Lecture 3: Mutual Recursion & Tail Recursion

CS 6371: Advanced Programming Languages
January 21, 2014

#let rec length =
 function [] -> 0 | _::t -> (length t)+1;;
length : 'a list -> int = <fun>

“function ... -> ...” is an abbreviation for “fun x -> (match x with ... -> ...)”

#type staff = Programmer | Manager of dept
and dept = Outsourced | Staffed of staff;;
Type staff defined.
#type staff2str s =
 (match s with
 Programmer -> "Peon"
 | Manager d ->
 "Dictator["^(dept2str d)^"]")
and dept2str d =
 (match d with Outsourced -> "Exiled"
 | Staffed s -> staff2str s);
staff2str : staff -> string = <fun>
dept2str : dept -> string = <fun>

Mutually recursive types are separated by the word “and”. Notice that there is no “;;” before the “and” and there is no second “type” keyword. You can string as many mutually recursive types together as you wish with “and”.

#type 'a btree = BNull
| BNode of ('a * 'a btree * 'a btree);;
Type btree defined.
BNode (3,BNull,BNull);;
- : int btree = BNode (3, BNull, BNull)
BNode ("foo",BNull,BNull);;
- : string btree = BNode ("foo",BNull,BNull)
BNode("foo",BNode(3,BNull,BNull),BNull);;
Toplevel input:
> BNode("foo",BNode(3,BNull,BNull),BNull);;
> ^^^^^^^^^^^^^^^^^^^^^^^
This expression has type int btree,
but is used with type string btree.

Polymorphic variants define a type constructor that is parameterized by a type variable.

Here’s an example of a function that converts a polymorphic binary tree to a polymorphic list (with list elements given in prefix order). The “@” operator concatenates two lists. This differs from the “::” operator, which inserts an element onto the head of a list.

#let fold_left f b l =
 (match l with
 [] -> b
 | h::t -> fold_left f (f b h) t);;
fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left (fun x y -> x+y) 0 [1;2;3];;
- : int = 6

“Fold” is an extremely important list operation in functional programming. (fold_left f b [w;x;y;z]) computes the formula f(f(f(f(f(b,w),x),y),z)). Parameter ‘b’ is called the “base case”.

From “fold” one can derive many useful list functions, such as existence and forall functions that check if a given condition holds for any or all
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fold_left</code></td>
<td>Applies function (f) starting with the leftmost element. That is, ((\text{fold}_\text{left} \ f \ [w;x;y;z]) \ b) computes (f(w,f(f(f(w,b),b),b),b)).</td>
</tr>
<tr>
<td><code>fold_right</code></td>
<td>Applies function (f) starting with the rightmost element. That is, ((\text{fold}_\text{right} \ f \ [w;x;y;z]) \ b) computes (f(f(f(f(w,b),b),b),b)).</td>
</tr>
</tbody>
</table>

There is another operation called “fold_right” that applies function \(f \) starting with the rightmost element. That is, \((\text{fold}_\text{right} \ f \ [w;x;y;z]) \ b\) computes \(f(w,f(f(f(w,b),b),b),b)\). There is another operation called “fold_right” that applies function \(f \) starting with the rightmost element. That is, \((\text{fold}_\text{right} \ f \ [w;x;y;z]) \ b\) computes \(f(w,f(f(f(w,b),b),b),b)\). A function is “tail recursive” if the value that it returns is the value returned by a direct recursive call to itself. Note that \(\text{fold}_\text{left}\) is tail-recursive but \(\text{fold}_\text{right}\) is not. Try to write tail-recursive functions whenever possible, since these can be optimized much better by functional compilers. A function is “tail recursive” if the value that it returns is the value returned by a direct recursive call to itself. Note that \(\text{fold}_\text{left}\) is tail-recursive but \(\text{fold}_\text{right}\) is not. Try to write tail-recursive functions whenever possible, since these can be optimized much better by functional compilers. Many of the functions we’ve defined for lists are defined for you in standard libraries, including the ones listed to the left. The “fst” and “snd” functions are also useful for manipulating pairs. Many of the functions we’ve defined for lists are defined for you in standard libraries, including the ones listed to the left. The “fst” and “snd” functions are also useful for manipulating pairs. Exceptions are defined like types, except that you use the keyword “exception” in place of “type”. Use the “raise” command to throw an exception. Exceptions are defined like types, except that you use the keyword “exception” in place of “type”. Use the “raise” command to throw an exception. An expression’s type declares its return type IF the function or expression returns normally. When you raise an exception, you don’t need to satisfy the return type of the enclosing expression because the expression is not returning normally. Warning: If you program using exceptions, you lose many of the benefits of functional programming! I recommend avoiding them. An expression’s type declares its return type IF the function or expression returns normally. When you raise an exception, you don’t need to satisfy the return type of the enclosing expression because the expression is not returning normally. Warning: If you program using exceptions, you lose many of the benefits of functional programming! I recommend avoiding them. Catch exceptions with “try ... with ...”. The “with” part is a pattern-match on the exception type. Each value returned by the right side of an arrow must be of the same type that would be returned if no exception was thrown. Catch exceptions with “try ... with ...”. The “with” part is a pattern-match on the exception type. Each value returned by the right side of an arrow must be of the same type that would be returned if no exception was thrown. |