Exercise 1. Consider the following recursively defined function \(f : \mathbb{Z} \rightarrow \mathbb{Z} \).

\[
f(x) = (x = 0 \rightarrow 0 \mid x > 0 \rightarrow 2 - f(1 - x) \mid x < 0 \rightarrow f(-x))
\]

Find a closed-form definition of \(f \) and prove your answer.

To find a closed-form definition (i.e., one that is non-recursive and does not use \(\text{fix} \)), it is often useful to define functional \(F \) and then construct the graph of the least fixed point of \(F \). Recall that functional \(F \) is defined by

\[
F(g) = \lambda x . (x = 0 \rightarrow 0 \mid x > 0 \rightarrow 2 - g(1 - x) \mid x < 0 \rightarrow g(-x))
\]

The graph of the least fixed point of \(F \) is the set of input-output pairs that comprises \(\text{fix}(F) \). We can construct it incrementally by applying \(F \) to itself starting with \(\perp \):

\[
\begin{align*}
F^0(\perp) &= \{\} \\
F^1(\perp) &= \{(0,0)\} \\
F^2(\perp) &= \{(0,0), (1,2)\} \\
F^3(\perp) &= \{(-1,2), (0,0), (1,2)\} \\
F^4(\perp) &= \{(-1,2), (0,0), (1,2), (2,0)\} \\
F^5(\perp) &= \{(-2,0), (-1,2), (0,0), (1,2), (2,0)\} \\
F^6(\perp) &= \{(-2,0), (-1,2), (0,0), (1,2), (2,0), (3,2)\} \\
F^7(\perp) &= \{(-3,2), (-2,0), (-1,2), (0,0), (1,2), (2,0), (3,2)\}
\end{align*}
\]

As you can see, eventually a pattern starts to emerge. Function \(f \) appears to return 2 on odd inputs and 0 on even inputs. Thus, we conjecture that \(f = h \) where \(h \) is the following closed-form definition:

\[
h(x) = \begin{cases}
2 & \text{if } x \text{ is odd} \\
0 & \text{if } x \text{ is even}
\end{cases}
\]

This does not constitute a proof; it is merely a conjecture. We can prove the \(f \subseteq h \) half of the conjecture using fixed point induction.

Proof. Define property \(P \) by \(P(g) \equiv \forall x \in g^\rightarrow . g(x) = h(x) \). We wish to prove \(P(f) \). Define functional \(F \) as above, and observe that \(\text{fix}(F) = f \) by the definition of recursion. Thus, to prove \(P(f) \) it suffices to prove \(P(\text{fix}(F)) \) by fixed-point induction.
Base Case: \(P(\bot) \) holds vacuously.

Inductive Hypothesis: Assume that \(P(g) \) holds for some arbitrary function \(g \). That is, assume that \(\forall x \in g^{-} \cdot g(x) = h(x) \).

Inductive Case: We will prove that \(P(F(g)) \) holds. Let \(x \in F(g)^{-} \) be given. Looking at the definition of \(F \), there are three cases to consider:

Case 1: Suppose \(x = 0 \). Then by definition of \(F \), \(F(g)(x) = 0 = h(x) \).

Case 2: Suppose \(x > 0 \). Then by definition of \(F \), \(F(g)(x) = 2 - g(1 - x) \). By inductive hypothesis, \(g(1 - x) = 2 \) if \(1 - x \) is odd and \(0 \) if \(1 - x \) is even. If \(x \) is odd then \(1 - x \) is even, so \(g(1 - x) = 0 \); thus \(2 - g(1 - x) = 2 = h(x) \). If \(x \) is even then \(1 - x \) is odd, so \(g(1 - x) = 2 \); thus \(2 - g(1 - x) = 0 = h(x) \). Either way, \(F(g)(x) = 2 - g(1 - x) = h(x) \).

Case 3: Suppose \(x < 0 \). Then by definition of \(F \), \(F(g)(x) = g(-x) \). By inductive hypothesis, \(g(-x) = 2 \) if \(-x \) is odd and \(0 \) if \(-x \) is even. Since \(-x\) has the same parity as \(x \), it follows that \(F(g)(x) = 2 \) if \(x \) is odd and \(0 \) if \(x \) is even. Hence, \(F(g)(x) = h(x) \).

Functions of multiple arguments can be treated as functions of a single pair argument.

Exercise 2. Consider the following recursively defined function \(f : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \).

\[
f(x, y) = (x = 0 \to y) \ | \ y = 0 \to x \ | \ x, y > 0 \to f(x - 1, y - 1) + 1
\]

Prove that \(f \subseteq \text{max} \).

Proof. Define property \(P \) by \(P(g) \equiv \forall (x, y) \in g^{-} \cdot g(x, y) = \text{max}(x, y) \). We wish to prove \(P(f) \).

Define functional \(F \) in the usual way:

\[
F(g) = \lambda(x, y).\ (x = 0 \to y) \ | \ y = 0 \to x \ | \ x, y > 0 \to g(x - 1, y - 1) + 1
\]

To prove \(P(f) \) it suffices to prove \(P(\text{fix}(F)) \) by fixed-point induction.

Base Case: \(P(\bot) \) holds vacuously.

Inductive Hypothesis: Assume that \(P(g) \) holds for some arbitrary function \(g \). We will prove that \(P(F(g)) \) holds. Let \((x, y) \in F(g)^{-} \) be given.

Case 1: Suppose \(x = 0 \). Then by definition of \(F \), \(F(g)(x, y) = y = \text{max}(x, y) \).

Case 2: Suppose \(y = 0 \). Then by definition of \(F \), \(F(g)(x, y) = x = \text{max}(x, y) \).

Case 3: Suppose \(x, y > 0 \). Then by definition of \(F \), \(F(g)(x, y) = g(x - 1, y - 1) + 1 \). By inductive hypothesis, \(F(g)(x) = \text{max}(x - 1, y - 1) + 1 \). If \(x \geq y \) then \(\text{max}(x - 1, y - 1) = x - 1 \), so \(F(g)(x, y) = x - 1 + 1 = x \). If \(x < y \) then \(\text{max}(x - 1, y - 1) = y - 1 \), so \(F(g)(x, y) = y - 1 + 1 = y \). In either case \(F(g)(x, y) = \text{max}(x, y) \).