CS 6371 Advanced Programming Languages SAMPLE
SPRING 2014 MIDTERM EXAM

Write your name at the top of this exam paper and turn it in as the front page of your submission.
You may take a single, two-sided sheet of notes with you into the exam. All other books or notes
must remain closed throughout the exam. You will have the duration of the class period to complete
the exam; all papers must be turned in by 2:15pm. Good luck!

(1) A number can be encoded as a list of digits. For example, the list [1;0;2;4] encodes the
number 1024 in base-10, and the list [15;15] encodes OxFF=255 in base-16. In this problem
you will implement OCaml functions that convert between integers and digit lists. Do not use
any List library functions in your solutions except that you may use List.fold left if you
wish. In case you need them, the OCaml integer-division and integer-modulo operators are
(x/y) and (x mod y), respectively.

(a) (7 pts) Implement a tail-recursive OCaml function (digitize b n) that converts an
integer n into a base-b digit list. You may assume that b > 2 and n > 0.

(b) (6 pts) Implement a tail-recursive OCaml function (undigitize b dl) that converts
a base-b digit list d1 to an integer. You may assume that b > 2 and that no elements of
dl are less than 0 or greater than b — 1.

(2) Consider the following extension to IMP, which defines the syntax and large-step semantics of
a new command called run:

c¢u=...| run(a,c)

(a,0) I n n>1 (¢;run(n-1,c¢),0) | o’

(run(a,c),o) | o’

(a,o) I n n<0

(run(a,c),o) || o

(a) (4 pts) Explain in words what the run command does.
(b) (13 pts) Prove that if (run(1,c¢),o) | o then (¢,0) | o’

(3) (5 pts) Write small-step operational semantic rules for run that are equivalent to the large-step
rules given above.

(4) Consider the following recursive definition of function f:
f(@)= (=100 -0 | 2>100 — f(z — 1)+ 1 | 2<100 = f(z+1) + 1)

(a) (1 pt) Define a non-recursive functional F' whose least fixed point is f.
(b) (4 pts) Give a closed-form function definition h such that h = f.
(c) (15 pts) Prove by fixed point induction that h = fiz(F).



Solutions

(1) (a) let digitize b n
let rec £ dln
in £ [] n;;

if n<=0 then dl else f ((n mod b)::d1l) (n/b)

List.fold_left (fun a d -> ax*b+d) O;;

(b) let undigitize b

(2) (a) The run(a,c) command first evaluates a. If the resulting integer n is zero or less, nothing
happens. Otherwise command c is executed n times consecutively.

(b) Any derivation of (run(1,c),o) | ¢/ must have the following form:

<1a02> ‘U 1 <1,0‘2> ‘U 1

(16)
D <1_170-2>U’0 0§061)
(c,o) |} o9 (run(1-1,¢),09) | o ) (
(Lo) 1 1>1 <c;run(1—1,c),a>lla’(60) @

(run(1,¢),0) | o

Observe that rule (61) in the above derivation requires that oo = ¢’. Therefore the above
derivation includes a sub-derivation D of judgment (¢, o) |} o’

(3) Here is one possible answer:

(a,0) = (d’,0) n>1
(run(a,c), o) = (run(d,c),o’) (run(n,c),o) =, (¢;run(n-1,c¢),0)
n <0

(run(n,c),o) —, (skip, o)

(4) (a) F(g) =Az.(=100 -0 | >100 = g(z — 1) +1 | <100 — g(z + 1) + 1)
(b) h(x) = |z — 100
(c) Proof. Define proposition P(g) = Vz € ¢ . g(xz) = |z — 100|. We wish to prove that
P(fiz(F)) holds.
Base Case: P(L) holds vacuously.
Inductive Case: As the inductive hypothesis, assume that P(g) holds. We must prove
that P(F(g)) holds. Let z € F(g) be given.
Case 1: Suppose z = 100. Then by definition of F, F(g)(x) =0 = |z — 100|.
Case 2: Suppose z > 100. Then by definition of F', F(g)(z) = g(z — 1) + 1. By
inductive hypothesis, g(x — 1) = |x — 1 —100|. Since xz > 100, |x —1 —100| +1 =
x—1—1004+1=2x — 100 = |z — 100|.
Case 3: Suppose z < 100. Then by definition of F', F(g)(z) = g(x + 1) + 1. Since
2 <100, |z +1—100] +1=—(z +1—100) + 1 = —(z — 100) = |z — 100|. O



