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ABSTRACT

Conventional cyber defenses typically respond to detected attacks
by rejecting them as quickly and decisively as possible; but aborted
attacks are missed learning opportunities for intrusion detection.
A method of reimagining cyber attacks as free sources of live train-
ing data for machine learning-based intrusion detection systems
(IDSes) is proposed and evaluated. Rather than aborting attacks
against legitimate services, adversarial interactions are selectively
prolonged to maximize the defender’s harvest of useful threat intel-
ligence. Enhancing web services with deceptive attack-responses
in this way is shown to be a powerful and practical strategy for
improved detection, addressing several perennial challenges for
machine learning-based IDS in the literature, including scarcity
of training data, the high labeling burden for (semi-)supervised
learning, encryption opacity, and concept differences between hon-
eypot attacks and those against genuine services. By reconcep-
tualizing software security patches as feature extraction engines,
the approach conscripts attackers as free penetration testers, and
coordinates multiple levels of the software stack to achieve fast,
automatic, and accurate labeling of live web data streams.

Prototype implementations are showcased for two feature set
models to extract security-relevant network- and system-level fea-
tures from servers hosting enterprise-grade web applications. The
evaluation demonstrates that the extracted data can be fed back
into a network-level IDS for exceptionally accurate, yet lightweight
attack detection.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and
malware mitigation; Software security engineering; Web applica-
tion security; « Computing methodologies — Machine learning.
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1 INTRODUCTION

Detecting cyber attacks before they reach unpatched, vulnerable
web servers (or afterward, for recovery purposes) has become a
vital necessity for many organizations. In 2018 alone, the average
window of exposure for critical web application vulnerabilities was
69 days, with a new vulnerability found every hour—an increase of
13% over the previous year’s rate—and over 75% of all legitimate
web sites have unpatched vulnerabilities, 20% of which afford at-
tackers full control over victim systems [27, 72]. The cost of data
breaches resulting from software exploits is expected to escalate to
an unprecedented $2.5 trillion by 2022 [41].

Intrusion detection [23] is an important means of mitigating such
threats. IDSes capitalize on the observation that the most damaging
and pernicious attacks discovered in the wild often share similar
traits, such as the steps intruders take to open back doors, exe-
cute files and commands, alter system configurations, and transmit
gathered information from compromised machines [24, 38, 61, 66].
Starting with the initial infection, such malicious activities often
leave telltale traces that can be identified even when the underlying
exploited vulnerabilities are unknown to defenders. The challenge
is therefore to capture and filter these attack trails from network
traffic, connected devices, and target applications, and develop de-
fense mechanisms that can effectively leverage such data to disrupt
ongoing attacks and prevent future attempted exploits. Specifically,
machine learning-based IDSes alert administrators when deviations
from a model of normal behavior are detected [29, 50, 80].

However, despite its great promise, the advancement of machine
learning approaches for web intrusion detection have been hin-
dered by a scarcity of realistic, current, publicly available cyber
attack data sets, and by the difficulty of accurately and efficiently
labeling such data sets, which are often prohibitively large and
complex [75]. This has frustrated comprehensive, timely training
of IDSes, and has resulted in an overreliance on unrealistic closed-
world assumptions [69], thereby raising IDS false alarm rates and
elevating their susceptibility to attacker evasion [11, 17, 31, 63, 69].

This paper proposes and examines a new deception-based ap-
proach to enhancing IDS data streams through crook-sourcing—the
conscription and manipulation of attackers into performing free
penetration testing for improved IDS model training and adapta-
tion. Deception has long been recognized as a key ingredient of
effective cyber warfare (cf., [81]), but its applications to IDS have
heretofore been limited to contexts where the deception is isolated
and separate from the data stream in which intrusions must actually
be detected. For example, dedicated honeypots collect attack-only
data streams [76] but have limited IDS training value in that they
can mistrain models to recognize only attacks against honeypots,
including false positives from scans and accidental connections, or
attacks by unsophisticated adversaries unable to identify and avoid
honeypots. Attacks with substantial interactivity can be missed,
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since the honeypot offers no legitimate services, and therefore col-
lects no data characterizing attacks against legitimate services.

Our approach overcomes this limitation by integrating deceptive
attack response capabilities directly into live, production server
software via honey-patching [5]. Honey-patches are software secu-
rity patches that are modified to avoid alerting adversaries when
their exploit attempts fail. Instead of merely blocking the attempted
intrusion, the honey-patch transparently redirects the attacker’s
connection to a carefully isolated decoy environment running an
unpatched version of the software. Adversaries attempting to ex-
ploit a honey-patched vulnerability observe software responses that
resemble unpatched software, even though the vulnerability is ac-
tually patched. This allows the system to observe subsequent attack
actions until the deception is eventually uncovered. Honey-patches
offer equivalent security to conventional patches, but can poten-
tially enhance IDS web data streams with a semantically rich stream
of pre-labeled (attack-only) data for training purposes. These crook-
sourced data streams thus provide IDSes with concept-relevant,
current, feature-filled information with which to detect and pre-
vent sophisticated, targeted attacks.

We demonstrate the potential effectiveness of this new IDS ap-
proach through the design, implementation, and analysis of DEEP-
DiG (DEcEPtion DIGging), a framework for deception-enhanced
web intrusion detection. Evaluation shows that extra information
harvested through mini-deceptions (1) improves the precision of
anomaly-based IDSes by feeding back attack traces into the clas-
sifier, (2) provides feature-rich, multi-dimensional attack data for
classification, and (3) can detect exploit variants previously unseen
by defenders. Our goal in this work is to assess whether success-
ful deceptions are helpful for intrusion detection, and to what de-
gree. Given the present scarcity of good, current intrusion data
sets and the costs of conducting large-scale empirical data collec-
tion, we believe that the approach’s facility for generating richer,
automatically-labeled, web attack data streams offers exceptional
promise for future IDS research and deployments.

Our contributions can be summarized as follows:

e We propose a software patching methodology that facilitates
semi-supervised learning for intrusion detection, in which
deceptive security patches naturally modulate and automate
the attack labeling and feature extraction process.

e We present a feature-rich attack classification approach that
more accurately characterizes malicious web activities.

o To harness training and test data, we present the design of a
framework for the replay and generation of real web traffic,
which statistically mutates and injects scripted attacks into
the generated output streams.

o We evaluate our approach on large-scale network and system
events gathered through simulation and red team evaluations
over a test bed built atop production web software, including
the Apache web server, OpenSSL, and PHP.

