Knowing Your Enemy: Understanding and Detecting Malicious Web Advertising

Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang

In Proc. ACM CCS, 2012

Dr. Kevin W. Hamlen
Language-based Security
Loading a Web Advertisement

Client (web browser) → Page Publisher

URL Request
Loading a Web Advertisement

Client
(web browser)

Page Publisher

web page
Loading a Web Advertisement

Client (web browser) → Ad Network → Page Publisher

ad request
Loading a Web Advertisement

Client (web browser)

Ad Network

Page Publisher

ad tag
Loading a Web Advertisement

Client (web browser) → tag → URL request → Ad Server → Ad Network → Page Publisher
Loading a Web Advertisement
Ad Syndication

Client (web browser) connected to Ad Syndicator via tag. The Ad Network provides the ad content.
Ad Syndication

Client (web browser)

Page Publisher

Ad Network

Ad Syndicator

Ad Server

URL request
Ad Syndication
Malicious Advertisements

• Various goals
 • Click fraud
 • Accrue unmerited ad revenue
 • pay-per-impression – advertisers pay by number of URL requests for their ads
 • pay-per-click – advertisers pay by number of people who click on their ads
 • malvertisements trick browsers into sending URL requests that are never displayed
 • malvertisements redirect clicks to ads, generating false clicks
 • Scams / Phishing
 • Collect private user information (credit card info, usernames/passwords, etc.)
 • Impersonate legitimate sites (e.g., your bank)
 • Harvested info used in other criminal activities (identity theft, spam, etc.)
 • Drive-by-download
 • Infect client machine with malware
 • Exploit browser vulnerabilities
 • Infections facilitate other attacks (botnet zombies, ransomware, all of the above attacks)
Two Steps of Malvertising

• Enablers
 • ad syndicators
 • malicious ad tags
 • malicious ad networks
 • malicious redirectors
 • malicious ad servers

• Payloads
 • the actual malicious code that gets delivered
 • the actual malicious sites to which the client is ultimately redirected

• This paper: Measure and detect the *enabler* half of this picture.
 • Payload detection based on stock products
 • Google Safe-Browsing and Microsoft Forefront
Example Fake-AV Malvertisement Campaign

• Drive-by-download attack
 • victim browsers redirected to fake-AV site
 • fake-AV malware pretends to detect viruses and sells fake fixes

• Impact
 • infected at least 65 publisher pages in summer 2011
 • infected pages include top Alexa sites (e.g., freeonlinegames.com)

• Delivery included five levels of indirection:
Attacker Gambits

• Domain name impersonation
 • adsloader.com ≠ adloader.com

• Subversion of legitimate (often trusted) ad networks
 • GoogleServices, DoubleClick
 • over 24 ad networks total (!)

• Conditional redirection (cloaking)
 • adsloader.com redirects visitors at most once (per IP)
 • only IE agents redirected
 • empty referrers not redirected

• Honeynet evasion
 • enginedelivery withholds malicious content from Amazon EC2 IPs

• Conditional payload delivery
 • only IE6 received Fake-AV solicitation from eafive.com

• Domain and payload rotation
 • 16 different redirectors
 • 84 different fake-AV scanners
Measurement Study

• Crawl 90,000 web sites continuously for ~3 months (summer ’11)
• Infer redirection chains
 • HTML code (attributes containing URLs)
 • HTTP redirection (302-responses)
 • JavaScript net accesses (mine script texts for domain names of requests)
 • 24.8M chains and 21.9M URLs collected
• Identify malicious nodes
 • detection based on stock products (Google Safe Browsing, Microsoft Forefront)
 • Paths containing malicious nodes are malicious paths.
 • Descendants of malicious nodes might not be malicious!
Distinguishing Features of Malicious Nodes

- Node roles: known publisher / known ad-node / unknown
 - non-malicious paths: 93.1% known
 - malicious paths: 8.4% known
- URL patterns (Example: /showthread.php?t=12345678)
- Short domain name life expectancies
- Short, diverse associations w/publishers
Syndication and Redirection Cloaking

• Syndication Rates
 • 64% of all paths involve syndication (multiple ad networks)
 • 86 well-known networks compromised
 • 92% of DoubleClick-facilitated attacks are via syndicated paths

• Redirection cloaking
 • Maladvertisement paths tend to be longer due to redirection cloaking
 • Early malicious redirectors tend to be involved in many attacks
From Measurement to Detection

• Goal: Use path statistics to reliably detect malvertisements

• Major finding:
 • Blindly applying heuristics to full redirection paths doesn’t work well.
 • too slow, difficult to implement
 • too many false positives
 • But heuristically identifying short, suspicious path segments works very well.
 • faster, easier to implement
 • malicious nodes tend to be clustered along the path
 • node roles in the segments are key
MadTracer Architecture
MadTracer Detection Results

<table>
<thead>
<tr>
<th></th>
<th>#MadTracer</th>
<th>#S&F</th>
<th>#FP</th>
<th>#S&F-MadTracer</th>
<th>#MadTracer-S&F</th>
<th>FD(%)</th>
<th>New findings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scam pages</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>drive-by-download pages</td>
<td>216</td>
<td>104</td>
<td>20</td>
<td>8</td>
<td>120</td>
<td>9.26%</td>
<td>51.85%</td>
</tr>
<tr>
<td>click-fraud pages</td>
<td>89</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>83</td>
<td>14.61%</td>
<td>92.13%</td>
</tr>
<tr>
<td>all pages</td>
<td>291</td>
<td>111</td>
<td>32</td>
<td>9</td>
<td>189</td>
<td>11.00%</td>
<td>61.86%</td>
</tr>
<tr>
<td>scam domain-paths</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>drive-by-download domain-paths</td>
<td>627</td>
<td>216</td>
<td>87</td>
<td>20</td>
<td>431</td>
<td>13.88%</td>
<td>65.55%</td>
</tr>
<tr>
<td>click-fraud domain-paths</td>
<td>3422</td>
<td>42</td>
<td>125</td>
<td>26</td>
<td>3406</td>
<td>3.65%</td>
<td>98.77%</td>
</tr>
<tr>
<td>all domain-paths</td>
<td>4072</td>
<td>258</td>
<td>212</td>
<td>46</td>
<td>3860</td>
<td>5.21%</td>
<td>93.66%</td>
</tr>
</tbody>
</table>
Conclusions

• Malvertising is a significant threat to the internet revenue model
 • much of the internet funded by advertising (billion-dollar industry)
 • at least 1% of top sites fell victim to malvertising campaigns in 2011

• Simple detection approaches don’t work
 • IP black-listing fails because malicious campaigns rotate servers too quickly.
 • Honeypotting is frustrated by highly selective attacks.
 • Full referrer paths of many legitimate ads display “suspicious” characteristics (long path
 lengths, unknown nodes, short domain lifetimes, etc.). This can result in high false positive
 rates.

• But detecting short, malicious sub-paths works well
 • Malicious nodes operate in close proximity on a malicious path.
 • Possible to identify node roles in these sub-paths.

• Open problem: It’s still an arms race.
 • As these heuristics catch on, malvertisers will adopt new topologies to counter them.
 • The race will continue as defenders compensate with new heuristics.
Discussion Questions

• Is there a principled answer to the malvertising problem?
 • language-based security?
 • formal methods?
 • browser security?
 • script analysis?

• What about economic/financial solutions?
 • better revenue models?
 • incentive schemes?