Reference

For your reference, here is the syntax, large-step operational semantics, small-step operational
semantics, and denotational semantics of IMP that were defined in class. These definitions will be

provided to you with your midterm exam.
Syntax of IMP

commands c:=skip | ¢1;¢2 | vi=a | if b then ¢; else ¢y | while b do ¢
boolean expressions b::=true | false | a;<=ag | by &&bs | by |1 b2 | b

arithmetic expressions s=n|v|ataz | a1-az | a1 *az

a
variable names )
n

integer constants

Large-step Semantics of IMP

Commands

(skip,0) | o
<61,0>UO'2 <C2,O'2>~U»OJ
(c17¢2,0) 4 o
(a,o) I n

(vi=a,o0) | o[v — n]

b)Y 4T o) Lo
(if b then c¢; else co,0) || o’

bo) b (eno) 4o
(if b then c¢; else co,0) || o’

if b then (c;while b do ¢) else skip,o) || o’
p
(while bdo c,0) | o’




Boolean Expressions Arithmetic Expressions

(true,o) 4 T (7) (n,o) I n
(false,o) || F (8) (v,0) I o(v)
(ar,0) I n (az, o) | na () (a1,0) I nq (az, o) | ng
(a1<=az,0) | ny < no (a1 +ag,0) I n1 +no
<b170> llp <b2>0—> ll q (10) <G;1,0’> ‘U ni <CL2,0’> U n2
(b1 &&bo,0) I pAg (a1 -az,0) | n1 —ny
(b1,0) I p (b2,0) I q (11) (ar,o) I my (az, o) | no
(b1 11b2,0) I pVyq (a1*az,0) || ning
(b,o) I p (12)
<'b7 U> U’ -p

Small-step Semantics of IMP

Commands

(c1,0) =1 (&, 0")

(c1;¢0,0) = (c];c2,0")
(skip;ca,0) =1 (c2,0)

(a,0) = (d’,0)

(vi=a,o) —, (vi=d, o)
(vi=n,o) —, (skip,o[v — n])

(bya) —, (V,0")

(if b then ¢ else cy,0) —; (if b/ then ¢ else cg,0")

(if true then c; else ca,0) —; (c1,0)
(if false then ¢ else c2,0) —; (c2,0)

(while b do ¢,0) —, (if b then (¢;while b do ¢) else skip, o)



Boolean Expressions

(n1<=ng, o) —, (true,o)

ny > ng

(n1<=ng,0) —, (false, o)

(by,0) = (by,0") ope{&&, |1}

(b1 op ba, ) = (b} op b2, 0”)
(true&& by, o) —, (ba,0)
(false&& be,0) —, (false,o)

(true | | by, 0) —, (true, o)

(false || ba,0) —, (b2, 0)
(b,0) — (', 0")
(Ib,0) —, (I, 0”)
(Itrue,o) —, (false, o)

(Ifalse, 0) —, (true, o)

Denotational Semantics

Arithmetic Expressions

(v,0) =1 (a(v),0)

(26)
(a1,0) = (ay,0") op€{+,-,*}
(27) (a1 op ag, o) —, (a} op ag, o)
(az,0) = (a3, 0") op € {+,-,*}
(28) <n1 op as, O‘> — <n1 op a/27o-’>
<n1 +n270> —1 <n1 + na, 0'>
(29) (ni-ng,0) =, (n; —ne,o)
(n1*ng,0) =, (ning, o)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
YX=v—~7Z

A:a— (X2 —12Z)
B:b— (X—~A{T F})
Cic—(X—%)



Arithmetic Expressions

Aln] = {(o,n) | 0 € X}
Ale] ={(o,0(z)) | 0 € X, z €0}
Alai +as] = {(o,n1 + n2) | n1=AJa1]o, ne=Afaz]o}
Alai = as] = {(o,n1 — na) | ni=AJa1]o, ne=Afaz]o}
Alai * ag] = {(o,n1n2) | n1=AJa1]o, no=Alaz]o}
Boolean Expressions

B[true] ={(0,T) | 0 € £}
Blfalse] ={(0,F) | c € X}
Blai<=az] ={(0,T) | AJa1]o < Alaz]o} U

| .A[[al]]a > A[[ag]](f}
| Blu]o = T, Blbs]o = T} U

NN N N TN :QAA NN N TN
3353855355355

{ | B[bi]o = F} U
{ | Blb2]o = F'}
[b1 11 b2] ={(c,T) | Blb1]Jo =T} U
{(0.T) | Blbs]Jo =T} U
{(o,F) | B[bi]o = F, B[bs]Jo = F'}
B['o] ={(o,T) | B[b]Jo = F} U
{(o,F) | B[b]o =T}
Commands
C[skip] ={(0,0) | c € £}
Clv:=a]) ={(o,0[v +— n]) | n=Ala]o}
Cler; e2] ={(0,Cle2](Cler]0)) | o € B} = Cle2] o C[en]
C[if b then ¢; else co] ={(0,C[c1]o) | B[b]Jo =T} U

{(o,Clez]o) | Blo]o = F}
Clwhile bdo o] = | JT(Lly_x) = fiz(T)
i>0
where T'(g) ={(o,(goC|c])(0)) | B[b]lo =T} U
{(0,0) | B[b]o = F}

N
=

~—~ I~ /N
=~
S Ot

— N — ~— —

=
o



