Alice’s bid, and Alice has 30 units
of time to make a bid, otherwise time runs out, and0 is re-
turned as her bid. Similarly, Bob also has 30 units of time
to make a bid. Even though the result of this auction de-
pends on the bids of Alice and Bob, the availability of the
auction result is not affected by them.

m1 := !mA#〈0, 30〉;
m2 := !mB#〈0, 30〉;
if (!m1 ≥ !m2) mo := !m1

else mo := !m2

6.1.1. Operational semantics.Note that valuen can be
treated as a syntax sugar for〈n, 0〉. As a result, the eval-
uation rules in Figure 2 can be adapted to the timeout ex-
tension by replacing any occurrence of〈e, M〉 ⇓ n with
a more general form〈e, M〉 ⇓ 〈n, t〉. For example, the
adapted rule (S1) is shown below:

[S1 ]
〈e, M〉 ⇓ 〈n, t〉

〈m := e, M〉 7−→ 〈skip, M [m 7→ n]〉

In addition, the formula for computingv1 + v2 in rule (E2)
also needs to be adapted to this more general form of val-
ues:

v1+v2 =
{
〈n1 + n2, t1 + t2〉 if ∀i ∈ {1, 2}. vi = 〈ni, ti〉
none if v1 = none or v2 = none

The operational semantics of the race expression is given by
the following rules (E3)–(E5). Supposee1 ande2 are eval-
uated to〈n1, t1〉 and〈n2, t2〉, which means evaluatinge1

ande2 takest1 andt2 units of time, respectively. Thus, if
t1 ≤ t2 (E3), the result ofe1 should be the final result, and
if t1 > t2 (E4), 〈n2, t2〉 is the final result. Rule (E5) ap-
plies when only the result of one expressionei is available.

[E3 ]
〈e1, M〉 ⇓ 〈n1, t1〉 〈e2, M〉 ⇓ 〈n2, t2〉 t1 ≤ t2

〈e1#e2, M〉 ⇓ 〈n1, t1〉

[E4 ]
〈e1, M〉 ⇓ 〈n1, t1〉 〈e2, M〉 ⇓ 〈n2, t2〉 t1 > t2

〈e1#e2, M〉 ⇓ 〈n2, t2〉

[E5 ]
〈ei, M〉 ⇓ 〈n, t〉 〈ej , M〉 ⇓ none {i, j} = {1, 2}

〈e1#e2, M〉 ⇓ 〈n, t〉

6.1.2. Typing. The race expression is essential for the
timeout mechanism to provide strong availability guaran-
tees. Consider a race expressione1#e2. According to rule
(E5), the result of expressione1#e2 is available as long
as the result ofe1 or e2 is available. Therefore, the avail-
ability of e is as high as the availability ofe1 ande2. Let
A(e) represent the availability label ofe. Then we have
A(e1#e2) = A(e1)tA(e2). On the other hand, the value of
e1#e2 depends on the availability and timing of bothe1 and
e2. Consequently, an attacker can try to compromise the in-
tegrity ofe1#e2 by compromising the availability or timing
of e1 or e2. Intuitively, the race expression trades integrity
for availability.

To take into account attacks on timing, a security label
may contain a new base label componentβIT (IT stands for
integrity of timing), andIT (`) is used to retrieve the com-
ponent in`. Suppose expressione has a label̀ , and the re-
sult of e is 〈n, t〉. Then an attacker with a security levelL
can affect the value oft if and only if IT (`) ≤ L.

Supposee1 ande2 have typeint`1 andint`2 , respec-
tively. Thene1#e2 has typeint`1#`2 , where`1#`2 is a la-
bel computed from̀ 1 and`2. Based on the above discus-
sion, we have the following:
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A(`1#`2) = A(`1) tA(`2)
I(`1#`2) = I(`1) u I(`2) uA(`1) uA(`2) u IT (`1) u IT (`2)

By rule (E5), if the result ofe1#e2 is 〈n, t〉, the value oft
may be affected by the availability ofe1 ande2. Therefore,

IT (`1#`2) = IT (`1) u IT (`2) uA(`1) uA(`2)

