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ABSTRACT
A new method of automatically reducing the attack surfaces of

binary software is introduced, affording code consumers the power

to remove features that are unwanted or unused in a particular

deployment context. The approach targets stripped binary native

code with no source-derived metadata or symbols, can remove

semantic features irrespective of whether theywere intended and/or

known to code developers, and anticipates consumers who can

demonstrate desired features (e.g., via unit testing), but who may

not know the existence of specific unwanted features, and who lack

any formal specifications of the code’s semantics.

Through a combination of runtime tracing, machine learning,

in-lined reference monitoring, and contextual control-flow integrity

enforcement, it is demonstrated that automated code feature re-

moval is nevertheless feasible under these constraints, even for

complex programs such as compilers and servers. The approach

additionally accommodates consumers whose demonstration of de-

sired features is incomplete; a tunable entropy-based metric detects

coverage lapses and conservatively preserves unexercised but prob-

ably desired flows. A prototype implementation for Intel x86-64

exhibits low runtime overhead for trimmed binaries (about 1.87%),

and case studies show that consumer-side control-flow trimming

can successfully eliminate zero-day vulnerabilities.
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1 INTRODUCTION
Security of software is widely believed to be inversely related to

its complexity (cf., [83, 93]). With more features, larger implemen-

tations, and more behavioral variety come more opportunities for
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programmer error, malicious code introduction, and unforeseen

component interactions.

Unfortunately, economic forces have a history of driving com-

plexity increases in commercial software (sometimes dubbed Za-
winski’s law of software envelopment [65]). Software developers

understandably seek to create products that appeal to the widest

possible clientele. This “one-size-fits-all” business model has led to

commercial software products of increasing complexity, as develop-

ers pack more features into each product they release. As a result,

software becomes more multi-purpose and more complex, its attack

surface broadens, and more potential opportunities for malicious

compromise become available to adversaries. For security-sensitive

(e.g., critical infrastructure or military) consumers who leave many

product features unused but critically rely on others, these security

dangers are often unacceptable. Yet because of the market dom-

inance, low cost, and high availability of one-size-fits-all COTS

software, bloated software continues to pervade many mission-

critical software networks despite the security disadvantages.

As a high-profile example of such feature bloat, in 2014 the

bash command interpreter, which is a core component of nearly all

Posix-compliant operating systems, was found to contain a series of

obscure, undocumented features in its parser [81] that afforded at-

tackers near-arbitrary remote code execution capabilities. Though

sometimes referred to as the Shellshock “bug,” the vulnerabilities

were likely intended as features related to function inheritance

when bash was originally written in the 1980s [88]. Their inclusion

in a rarely analyzed part of the code caused them to elude detec-

tion for a quarter century, exposing millions of security-sensitive

systems to potential compromise. This demonstrates that high-

complexity software can contain obscure features that may have

been intended by software developers, but that are unknown to con-

sumers and pose security risks in certain deployment contexts.

Code-reuse attacks [11, 18, 70, 72, 74] are another example of the

inherent security risks that code-bloat can introduce. The potential

potency of these attacks depends on the variety of code fragments

(gadgets) in the victim program’s executablememory [32, 37], which

the attacks abuse to cause damage. Feature-bloated code offers

adversaries a larger code-reuse attack surface to exploit. Control-
flow integrity (CFI) protections [1, 2, 4, 49, 58, 60, 78, 79, 92] de-

fend against such attacks by constraining software to a policy of

control-flow graph (CFG) edges that is defined by the program-
mer [2, 79] (e.g., derived from the semantics of the programmer-

defined source code, or a recovery of those semantics from the

program binary). They therefore do not learn or enforce policies

that defend against undocumented feature vulnerabilities like Shell-

shock, whose control-flows are sanctioned by the source semantics

and are therefore admitted by CFI controls.