The rest of the paper is organized as follows. Section 2 outlines
our approach and presents an overview of the system, followed
by a more detailed architecture description in Section 3. Section 4
shows how our approach can support accurate characterization of

!The implementation and datasets used in this paper are available in https://github.
com/cyberdeception/deepdig.
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attacks through decoy data. Implementation is summarized in Sec-
tion 5, followed by evaluation methodology and results in Section 6.
Finally, discussion and related work are presented in Sections 7
and 8 (respectively), and Section 9 concludes with a summary of
outcomes and future directions.

2 APPROACH OVERVIEW

We first outline practical limitations of traditional machine learn-
ing techniques for intrusion detection, motivating our research.
We then overview our approach for automatic attack labeling and
feature extraction via honey-patching.

2.1 Intrusion Detection Challenges

Despite the increasing popularity of machine learning in intrusion
detection applications, its success in operational environments has
been hampered by specific challenges that arise in the cyber secu-
rity domain. Fundamentally, machine learning algorithms perform
better at identifying similarities than at discovering previously un-
seen outliers. Since normal, non-attack data is usually far more
plentiful than realistic, current attack data, many classifiers must
be trained almost solely from the former, necessitating an almost
perfect model of normality for any reliable classification [69].
Feature extraction [12] is also unusually difficult in intrusion
detection contexts because security-relevant features are often not
known by defenders in advance. The task of selecting appropri-
ate features to detect an intrusion (e.g., features that generate the
most distinguishing intrusion patterns) often creates a bottleneck
in building effective models, since it demands empirical evaluation.
Identification of attack traces among collected workload traces for
constructing realistic, unbiased training sets is particularly challeng-
ing. Current approaches usually require manual analysis aided by
expert knowledge [11, 17], which severely reduces model evolution
and update capabilities to cope with attacker evasion strategies.
A third obstacle is analysis of encrypted streams, which are
ubiquitously employed to prevent unauthorized users from ac-
cessing sensitive web data transmitted through network links or
stored in file systems. Since network-level detectors typically dis-
card cyphered data, their efficacy is greatly reduced by the wide-
spread use of encryption [31]. In particular, attackers benefit from
encrypting their malicious payloads, making it harder for standard
classification strategies to distinguish attacks from normal activity.
High false positive rates are another practical challenge for adop-
tion of machine learning approaches [63]. Raising too many alarms
renders IDSes meaningless in most cases, since actual attacks are
lost among the many alarms. Studies have shown that effective in-
trusion detection therefore demands very low false alarm rates [8].
These significant challenges call for the exploration and develop-
ment of new, accurate anomaly detection schemes that lift together
information from many different layers of the software stack. To-
ward this end, our work extends machine learning-based intrusion
detection with the capability to effectively detect malicious activi-
ties bound to the application layer, affording detection approaches
an inexpensive tool for automatically and continuously extracting
security-relevant features for attack detection.

2.2 Digging Deception-Enhanced Threat Data

DEEPDIG is a new approach to enhance intrusion detection with
threat data sourced from honey-patched [5] applications. Figure 1
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Figure 1: DEEPDIG approach overview

shows an overview of the approach. Unlike conventional tech-
niques, DEEPDIG incrementally builds a model of legitimate and
malicious behavior based on audit streams and attack traces col-
lected from honey-patched web servers. This augments the classifier
with security-relevant feature extraction capabilities not available
to typical network intrusion detectors.

Our central enabling insight is that software security patches
can be repurposed as feature extractors for semi-supervised learning.
The maintenance of the feature extractors is crowd-sourced (by
the software development community’s ongoing discovery and
creation of new security patches), and the data analyzed by the
patches is crook-sourced (as attackers contribute their TTP pat-
terns to the data streams processed by the embedded deceptions).
Honey-patching transduces these two data sources into a highly
accurate, rapidly co-evolving feature extraction module for an IDS.
The extractor can effortlessly detect previously unseen payloads
that exploit known vulnerabilities at the application layer, which
can be prohibitively difficult to detect by a network-level IDS.

These capabilities are transparently built into the framework,
requiring no additional developer effort (apart from routine patch-
ing) to convert the target application into a potent feature extractor
for anomaly detection. Traces extracted from decoys are always
contexts of true malicious activity, yielding an effortless labeling of
the data and higher-accuracy detection models.

By living inside web servers that offer legitimate services, our
deception-enhanced IDS can target attackers who use one payload
for reconnaissance but reserve another for their final attacks. De-
ceiving such attackers into divulging the latter is useful for training
the IDS to identify the final attack payload, which can reveal at-
tacker strategies and goals not discernible from the reconnaissance
payload alone. The defender’s ability to thwart these and future
attacks therefore derives from a synergy between the application-
level feature extractor and the network-level intrusion detector to
derive a more complete model of attacker behavior.

2.3 Honey-patching Approach

Prior work has observed that many vendor-released software se-
curity patches can be honeyed by replacing their attack-rejection
responses with code that instead maintains and forks the attacker’s
connection to a confined, unpatched decoy [5, 6]. This approach
retains the most complex part of the vendor patch (the security
check) and replaces the remediation code with some boilerplate
forking code [4], making it easy to implement.

Figure 2 demonstrates the approach using pseudo-code for a
buffer-overflow vulnerability, a conventional patch, and a honey-
patch. The honey-patch retains the logic of the conventional patch’s
security check, but replaces its remediation with a deceptive fork
to a decoy environment. The decoy contains no valuable data; its
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1if (i > length(a)) 1if (i > length(a))
2 abort(); 2 fork_to_decoy();
3 read ali] 3read ali]

1read ali]

Figure 2: Pseudo-code for a buffer overflow vulnerability (left), a
patch (middle), and a honey-patch (right)

purpose is to monitor attacker actions, such as shellcode or malware
introduced by the attacker after abusing the buffer overflow to
hijack the software. The infrastructure for redirecting attacker
connections to decoys can remain relatively static, so that honey-
patching each newly discovered vulnerability only entails replacing
the few lines of code in each patch that respond to detected exploits.

This integrated deception offers some important advantages
over conventional honeypots. Most significantly, it observes attacks
against the defender’s genuine assets, not merely those directed
at fake assets that offer no legitimate services. It can therefore
capture data from sophisticated attackers who monitor network
traffic to identify service-providing assets before launching attacks,
who customize their attacks to the particular activities of targeted
victims (differentiating genuine servers from dedicated honeypots),
and who may have already successfully infiltrated the victim’s net-
work before their attacks become detected. We next examine how
deception-enhanced data harvested in this way can be of particular
value to network-level defenses, such as firewalls equipped with
machine learning-based intrusion detection.