As usual,C(`1#`2) = C(`1) t C(`2), since the result of
e1#e2 depends on the results of bothe1 ande2. With these
formulas for computing̀1#`2, the typing rule for checking
the race expression is straightforward:

[RACE ]
Γ ;R ` e1 : int`1 Γ ;R ` e2 : int`2

Γ ;R ` e1#e2 : int`1#`2

Because the timeout mechanism trades integrity for
availability and allows attackers to compromise the in-
tegrity of an output by affecting the availability or
timing of an input, the definition of integrity noninter-
ference needs to be adapted to these new risks. Intu-
itively, the adapted integrity noninterference would re-
quire two sets of inputsM1 andM2 to generate equivalent
high-integrity outputs, if the high-integrity parts, the avail-
ability of the high-availability parts and the timing of the
high-integrity-of-timing parts ofM1 andM2 are indistin-
guishable. The formal definition is given below, following
the definition of the memory indistinguishability with re-
spect to the integrity of timing:

Definition 6.1 (Γ ` M1 ≈IT 6≤L M2). Supposedom(Γ) =
dom(M1) = dom(M2). ThenΓ ` M1 ≈IT 6≤L M2 means
that for anym ∈ dom(Γ), IT (Γ(m)) 6≤ L andM1(m) =
〈n1, t1〉 andM2(m) = 〈n1, t2〉 imply t1 = t2.

Definition 6.2 (Integrity noninterference). A programs
has theintegrity noninterferenceproperty w.r.t. a typing as-
signmentΓ, written Γ ` NII(s), if for any two tracesT1

andT2 generated by evaluating〈s, M1〉 and 〈s, M2〉, we
have thatΓ ` M1 ≈I 6≤L M2, Γ ` M1 ≈A 6≤L M2 and
Γ ` M1 ≈IT 6≤L M2 imply Γ ` T1 ≈I 6≤L T2.

6.2. Run-time reference generation

For a programs in Aimp, the set of outputs thats is ex-
pected to generate are statically determined by a set of refer-
encesR. However, in some realistic applications, an output
may be expected only after control reaches certain program
points. For example, consider a simple service that responds
to the request from a client. The response is expected only
after the service receives a client request. To express such
kind of availability requirements, we extend Aimp with a
new statement that creates a new reference in memory. Intu-
itively, the output represented by this reference is expected
by users only after the point where it is created. The syn-

tax of this extension is shown below:

References r ::= m | x
Expressions e ::= . . . | !r
Statements s ::= . . . | r := e

| new x :`x = ref(`) in s

The namex is used to range over a set of reference vari-
ables. Thenew statementnew x : `x = ref(`) in s creates
a new referencem with typeint` ref, substitutes the oc-
currences ofx in s with m, and then executess. Now a ref-
erencer may be a memory locationm or a variablex. Ac-
cordingly, the dereference expression and the assignment
statement have the form!r andr := e, respectively.

Because the memory is observable to users, the creation
of a new reference is an observable event and may be used
as an information channel. In anew statementnew x : `x =
ref(`)in s, the label̀ x is used to specify the security level
of this event and control this new kind of implicit flows. For
example, any user with a confidentiality level not as high as
C(`x) should not observe the creation of the reference.

Consider the simple service example. In Aimp, a
straightforward implementation is shown below:

m := !m1;
m2 := 1;

where m1 represents the client request, andm2 repre-
sents the output generated by the server in response to
the client request. This implementation is problematic be-
cause the availability ofm2 depends on that ofm1. In prac-
tice, we can imagine that the availability labels ofm1 and
m2 are{*:client} and{*:server}, respectively, where
client represents the client machine, andserver repre-
sents the server machine. However, in general,client does
not act forserver, and thus{*:server} 6≤ {*:client}.
Therefore, the above program is not well-typed in practice.