To demonstrate the openness of this problem, we tested the

ability of the 11 source-free CFI solutions listed in Table 1 to auto-

matically mitigate the vulnerabilities listed in Table 2, which each
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Table 1: False negative rates of source-free CFI solutions when applied to perform code-debloating

C-Flat PathArmor TypeArmor Lockdown BinCC O-CFI bin-CFI CCFIR MoCFI NaCl XFI

false negatives 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 2: CVEs of security-evaluated products

Program CVE numbers

Bash CVE-2014-6271, -6277, -6278, -7169

ImageMagic CVE-2016-3714, -3715, -3716, -3717, -3718

Proftpd CVE-2015-3306

Node.js CVE-2017-5941

Exim CVE-2016-1531

constitute an insecure (but possibly developer-intended) functional-

ity, such as Shellshock or ImageTragick (see §5 for details) that was

later patched once it became known to consumers. Each algorithm

was applied to secure all the binaries against control-flow abuse

attacks. All CFI-protected binaries nevertheless remain susceptible

to abuse of all the CVEs—a 100% false negative rate. These solu-

tions fail because they were designed to infer and enforce policies

that whitelist developer-intended control-flows, not automatically

de-bloat hidden features.

To address this unsolved problem, our research introduces bi-
nary control-flow trimming, a new technology for automatically

specializing binary software products to exclude semantic features

undesired by consumers, irrespective of whether the features are

intended or even known to developers, or whether they are part of a

product’s source-level design. Control-flow trimming is envisioned

as an extra layer of consumer-side defense (i.e., CFG policy tighten-

ing) that identifies and excises unwanted software functionalities

and gadgets that are beyond the reach of CFI alone.

Learning consumer-unwanted but developer-intended function-

alities cannot be achieved with purely non-probabilistic CFG re-

covery algorithms, such as those central to CFI, because such al-

gorithms approximate a ground truth policy that is is a strict su-

pergraph of the policy needed for feature removal. Tightening that

supergraph based on incomplete, consumer-supplied tests requires

coupling CFI with trace-based machine-learning. The resulting pol-

icy is a more complex, probabilistically constructed, contextual CFG
(CCFG), which considers fine-grained branch history to distinguish

consumer-wanted flows from a sea of developer-intended flows. No

prior CFI approach can enforce policies of this complexity because

their sensitivity is presently limited to only a few code features

(e.g., system API calls [61]), they rely on machine registers or OS

modifications unavailable to user code [20, 79], or they require

source code access [49] which is often unavailable to consumers.

To enforce these policies, we therefore introduce a new contextual

CFI enforcement strategy that efficiently encodes contexts as hash

codes safely maintainable in user-level machine registers.

In addition, our work assumes that consumers who lack source

code probably have no way of formally specifying semantic features

or control-flows that they wish to retain, and might not even be

aware of all features whose disuse make them candidates for trim-

ming. We therefore assume that consumers merely demonstrate

desired software features via unit tests (e.g., inputs or user inter-

actions that test behaviors for quality assurance purposes). Such

testing is inevitably incomplete and inexhaustive for programs

whose input spaces are large (often infinite); so in order to tolerate

this incompleteness, we introduce an entropy-based method of de-

tecting points of uncertainty in CCFGs derived from unit tests, and

a strategy for relaxing enforcement at such points. Consumers can

strengthen the enforcement by supplying additional unit tests that

exercise these points more thoroughly.

In summary, we contribute the following:

• We present a method to reduce the size and complexity of

binary software by removing functionalities unwanted by

code-consumers (but possibly intended by code-producers)

without any reliance on source code or debug metadata.

• We present a new binary-only context-sensitive control-flow

graph (CCFG) integrity policy formalism derivable from ex-

ecution traces.

• Wepropose amachine learning approach to construct CCFGs

from runtime trace sets, and demonstrate that it is accurate

enough to exhibit a 0% false positive rate for complicated

programs such as compilers and web servers.

• We showcase a fully functional prototype that automatically

instruments native code with an in-lined reference monitor

(IRM) [68] that enforces the CCFG policy.