3 ARCHITECTURE

DEEePDIG’s architecture, depicted in Figure 3, leverages application-
level threat data gathered from attacker sessions redirected to
decoys to train and adapt a network-level IDS live. Within this
framework, honey-patches misdirect attackers to decoys that au-
tomatically collect and label monitored attack data. The intrusion
detector consists of an attack modeling component that incremen-
tally updates the anomaly model data generated by honey-patched
servers, and an attack detection component that uses this model to
flag anomalous activities in the monitored perimeter.

3.1 Monitoring & Threat Data Collection

The decoys into which attacker sessions are forked are managed as
a pool of continuously monitored Linux containers. Upon attack de-
tection, the honey-patching mechanism acquires the first available
container from the pool. The acquired container holds an attacker
session until (1) the session is deliberately closed by the attacker,
(2) the connection’s keep-alive timeout expires, (3) the ephemeral
container crashes, or (4) a session timeout is reached. The last two
conditions are common outcomes of successful exploits. In any of
these cases, the container is released back to the pool and undergoes
a recycling process before becoming available again.

After decoy release, the container monitoring component extracts
the session trace (delimited by acquire and release), labels it, and
stores it outside the decoy for subsequent feature extraction. Decoys
only host attack sessions, so precisely collecting and labeling their
traces (at both the network and OS level) is effortless.

DEEeprDIG distinguishes between three input data streams: (1) the
audit stream, collected at the target honey-patched server; (2) attack
traces, collected at decoys; and (3) the monitoring stream, the actual
test stream collected from regular servers. Each of these streams
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Figure 3: DEEPDIG system architecture overview

contains network packets and OS events captured at each server en-
vironment. To minimize performance impact, we used two powerful
and highly efficient software monitors: sysdig [73] (to track system
calls and modifications made to the file system), and libpcap [74]
(to monitor ingress and egress of network packets). Specifically,
monitored data is stored outside the decoy environments to avoid
possible tampering with the collected data.

Deployability. Our monitoring and data collection solution is de-
signed to scale for large, distributed on-premise and cloud deploy-
ments. The host-level telemetry leverages a mainstream kernel mod-
ule that implements non-blocking event collection and memory-
mapped event buffer handling for minimal computational overhead.
This architecture allows system events to be safely collected (with-
out system call interposition) and compressed by a containerized
user space agent that is oblivious to other objects and resources
located in the host environment. The event data streams originated
from the monitored hosts are conveniently exported to a high-
performance, distributed S3-compatible object storage server [59],
designed for large-scale data infrastructures.

3.2 Attack Modeling & Detection

Using the continuous audit stream and incoming attack traces as
labeled input data, DEEPDIG incrementally builds a machine learn-
ing model that captures legitimate and malicious behavior. The raw
training set (viz. the audit stream and attack traces) is piped into a
feature extraction component that selects relevant, non-redundant
features (see §4) and outputs feature vectors—audit data and attack
data—that are grouped and queued for subsequent model update.
Since the initial data streams are labeled and have been prepro-
cessed, feature extraction becomes very efficient and can be per-
formed automatically. This process repeats periodically according
to an administrator-specified policy. Finally, the attack detection
module uses the most recently constructed attack model to detect
malicious activity in the runtime monitoring data.

4 ATTACK DETECTION

To assess our framework’s ability to enhance IDS data streams, we
have designed and implemented two familiar feature set models:
(1) Bi-Di detects anomalies in security-relevant network streams,
and (2) N-Gram finds anomalies in system call traces. Our approach
is agnostic to the particular feature set model chosen; we choose
these two models for evaluation purposes because they are sim-
ple and afford direct comparisons to non-deceptive prior works.
The goal of the evaluation is hence to measure the utility of the
deception for enhancing data streams for intrusion detection, not
to assess the utility of novel feature sets.
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Table 1: Packet, uni-burst, and bi-burst features

Category Features
Packet (Tx/Rx)

Uni-Burst (Tx/Rx)

Packet length

Uni-Burst size
Uni-Burst time
Uni-Burst count

Bi-Burst (Tx-Rx/Rx-Tx) Bi-Burst size

Bi-Burst time

4.1 Network Packet Analysis

Bi-Di (Bi-Directional) extracts features from sequences of pack-
ets and bursts—consecutive same-direction packets (viz., uplinks
from client Tx, or downlinks from server Rx) for network behav-
ior analysis. It uses distributions from individual burst sequences
(uni-bursts) and sequences of two adjacent bursts (bi-bursts), con-
structing histograms using features extracted from packet lengths
and directions. To overcome dimensionality issues associated with
burst sizes, bucketization is applied to group bursts into correlation
sets (e.g., based on frequency of occurrence).

Table 1 summarizes the features used, including features from
prior works [2, 26, 62, 77]. For robustness against encrypted pay-
loads, we here limit feature extraction to packet headers.

Uni-burst features include burst size (the sum of the sizes of all
packets in the burst), time (the duration for the entire burst to be
transmitted), and count (the number of packets in the burst). Taking
direction into consideration, one histogram for each is generated.

Bi-burst features include time and size attributes of Tx-Rx-bursts
and Rx-Tx-bursts. Each is comprised of a consecutive pair of down-
link and uplink bursts. The size and time of each are the sum of the
sizes and times of the constituent bursts, respectively.

Bi-bursts capture dependencies between consecutive TCP packet
flows. Based on connection characteristics, such as network con-
gestion, the TCP protocol applies flow control mechanisms (e.g.,
window size and scaling, acknowledgement, sequence numbers) to
ensure a level of consistency between Tx and Rx. This influences
the size and time of transmitted packets in each direction. Each
packet flow (uplink and downlink) thereby affects the next flow or
burst until communicating parties finalize the connection.

4.2 System Call Analysis

Monitored data also includes system streams comprised of OS
events, each containing multiple fields, including event type (e.g.,
open, read, select), process name, and direction. Our prototype was
developed for Linux x86_64 systems, which exhibit about 314 dis-
tinct system call events. We build histograms from these using
N-Gram, which extracts features from event subsequences. Each
feature type consists of between 1 (uni-events) and 4 (quad-events)
consecutive events, with each event classified as an enter or exit.

Bi-Di and N-Gram differ in feature granularity; the former uses
coarser-grained bursting while the latter uses individual system
call co-occurrences.