With the new statement, the simple service can be im-
plemented by the following program in which the server re-
sponse is represented by a reference variablex instead of
a memory location. Sincex is created afterm1 is derefer-
enced, the availability ofx does not depend on that ofm1.

m := !m1;
new x:`x = ref(〈βC, βI, {*:server}〉) in
x := 1;

6.2.1. Operational semantics.Formally, the follow-
ing rule is used to evaluate thenew statement:

[S7 ]
m = newloc(M, `x)

〈new x :`x = ref(`) in s, M〉 7−→
〈s[m/x], M [m 7→ none]〉

The function newloc(M, `x) deterministically returns a
fresh referencem such thatm 6∈ dom(M). The observabil-
ity and integrity of the newly created reference are specified
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by a label̀ x. To associate a memory reference with its la-
bel, we assume there exists a mapΩ from the memory space
M (an infinite set of memory locations) to labels. Given
a label`, letM` = {m | m ∈ M ∧ Ω(m) = `}. In ad-
dition, we assume that for anỳ, M` is infinite. The
function newloc(M, `x) deterministically picks a refer-
encem fromM`x such thatm 6∈ dom(M).

The definitions of memory indistinguishability need to
take into account the reference labels, which determine
the observability and integrity of references themselves.
We give the new definition forΓ ` M1 ≈A 6≤L M2 be-
low. Compared to Definition 4.3, this definition does not
require dom(M1) = dom(M2), but I(Ω(m)) 6≤ L im-
pliesm ∈ dom(M1) ∩ dom(M2). The new definitions for
Γ ` M1 ≈I 6≤L M2 andΓ ` M1 ≈C≤L M2 have simi-
lar adjustments.

Definition 6.3 (Γ ` M1 ≈A 6≤L M2). Supposedom(Γ) =
dom(M1) ∪ dom(M2). ThenΓ ` M1 ≈A 6≤L M2 if for
any m ∈ dom(Γ) such thatI(Ω(m)) 6≤ L, we have
m ∈ dom(M1) ∩ dom(M2), andA(Γ(m)) 6≤ L implies
thatM1(m) = none if and only if M2(m) = none.

Note that we assume that for any referencem in the ini-
tial memory of a program,Ω(m) = 〈⊥C ,>I ,>A〉. As a
result, if a programs does not contain anynew statement,
these new definitions of memory indistinguishability , when
applied to the traces ofs, are consistent with those original
definitions in Section 3.

6.2.2. Typing. The type system of Aimp needs to be ex-
tended to manipulate reference variables and check thenew
statement. First, variablex represents a reference that can
be used in the typing environment: the typing assignment
Γ may mapx to a type, and the reference setR may con-
tain x. For example, consider the statementnew x : `x =
ref(`) in s. Suppose the typing environment for thenew
statement is “Γ ;R ; pc”. Then the typing environment fors
should be “Γ, x : int` ;R ∪ {x} ; pc”. Second, to control
the implicit information flow arising from the creation of a
new reference, the typing rule for checking the statement
new x : `x = ref(`) in s needs to ensure that the confiden-
tiality and integrity components of̀x are bounded by the
current program counter labelpc. Formally, the correspond-
ing constraints areC(pc) ≤ C(`x) andI(`x) ≤ I(pc).

Intuitively, the value or availability of a reference cre-
ated at a program point is not affected by whether control
reaches this point, because the reference itself does not ex-
ist if control does not reach the point. As a result, the typ-
ing rules in Figure 5 may be over-restrictive for reasoning
about the security policies of a reference created at run time.
For example, consider the following code:

if (!m) then
new x:`x = ref(`) in
while !m1 do m1 := m1 - 1;
x := 1

else
skip

SupposeΓ ;R ; pc is the typing environment for thewhile
statement in the above code. ThenI(pc) ≤ I(Γ(m)) holds
by the typing rule (IF). Furthermore, we havex ∈ R, which
requiresA(`) ≤ I(pc) by rule (WHILE). Therefore, for the
above code to be well-typed,A(`) ≤ I(Γ(m)) needs to
hold, which contradicts the intuition that the availability of
x is not affected by whether control reaches thenew state-
ment. To increase the precision of the static security analy-
sis, we extend the type system to track the program counter
label for each reference variablex from the program point
wherex is created. Accordingly, the typing environment is
extended with a new component∆ that maps references to
program count labels.