4.3 Classification

We evaluate our approach’s practicality using two supervised learn-
ing models: SVM [22] and deep learning [49]. Our main objective
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Algorithm 1: Ens-SVM
Data: training data: TrainX, testing data: TestX
Result: a predicted label L for each testing instance I
1 begin
2 B « updateModel(Bi-Di, TrainX);
3 N « updateModel(N-Gram, TrainX);
4 for each I € TestX do

5 Lp < label(B, I);
6 L « label(N, I);
7 if L == LN then
8 ‘ L7 — Lp;

9 else

10

L7 « label |arg max confidence(c, I'), I |;
ce{B,N}

1 end

12 end

13 end

is to show that our deception-enhanced framework facilitates in-
cremental supervised learning for intrusion detection.

Ens-SVM. This method builds SVM models for Bi-Di and N-Gram.
Using convex optimization and mapping non-linearly separated
data to a higher dimensional linearly separated feature space, SVM
separates positive (attack) and negative (benign) training instances
by a hyperplane with the maximum gap possible. Prediction labels
are assigned based on which side of the hyperplane each monitor-
ing/testing instance resides.

We combine the two classifiers into an ensemble that classifies
new input data by weighing the classification outcomes of Bi-Di
and N-Gram based on their individual accuracy indexes. Ensemble
methods tend to exhibit higher accuracy and avoid normalization
issues raised by the alternative (brute force) approach of concate-
nating the dissimilar features into a single feature vector.

Algorithm 1 describes the voting approach for Ens-SVM. For
each instance in the monitoring stream, if both Bi-Di and N-Gram
agree on the predictive label (line 7), Ens-SVM takes the common
classification as output (line 8). Otherwise, if the classifiers disagree,
Ens-SVM takes the prediction with the highest SVM confidence
(line 10). Confidence is rated using Platt scaling [64], which uses
the following sigmoid-like function to estimate confidence:

1

1+ exp(Af(x) + B) o

P(y =1|x) =

where y is the label, x is the testing vector, f(x) is the SVM out-
put, and A and B are scalar parameters learned using Maximum
Likelihood Estimation (MLE). This yields a probability measure of
a classifier’s confidence in assigning a label to a testing point.

Metric Learning. To classify instances to classes, we use online
adaptive metric learning (OAML) [9, 30]. OAML is better suited
to our task than off-line approaches (e.g., k-nearest neighbors),
which yield weak predictors when the separation between dif-
ferent class instances is small. Online similarity metric learning
(OML) [14, 19, 37, 39, 52] improves instance separation by finding a
new latent space to project the original features, learning similarity
from a stream of constraints. Pairwise and triplet constraints are
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Constraint Stream

Adaptive Metric Network Loss

Figure 4: OAML network structure. Each layer L; is a linear trans-
formation output to a rectified linear unit (ReLU) activation. Embed-
ding layers E; connect to corresponding input or hidden layers. Lin-
ear model Ey maps the input feature space to the embedding space.

typically employed: a pairwise constraint takes two dissimilar/sim-
ilar instances, while a triplet constraint (A, B, C) combines similar
instances A and B with a dissimilar instance C.

We choose adaptive OML since non-adaptive OML usually learns
a pre-selected linear metric (e.g., Mahalanobis distance [79]) that
lacks the complexity to learn non-linear semantic similarities among
class instances, which are prevalent in intrusion detection scenarios.
Moreover, it derives its metric model from well-defined input con-
straints, leading to bias towards the training data. OAML overcomes
these disadvantages by adapting its complexity to accommodate
more constraints in the observed data. Its metric function learns a
dynamic latent space from the Bi-Di and N-Gram feature spaces,
which can include both linear and highly non-linear functions.

OAML leverages artificial neural networks (ANNs) to learn a
metric similarity function and can adapt its learning model based on
the complexity of its input space. It modifies common deep learning
architectures so that the output of every hidden layer flows to an
independent metric-embedding layer (MEL). The MELSs output an n-
dimensional vector in an embedded space where similar instances
are clustered and dissimilar instances are separated. Each MEL
has an assigned metric weight to determine its importance for the
models generated. The output of this embedding is used as input
to a k-NN classifier. The approach is detailed below.

Problem Setting. Let S = {(x¢, x:', xt_)}tT:1 be a sequence of triplet
constraints sampled from the data, where {x¢, x:', x;} € R4, and
x¢ (anchor) is similar to x:' (positive) but dissimilar to x; (negative).
The goal of online adaptive metric learning is to learn a model
F: R% — RY such that ||F(x¢) - F(x])ll2 < [[F(xt) = F(x7)|l2-
Given these parameters, the objective is to learn a metric model
with adaptive complexity while satisfying the constraints. The
complexity of F must be adaptive so that its hypothesis space is
automatically modified.

Overview. Consider a neural network with L hidden layers, where
the input layer and the hidden layer are connected to an indepen-
dent MEL. Each embedding layer learns a latent space where similar
instances are clustered and dissimilar instances are separated.

Figure 4 illustrates our ANN. Let Ep € {Eg, E1,E2,...,Er} de-
note the ¢'# metric model in OAML (i.e., the network branch from
the input layer to the £th MEL). The simplest OAML model Ey
represents a linear transformation from the input feature space to
the metric embedding space. A weight () € [0, 1] is assigned to
E,, measuring its importance in OAML.
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For a triplet constraint (x¢, x;", xt_) that arrives at time ¢, its

metric embedding f° ([)(x;f) generated by Ep is
f([)(x’:) = B0 ®)

where 0 = g(WORED), with ¢ > 1, £ € N, and hO = x}.
¢ denotes any anchor (xt), positive (x:'), or negative (x;’)
instance, and h(©) represents the activation of the £!! hidden layer.

Learned metric embedding f( )(x: ) is limited to a unit sphere (i.e.,

Here x

[If ([)(x;‘)| |2 = 1) to reduce the search space and accelerate training.

During the training phase, for every arriving triplet (x¢, x;", xt_),
we first retrieve the metric embedding f m(x’t") from the £ metric
model using Eq. 2. A local loss £ for E; is evaluated by calculating

the similarity and dissimilarity errors based on f w)(xl’f ). Thus, the
overall loss introduced by this triplet is given by

L
Loverall(xtvx:sxt_) = Z a([) : ~£(€)(xtvx:7xt_) (3
=0
Parameters ©©), ¢(©) and W(© are learned during the online

learning phase. The final optimization problem to solve in OAML
at time ¢ is therefore:

minimize L
0l0), WD), o0) overall @
subject to ||f(£)(x;k)||2 =1,V¢=0,...,L

We evaluate the similarity and dissimilarity errors using an adaptive-
bound triplet loss (ABTL) constraint [30] to estimate £ and update
parameters @)([), W and 0.

5 IMPLEMENTATION

We developed an implementation of DEEPDIG for 64-bit Linux (ker-
nel 3.19). It consists of two main components: (1) The monitoring
controller performs server monitoring and attack trace extraction
from decoys. It consists of about 350 lines of Node.js code, and
leverages tcpdump, editcap, and sysdig for network and system call
tracing and preprocessing. (2) The attack detection component is
implemented as two Python modules: the feature extraction mod-
ule, comprising about 1200 lines of code and feature generation;
and the classifier component, comprising 230 lines of code that
references the Weka [33] wrapper for LIBSVM [18]. The OAML
components comprise about 500 lines of Python code referencing
the PyTorch [65] library.

The source-code modifications required to honey-patch vulnera-
bilities in Apache HT TP, Bash, PHP, and OpenSSL consist of a mere
35 lines of C code added or changed in the original server code,
showing that the required deceptive capabilities can be added to
production-level web services with very little effort. (The forking
framework [4, 5] is fixed, and thus not included in this count.)

6 EVALUATION

A central goal of our research is to quantitatively measure the
impact of embedded deception on IDS accuracy. Our evaluation
approach therefore differs from works that seek to measure absolute
IDS accuracy, or that do not separate the impact of deception from
the rest of the detection process. We first present our evaluation
framework, which we harness to automatically generate training
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Figure 5: Web traffic generation and testing harness

and test datasets from real web traffic for our experiments. Then
we discuss our experimental setup and investigate the effects of
different attack classes and varying numbers of attack instances on
the predictive power and accuracy of the intrusion detection. Finally,
we assess the performance impact of the deception monitoring
mechanism that captures network packets and system events.

All experiments were performed on a 16-core host with 24 GB
RAM running 64-bit Ubuntu 16.04. Regular and honey-patched
servers were deployed as LXC containers [53] running atop the host
using the official Ubuntu container image. Red teaming validation
was performed on a similar environment deployed on AWS.

6.1 Experimental Framework

Figure 5 shows an overview of our evaluation framework, inspired
by related work [9, 13]. It streams encrypted legitimate and mali-
cious workloads (both simulated and real) onto a honey-patched
web server, resulting in labeled audit streams and attack traces
(collected at decoys) for training set generation. This strategy facil-
itates the reproducibility of our experiments while allowing for the
validation of our approach in a realistic setting.

Legitimate workload. In order to collect normal data, we used
both real user interactions with a web browser and automated
simulation of various user actions on the browser. For the real user
interaction, we monitored and recorded web traffic from users in a
local area network over a two-day period, resulting in more than
30GB of audit pcap data. The recorded sessions are replayed by our
framework and include users exhibiting normal browsing activities,
such as accessing social media websites, search engines, online
shopping websites, web email, video sharing, and news websites.

For the simulated interaction, normal traffic is created by au-
tomating complex user actions on a typical web application, leverag-
ing Selenium [67] to automate user interaction with a web browser
(e.g., clicking buttons, filling out forms, navigating a web page).
We generated web traffic for 12 different user activities (each re-
peated 200 times with varying data feeds), including web page
browsing, e-commerce website navigation, blog posting, and in-
teracting with a social media web application. The setup included
a CGI web application and a PHP-based Wordpress application
hosted on a monitored Apache web server. To enrich the set of user
activities, the Wordpress application was extended with Buddypress
and Woocommerce plugins for social media and e-commerce web
activities, respectively.
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To create realistic interactions with the web applications, our
framework feeds from online data sources, such as the BBC text
corpus [32], online text generators [60] for personally identifiable
information (e.g., usernames, passwords), and product names to
populate web forms. To ensure diversity, we statistically sampled
the data sources to obtain user input values and dynamically gener-
ated web content. For example, blog title and body are statistically
sampled from the BBC text corpus, while product names are picked
from the product names data source.

Attack workload. Attack traffic is generated based on real-world
vulnerabilities. Table 2 lists 22 exploits for nine well-advertised,
high-severity vulnerabilities. These include CVE-2014-0160 (Heart-
bleed), CVE-2014-6271 (Shellshock), CVE-2012-1823 (improper han-
dling of query strings by PHP in CGI mode), CVE-2011-3368 (im-
proper URL validation), CVE-2014-0224 (Change Cipher specifi-
cation attack), CVE2010-0740 (Malformed TLS record), CVE-2010-
1452 (Apache mod_cache vulnerabilty), CVE-2016-7054 (Buffer over-
flow in openssl with support for ChaCha20-Poly1305 cipher suite),
and CVE-2017-5941 (Node.js error handling vulnerability). In addi-
tion, nine attack variants exploiting CVE-2014-6271 (Shellshock)
were created to carry out different malicious activities (i.e., different
attack payloads), such as leaking password files, dropping malware,
and invoking bash shells on the remote server. These vulnerabilities
are important as attack vectors because they range from sensitive
data exfiltration to complete control and remote code execution.

Similarly, we generated attack traffic using CVE-2017-5941 as an
additional remote execution attack and executed 6 attack payloads.
The post-infection payloads executed tasks such as tool acquisition
from remote host, basic environment reconnaissance (e.g., active
scanning with Nmap, passive inspection of system logs), remote
password file access, root certificate exfiltration, and attempts at
gaining access to other machines in the network.

Red teaming. To validate our results, we conducted a small-scale
penetration testing experiment using a red team composed of grad-
uate students in cyber security who were tasked with performing
reconnaissance and attacking a collection of monitored web server
instances deployed on AWS. The deployment comprised unpatched
and honey-patched web servers exposing (real or apparent) Shell-
shock vulnerabilities. Special care was taken not to open unpatched
software to the broad Internet. The attack team was composed
by 10 students with basic (e.g., script-kidding) to advanced skills
(e.g., penetration testing, reverse engineering) in offensive security.
After a preliminary leveling and preparation, each student spent an
average of 45 minutes completing the exercise on their own time.
Students were not permitted to repeat any exercise more than once.
Network and system data was collected over a span of 3 days and
used as testing and control data.