The typing rule (NEW) is used to check thenew state-
mentnew x : `x = ref(`) in s. In this rule, statements
is checked with variablex in scope. In the typing environ-
ment ofs, the program counter label mapped tox is ⊥pc,
which is{⊥C ,>I ,>A}.

[NEW ]

Γ, x :int` ;R∪ {x} ;∆, x :⊥pc ; pc ` s : τ
C(pc) ≤ C(`x) I(`x) ≤ I(pc)

Γ ;R ;∆ ; pc ` new x :`x = ref(`) in s : τ

In addition, typing rules (ASSIGN), (IF) and (WHILE)
need to take into account the∆ component in the typing en-
vironment. To abuse the notation a bit, we use∆ t ` to de-
note the program counter map∆′ that satisfiesdom(∆) =
dom(∆′) and∆′(r) = ∆(r)t` for anyr ∈ dom(∆). In ad-
dition, let ∆(r, pc) denote∆(r) if r ∈ dom(∆), andpc if
otherwise. The adjusted typing rules are shown as follows:

[ASSIGN ]

Γ ;R ` r : int` ref Γ ;R ` e : int`′

C(∆(r, pc)) t C(`′) ≤ C(`)
I(`) ≤ I(∆(r, pc)) u I(`′) AΓ(R) ≤ A(`′)

Γ ;R ;∆ ; pc ` r := e : stmtR−{r}

[IF ]

Γ ;R ` e : int` AΓ(R) ≤ A(`)
Γ ;R ;∆ t ` ; pc t ` ` si : τ i ∈ {1, 2}
Γ ;R ;∆ ; pc ` if e then s1 else s2 : τ

[WHILE ]

Γ ` e : int` AΓ(R) ≤ I(`) uA(`)
Γ ;R ;∆ t ` ; pc t ` ` s : stmtR
∀r ∈ R, A(r) ≤ I(∆(r, pc))

Γ ;R ;∆ ; pc ` while e do s : stmtR

6.2.3. Example: TCP handshake protocol.The TCP
connection establishment process uses a three-step hand-
shake protocol [26]. First, a client hosthc sends aSYN(h)
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packet that contains the address of hosth to a servers. Sec-
ond, the server sends aSYN ACK packet to hosth. Third,
hosth sends anACK or RST packet to the server, depend-
ing on whetherh is hc. An instance of this protocol can be
simulated by the following code, in which message com-
munications are modeled by assignments:

m := !mi,hc
; // receive SYN from hc

new xend:〈⊥,⊥,>〉 = ref(〈s :s, s :s, s :hc〉) in
mo,h := !m + 1; // send SYN_ACK to h

m := !mi,h; // receive ACK/RST from h

xend := 1

The referencemi,hc
represents the connection request from

hc. After the request is received, a new referencexend is
created to capture the availability requirement of the server:
the protocol will terminate if the clienthc does not fail,
which is specified by the availability labels :hc of xend.

The statementm := mi,h represents the third step of the
handshake protocol, and the referencemi,h represents the
response fromh. Intuitively, the availability ofmi,h only
depends onh, and thus we suppose that the availability la-
bel of mi,h is s : h. Then the above code is not well-typed
becauses : hc 6≤ s : h. Interestingly, this reflects the prob-
lem with the handshake protocol that allows the SYN flood-
ing attack: hosth may be spoofed and cannot be trusted to
establish the connection betweens andhc.

7. Related work

There has been much research on ensuring high avail-
ability of a computer platform, or guaranteeing a server to
carry out the computation requests from clients. Most of
these work falls in two main categories: one is aimed at
tolerating server-side failures, usually by using some repli-
cation techniques [25, 17, 4]; the other deals with faulty
clients and defends denial of service attacks [31, 19, 13].
This work is concerned with the availability risks inherent
to the computation that may process untrusted inputs, while
the computation platform is assumed available.