After successfully completing the initial infection, observed data
show that students performed different malicious activities, such as
searching for password files, printing user sessions on the system,
listing network interfaces, injecting boot loaders, and installing root
kits. For example, collected attack samples included modification of
rc.local to launch a listening process in the background at boot
time, network traffic redirection through iptables, file exfiltration
over the network, file deletions and access permission modification,
and cleanup of event logs and shell history to cover attack paths. No
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Table 2: Summary of attack workload

# Attack Type Description Software

1 CVE-2014-0160  Information leak Openssl

2 CVE-2012-1823  System remote hijack PHP

3 CVE-2011-3368  Port scanning Apache
4-10  CVE-2014-6271 System hijack (7 variants) Bash

11 CVE-2014-6271  Remote Password file read Bash

12 CVE-2014-6271  Remote root directory read Bash

13 CVE-2014-0224
14 CVE-2010-0740

Session hijack and information leak ~ Openssl
DoS via NULL pointer dereference ~ Openssl
15 CVE-2010-1452  DosS via request that lacks a path Apache
16 CVE-2016-7054  DoS via heap buffer overflow Openssl
17-22  CVE-2017-5941%  System hijack (6 variants) Node.js

*used for testing only, as n-day vulnerability.

students were able to distinguish honey-patched from unpatched
web servers during the experiment.

Noise injection. Rather than testing with existing, publicly avail-
able intrusion datasets (which are inappropriate evaluations of
DEEPDIG, since they lack concept-relevance for deception and
are generally stripped of raw packet data), our evaluation inter-
leaves attack and normal traffic following prior work on defense-in-
depth [13], and injects benign payloads as data into attack packets
to mimic evasive attack behavior. The generated traffic contains
attack payloads against recent CVEs for which we created and
tested realistic exploits, and our framework automatically extracts
labeled features from the monitoring network and system traces to
(re-)train the classifiers.

Dataset. Web traffic was generated from a separate host to avoid
interference with the test bed server. To account for operational
and environmental differences, our framework simulated different
workload profiles (according to time of day), against various target
configurations (including different background processes and server
workloads), and network settings, such as TCP congestion controls.
In total, we generated 42 GB of (uncompressed) network packets and
system events over a period of three weeks. After feature extraction,
the training data comprised 1800 normal instances and 1600 attack
instances. Monitoring or testing data consisted of 3400 normal and
attack instances gathered at unpatched web servers, where the
distribution of normal and attack instances varies per experiment.

Detection accuracy. Using this dataset, we trained the classifiers
presented in §4 and assessed their individual performance against
test streams containing both normal and attack workloads. In the
experiments, we measured the true positive rate (tpr), where true
positive represents the number of actual attack instances that are
classified as attacks; false positive rate (fpr), where false positive
represents the number of actual benign instances classified as at-
tacks; accuracy (acc); and F, score of the classifier, where the F,
score is interpreted as the weighted average of the precision and
recall, reaching its best value at 1 and worst at 0. We also calculated
a base detection rate (bdr) to estimate the success of intrusion detec-
tion (§6.3). An RBF kernel with Cost = 1.3x 10° and y = 1.9 x 107°
was used for SVM [62]. OAML employed a ReLU network with
n=200, L=1, and k=5 (defined in §4.3).

To evaluate the accuracy of intrusion detection, we verified each
classifier after incrementally training it with increasing numbers
of attack classes. Each class consists of 100 distinct variants of a
single exploit, as described in §6.1, and an n-class model is one
trained with up to n attack classes. For example, a 3-class model is
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Table 3: Detection rates (%) for scripted attack scenarios (P4 ~ 1%)
compared with results from non-deceptive training (parenthesized)
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Table 4: Detection rates (%) for red team evaluation (P4 ~ 1%) com-
pared with results from non-deceptive training (parenthesized)

Classifier tpr for acc F, bdr

Classifier tpr for acc F, bdr

Bi-Di OML 91.00(+13.2) 0.01(-41.2) 91.14(+22.2) 90.00(+30.3) 98.92(+97.1)
N-Gram OML 65.00 (-19.9) 0.01 (-5.1) 88.58 (+0.0) 80.00 (-8.4) 98.50(+84.0)

Bi-Di SVM  79.00 (+1.2) 0.78(-40.5) 89.88(+20.9) 78.69(+19.0) 50.57 (+36.1)
N-Gram SVM 92.42 (+7.5) 0.01 (-51) 96.89 (+8.3) 93.84 (+5.5) 99.05 (+84.6)
Ens-SVM 93.63 (+8.8) 0.01 (-5.1) 97.00 (+8.4) 94.89 (+6.5 99.06 (+84.6)

Bi-Di-OML  94.00 (-40) 0.39(-52.6) 93.10(+23.1) 94.00 (+7.0) 70.88(+69.1)
Ngram-OML 99.00 (+1.0) 0.01(-50.0) 99.90(+26.9) 94.00 (+5.0) 99.01(+97.1)

Bi-Di-SVM  99.56 (+1.6) 1.15(-51.9) 99.19(+29.2) 99.39(+12.4) 46.65 (+44.8)
N-Gram-SVM 92.25 (-6.75) 0.01(-50.0) 96.35(+23.4) 93.70 (+4.7) 98.94(+97.0)
Ens-SVM 99.56 (+0.56) 0.01(-50.0) 99.19(+26.2) 99.39 (+10.4) 99.02 (+97.1)
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Figure 6: Ens-SVM classification tpr for 0-16 attack classes for train-
ing on decoy data and testing on unpatched server data.

trained with 300 instances from 3 different attack classes. In each
run, the classifier is trained with 1800 normal instances and 100 * n
attack instances with n € [1, 16] attack classes sourced from decoys.
Each run executes ten experiments where the attacks are shuffled
in a cross-validation-like fashion, and the average is reported. This
ensures training is not biased toward any specific attacks.

6.2 Experimental Results

Table 3 measures the accuracy of classifiers that were trained using
deceptive servers, and then tested on attacks against unpatched
servers. Attacks are uniformly distributed across all synthetic attack
classes and variants described in §6.1. Each result is compared (in
parentheses) against the same experiment performed without any
deception. The results show that leveraging deception yields an
8-22% increase in classification accuracy, with an 8-20% increase
in true positives and a 5-41% reduction in false positives. Env-SVM
achieves 97% accuracy with almost no false positives (0.01%).

These significant gains demonstrate that the detection models of
each classifier learned from deception-enhanced data generalize be-
yond data collected in decoys. This showcases the classifier’s ability
to detect previously unseen attack variants. DEEPDIG thus enables
administrators to add an additional level of protection to their en-
tire network, including hosts that cannot be promptly patched, via
the adoption of a honey-patching methodology.