Lamport first introduced the concepts ofsafetyandlive-
nessproperties [15]. Being available is often characterized
as a liveness property, which informally means “something
good will eventually happen”. In general, verifying whether
a program will eventually produce an output is equivalent
to solving the halting problem, and thus incomputable for a
Turing-complete language. In this work, we propose a secu-
rity model in which an availability policy can be enforced
by a noninterference property [9]. It is well known that a
noninterference property is not a property on traces [18],
and unlike safety or liveness properties, cannot be specified
by a trace set. However, a noninterference property can be
treated as a property on pairs of traces. For example, con-
sider a trace pair〈T1, T2〉. It has the confidentiality nonin-

terference property if the first elements ofT1 and T2 are
distinguishable, orT1 andT2 are indistinguishable to low-
confidentiality users. Therefore, a noninterference property
can be represented by a set of trace pairsS, and a program
satisfies the property if all the pairs of traces produced by
the program belong toS. Interestingly, with respect to a
trace pair, the confidentiality and integrity noninterference
properties have the informal meaning of safety properties
(“something bad will not happen”), and availability nonin-
terference takes on the informal meaning of liveness.

Focardi and Gorrieri [8] provide a classification of secu-
rity properties in the setting of a non-deterministic process
algebra. In particular, the BNDC (bisimulation-based non-
deducibility on compositions) property prevents attackers
from affecting the availabilities of observable process ac-
tions. However, the BNDC property requires observational
equivalence, making it difficult to separate the concerns for
integrity and availability.

Yu and Gligor [31] develop a formal method for ana-
lyzing availability: a form of first-order temporal logic is
used to specify safety and liveness constraints on the in-
puts and behaviors of a service, and then those constraints
can be used to formally verify the availability guarantees of
the service. The flexibility and expressiveness of first-order
temporal logic come at a price: it is difficult to automate the
verification process. The approach of formalizing and rea-
soning system constraints and guarantees in terms of logic
resembles the rely-guarantee method [12], which was also
applied to analyzing cryptographic protocols by Guttman et
al. [10].

Lafrance and Mullins [14] define a semantic security
propertyimpassivityfor preventing DoS attacks. Intuitively,
impassivity means that low-cost actions cannot interfere
with high-cost actions. In some sense, impassivity is an in-
tegrity noninterference property, if we treat low-cost as low-
integrity and high-cost as high-integrity. With the implicit
assumption that high-cost actions may exhaust system re-
sources and render a system unavailable, impassivity corre-
sponds to one part of our notion of availability noninterfer-
ence: low-integrity inputs cannot affect the availabilities of
highly available outputs.

Li et al. [16] formalize the notion that highly available
data does not depend on low-availability data. However,
their definition istermination-insensitive[24], which makes
it inappropriate to model availability noninterference.

Volpano and Smith [29] introduce the notion oftermi-
nation agreement, which requires two executions indistin-
guishable to low-confidentiality users to both terminate or
both diverge. The integrity dual of termination agreement
can be viewed as a special case of the availability noninter-
ference in which termination is treated as the only output of
a program.

Language-based information flow control techniques [7,
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24, 30, 11, 32, 22, 3, 33] can be used to enforce nonin-
terference. But they mainly dealt with confidentiality and
integrity. Our work focuses on applying the security-typed
language approach to enforcing availability policies.

Myers and Liskov proposed the decentralized la-
bel model for specifying information flow policies [20].
This paper generalizes the DLM to provide a unified frame-
work for specifying confidentiality, integrity and availabil-
ity policies. The form of a combined security policy is an
instance of anowned policy[5], though we give a differ-
ent semantics here.

8. Conclusions

This paper makes three contributions. First, it proposes
a way to specify availability policies as an extension to the
decentralized label model, including the added expressive
power of conjunctive and disjunctive principals and a new
semantics for policies and labels. Second, the paper presents
a simple language that can explicitly specify security poli-
cies as type annotations and has a security type system to
reason about end-to-end availability policies, along with
confidentiality and integrity policies. Third, the paper for-
mally defines an end-to-end availability property in terms
of program traces and shows that the security type system
enforces this property. As far as we know, this is the first se-
curity type system for reasoning about availability.

An important direction for future work is to apply this
static availability analysis framework to multithreaded pro-
gramming models, and develop a notion of possibilistic (or
probabilistic) availability noninterference.
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