Figure 6 shows that as the number of training attack classes
(which are proportional to the number of vulnerabilities honey-
patched) increases, a steep improvement in the true positive rate
is observed, reaching an average above 93% for Ens-SVM, while
average false positive rate in all experiments remains low (< 1%).
This demonstrates that deception has a feature-enhancing effect—
the IDS learns from the prolonged adversarial interactions to detect
more attacks.
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Figure 7: False positive rates for various training set sizes

Testing on an “unknown” vulnerability. We also measured our
approach’s ability to detect a previously unseen, unpatched remote
code execution exploit (CVE-2017-5941) carrying attack payloads
(classes 17-22) resembling the payloads that have been used to ex-
ploit honey-patched vulnerabilities (CVE-2014-6271). In this exper-
iment, CVE-2017-5941 is used as an n-day vulnerability for which
no patch has been applied. The resulting 98.6-99.8% tpr and 0.01—
0.67% fpr show that crook-sourcing helps the classifier learn attack
patterns unavailable at initial deployment, but revealed by deceived
adversaries during decoy interactions, to learn exploits for which
the classifier was not pre-trained.

Red teaming validation. Table 4 summarizes detection accura-
cies against the red team. In this experiment, we incrementally
trained our previously trained model with new attack instances col-
lected from live decoys, and used it to detect human attacks against
unpatched servers. The accuracy rates are much higher against
human opponents than against the synthetic attacks, indicating
that our synthetic data constitutes a challenging test. This may
be in part because replicating the high diversity of the synthetic
attacks would require an extremely large-scale human study.

False alarms. Figure 7 plots the false positive rates for classifiers
that have undergone 30 incremental training iterations, each with
1-30 normal/attack instances per class. With just a few attack in-
stances (~ 5 per attack class), the false positive rates drop to almost
zero, demonstrating that DEEPDIG’s continuous feeding back of
attack samples into classifiers greatly reduces false alarms.

6.3 Base Detection Analysis

In this section we measure the success of DEEPDIG in detecting
intrusions in the realistic scenario where attacks are a small frac-
tion of the interactions. Although risk-level attribution for cyber
attacks is difficult to quantify in general, we use the results of a prior
study [25] to approximate the probability of attack occurrence for
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Figure 8: DEEPDIG performance overhead measured in average
round-trip times (workload ~ 500 req/s)

the specific scenario of targeted attacks against business and com-
mercial organizations. The study’s model assumes a determined
attacker leveraging one or more exploits of known vulnerabilities
to penetrate a typical organization’s internal network, and approxi-
mates the prior of a directed attack to P4 = 1% (based on real-world
threat statistics).

To estimate the success of intrusion detection, we use a base
detection rate (bdr) [40], expressed using the Bayes theorem:

P = PO s
(A) P(D|A) + P(~A) P(D|=A)]
where A and D are random variables denoting the occurrence of
a targeted attack and the detection of an attack by the classifier,
respectively. We use tpr and fpr as approximations of P(D|A) and
P(D|-A), respectively.

The final columns of Tables 3—4 present the bdr for each classifier,
assuming P(A) = P4. The parenthesized comparisons show how
our approach overcomes a significant practical problem in intrusion
detection research: Despite exhibiting high accuracy, typical IDSes
are rendered ineffective when confronted with their extremely
low base detection rates. This is in part due to their inability to
eliminate false positives in operational contexts. In contrast, the
fpr-reducing properties of deception-enhanced defense facilitate
much more effective detection of intrusions in realistic settings,
with bdr increases of up to 97%.

6.4 Monitoring Performance

To assess the performance overhead of DEEPDIG’s monitoring ca-
pabilities, we used ab (Apache HTTP server benchmarking tool)
to create a massive user workload (more than 5,000 requests in
10 threads) against two web server containers, one deployed with
network and system call monitoring and another unmonitored.
Figure 8 shows the results, where web server response times are
ordered ascendingly. Our measurements show average overheads of
0.2X, 0.4X, and 0.7x for the first 100, 250, and 500 requests, respec-
tively, which is expected given the heavy workload profile imposed
on the server. Since server computation accounts for only about 10%
of overall web site response delay in practice [70], this corresponds
to observable overheads of about 2%, 4%, and 7% (respectively).
While such overhead characterizes feasibility, it is irrelevant to
deception because unpatched, patched, and honey-patched servers
are all slowed equally by the monitoring activity. The overhead
therefore does not reveal which apparent vulnerabilities in a given
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server instance are genuine patching lapses and which are de-
ceptions, and it does not distinguish honey-patched servers from
servers that are slowed by any number of other factors (e.g., fewer
computational resources).

7 DISCUSSION

Role of deception. Our approach facilitates supervised learning,
whose widespread use in the domain of intrusion detection has
been impeded by many challenges involving the manual labeling
of attacks and the extraction of security-relevant features [17, 69].
Results demonstrate that even short-term deceptive responses to
cyberattacks can significantly ameliorate both of these challenges.
Just a few strategically chosen honey-patched vulnerabilities accom-
panied by an equally small number of honey-patched applications
provide a machine learning-based IDS sufficient data to perform
substantially more accurate intrusion detection, thereby enhancing
the security of the entire network. This suggests that deception can
and should play a more significant role in machine learning-based
IDS deployments.

Generalization. The results presented in §6 show that our ap-
proach substantially improves the accuracy of intrusion detection,
reducing false alarms to much more practical levels. This is es-
tablished experimentally with moderate- to large-scale synthetic
attacks and a small-scale red teaming study. Future work should
explore larger numbers of attack classes and larger (e.g., industrial
scale) datasets to simulate threats to high-profile targets. Due to
the high-dimensional nature of the collected data, we chose OAML
and SVM in Bi-Di and N-Gram. However, our approach is agnostic
to the feature set and classification model; therefore, future work
should study the effectiveness of deception for enhancing a variety
of learning frameworks.

An avenue of future work is to leverage system call arguments in
addition to the features we collected. A common technique is to use
pairwise similarity between arguments (as sequences) of different
streams [17], and then implement a k-NN (k-Nearest Neighbors)
algorithm with longest common subsequence (LCS) as its distance
metric. Generally, packet- and system-level data are very diverse
and contain other discriminating features that should be explored.

Online training. The flood of data that is continuously streamed
into a typical IDS demands methods that support fast, online clas-
sification. Prior approaches update the classification model incre-
mentally using training batches consisting of one or more training
instances. However, this strategy necessitates frequently re-training
the classifier, and requires a significant number of instances per
training. Future research should investigate more appropriate con-
ditions for re-training the model. Change point detection (CPD) [34]
is one promising approach to determine the optimal re-training
predicate, based on a dynamic sliding window that tracks significant
changes in the incoming data, and therefore resists concept-drift
failures.

Class imbalance. Standard concept-learning IDSes are frequently
challenged with imbalanced datasets [35]. Such class imbalance
problems arise when benign and attack classes are not equally
represented in the training data, since machine learning algorithms
tend to misclassify minority classes. To mitigate the effects of class
imbalance, sampling techniques have been proposed [20], but they
often discard useful data (in the case of under-sampling), or lead to



ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

poor generalizations (in the case of oversampling). This scarcity of
realistic, balanced datasets has hindered the applicability of machine
learning approaches for web intrusion detection. By feeding back
labeled attack traces into the classifier, DEEPDIG alleviates this data
drought and enables the generation of adequate, balanced datasets
for classification-based intrusion detection.

Intrusion detection datasets. One of the major challenges in
evaluating intrusion detection systems is the dearth of publicly
available datasets, which is often aggravated by privacy and intel-
lectual property considerations. To mitigate this problem, security
researchers often resort to synthetic dataset generation, which af-
fords the opportunity to design test sets that validate a wide range of
requirements. Nonetheless, a well-recognized challenge in custom
dataset generation is how to capture the multitude of variations and
features manifested in real-world scenarios [11]. Our evaluation
approach builds on recent breakthroughs in dataset generation for
IDS evaluation [13] to create statistically representative workloads
that resemble realistic web traffic, thereby affording the ability to
perform a meaningful evaluation of IDS frameworks.

Establishing a straight comparison of our results to prior work
is frustrated by the fact that the majority of machine learning-
based intrusion detection techniques are still tested on extremely
old datasets [1, 69], and approaches that account for encrypted
traffic are scarce [44]. For instance, recently-proposed SVM-based
approaches for network intrusion detection have reported true
positive rates in the order of 92% for the DARPA/KDD datasets,
with false positive rates averaging 8.2% [54, 82]. Using the model
discussed in §6.3, this corresponds to an approximate base detection
rate of only 11%, in contrast to 99.06% estimated for our approach.
However, the assumptions made by DARPA/KDD do not reflect the
contemporary attack protocols and recent vulnerabilities targeted
in our evaluation, so this might not be a fair comparison. Future
work should consider reevaluating these prior approaches using
updated datasets reflective of modern attacks, for reproducible
comparisons.

8 RELATED WORK

8.1 ML-based Intrusion Detection

Machine learning-based IDSes (cf,, [17, 31, 57, 58, 63]) find patterns
that do not conform to expected system behavior, and are typically
classified into host-based and network-based approaches.
Host-based detectors recognize intrusions in the form of anoma-
lous system call trace sequences, in which co-occurrence of events
is key to characterizing malicious behavior. For example, malware
activity and privilege escalation often manifest specific system call
patterns [17]. Seminal work in this area has analogized intrusion
detection via statistical profiling of system events to the human
immune system [29, 36]. This has been followed by a number of
related approaches using histograms to construct profiles of nor-
mal behavior [55]. Another frequently-used approach employs a
sliding window classifier to map sequences of events into individual
output values [21, 78], converting sequential learning into a classic
machine learning problem. More recently, long call sequences have
been studied to detect attacks buried in long execution paths [68].
Network-based approaches detect intrusions using network data.
Since such systems are typically deployed at the network perimeter,
they are designed to find patterns resulting from attacks launched
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by external threats, such as attempted disruption or unauthorized
access [11]. Network intrusion detection has been extensively stud-
ied in the literature (cf., [1, 11]). Major approaches can be grouped
into classification-based (e.g., SVM [28], [7], Bayesian network [45]),
information-theoretic [51], and statistical [46—48] techniques.

Network-based intrusion detection systems can monitor a large
number of hosts at relatively low cost, but they are usually opaque
to local or encrypted attacks. On the other hand, intrusion detection
systems operating at the host level have complete visibility of mali-
cious events, despite encrypted network payloads and obfuscation
mechanisms [43]. Our approach therefore complements existing
techniques and incorporates host- and network-based features to
offer protective capabilities that can resist attacker evasion strate-
gies and detect malicious activity bound to different layers of the
software stack.

Another related area of research is web-based malware detection
that identifies drive-by-download attacks using static analysis, dy-
namic analysis, and machine learning [16, 42]. In addition, other
studies focus on flow-based malware detection by extracting fea-
tures from proxy-logs and using machine learning [10].

8.2 Cyber-Deception in Intrusion Detection

Honeypots are information systems resources conceived to attract,
detect, and gather attack information [71]. They are designed such
that any interaction with a honeypot is likely to be malicious.
Shadow honeypots [3] are a hybrid approach in which a front-
end anomaly detection system forwards suspicious requests to a
back-end instrumented copy of the target application, which vali-
dates the anomaly prediction and improves the anomaly detector’s
heuristics through feedback. Although the target and instrumented
programs may share similar states for detection purposes, shadow
honeypots make no effort to deceive attackers into thinking the
attack was successful—attack detection and the decision of decoy-
ing attacker sessions are driven solely by the network anomaly
detection component.

8.3 Feature Extraction for Intrusion Detection

A variety of feature extraction and classification techniques have
been proposed to perform host- and network-based anomaly detec-
tion [56]. Extracting features from encrypted network packets has
been intensively studied in the domain of website fingerprinting,
where attackers attempt to discern which websites are visited by
victims. Users typically use anonymous networks, such as Tor, to
hide their destination websites [77]. However, attackers can often
predict destinations by training classifiers directly on encrypted
packets (e.g., packet headers only). Relevant features typically in-
clude packet length and direction, summarized as a histogram fea-
ture vector. HTML markers, percentage of incoming and outgoing
packets, bursts, bandwidth, and website upload time have also been
used [26, 62]. Packet-word vector approaches additionally leverage
natural language processing and vector space models to convert
packets to word features for improved classification [2].

Bi-Di leverages packet and uni-burst data and introduces bi-
directional bursting features for better classification of network
streams. On unencrypted data, host-based systems have addition-
ally extracted features from co-occurrences and sequences of sys-
tem events, such as system calls [15, 55]. DEEPDIG uses a hybrid
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scheme that combines both host- and network-based approaches
via a modified ensemble technique.

9 CONCLUSION

This paper introduced, implemented, and evaluated a new approach
for enhancing web intrusion detection systems with threat data
sourced from deceptive, application-layer, software traps. Unlike
conventional machine learning-based detection approaches, DEEP-
Di1G incrementally builds models of legitimate and malicious behav-
ior based on audit streams and traces collected from these traps.
This augments the IDS with inexpensive and automatic security-
relevant feature extraction capabilities. These capabilities require
no additional developer effort apart from routine patching activities.
This results in an effortless labeling of the data and supports a new
generation of higher-accuracy detection models.
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