• Experiments show that control-flow trimming can eliminate

zero-day vulnerabilities associated with removed functional-

ities, and that the approach exhibits low runtime overheads

of about 1.87%.

Section 2 first gives a high level overview of our system. Sec-

tions 3 and 4 next detail our technical approaches to feature iden-

tification and policy enforcement for Intel x86-64 native codes,

respectively. Section 5 evaluates the approach in terms of accuracy

and performance, followed by a discussion of limitations and future

work in Section 6. Finally, Section 7 compares our work with related

research, and Section 8 concludes.

2 APPROACH OVERVIEW
2.1 Contextual Control-flow Graph Policies
Our approach assumes that feature-trimming specifications are in-

formal, taking the form of unit tests that exercise only the consumer-

desired features of the software. Such testing is commonly practiced

by security-sensitive consumers. One obvious approach to trim-

ming unwanted features entails simply erasing all code bytes that

remain unexecuted by the tests. However, our early experimenta-

tion taught us that this blunt approach fails for at least two reasons:

(1) It requires an unrealistically comprehensive unit test set, lest

some code bytes associated with wanted features go unexercised

and get improperly erased. Such comprehensive testing is very dif-

ficult to achieve without source code. (2) It often retains unwanted



features due to the modular design of complex software, which

reuses each individual code block to implement multiple semantic

features—some wanted and some unwanted. When all code blocks

for an unwanted feature are each needed by some wanted feature,

the unwanted feature cannot be trimmed via code byte erasure

without corrupting the wanted features.

These experiences led us to adopt the more general approach

of control-flow trimming. Control-flow trimming removes seman-

tic features by making the control-flow paths that implement the

feature unreachable—e.g., by instrumenting all computed jump in-

structions in the program with logic that prohibits that flow. This

generalizes the code byte erasure approach because, in the special

case that the trimmed CFG contains no edges at all to a particular

code block, that block can be erased entirely.

We also discovered that control-flow policies that successfully

distinguish consumer-undesired (yet developer-intended) code fea-

tures from consumer-desired features tend to be significantly more

complex and powerful than any prior CFI solution can efficiently

enforce. In particular, policy decisions must be highly context-

sensitive, considering a detailed history of prior CFG edges tra-

versed by the program in addition to the next branch target when

deciding whether to permit an impending control transfer. Since

trace histories of real-world programs are large (e.g., unbounded),

these decisions must be implemented in a highly efficient manner

to avoid unreasonable performance penalties for the defense.

To illustrate, assume critical functionality F1 executes code blocks

c1; c2; c3; c4 in order, whereas undesired functionality F2 executes

c1; c3; c3; c4. A strict code byte erasure approach cannot safely re-

move any blocks in this case, since all are needed by F1. However,

control-flow trimming can potentially delete CFG edges (c1, c3) and

(c3, c3) to make functionality F2 unrealizable without affecting F1.

Extending the example to include context-sensitivity, consider

an additional critical functionality F3 implemented by sequence

c2; c3; c3; c1; c3; c4. This prevents removal of edges (c1, c3) and (c3, c3)

from the CFG, since doing so would break F3. But an enforcement

that permits edge (c3, c3) conditional on it being immediately pre-

ceded by edge (c2, c3) successfully removes F2 without harming F3.

In general, extending the context to consider the last n edges tra-

versed lends the technique greater precision as n increases, though

typically at the cost of higher space and time overheads. A balance

between precision and performance is therefore needed for best

results, which we explore in §5.

2.2 Automated, In-lined CCFG Enforcement
Figure 1 depicts our control-flow trimming architecture. The in-

put to our system consists of stripped x86-64 binaries along with

sample execution traces that exercise functionalities wanted by the

consumer. The rewriter automatically disassembles, analyzes, and

transforms them into a new binary whose control-flows are con-

strained to those exhibited by the traces, possibly along with some

additional flows that could not be safely trimmed due to uncertainty

in the trace set or due to performance limitations. We assume that

no source code, debug symbols, or other source-derived metadata

are provided. Prior work on reassemblable disassembly [86] has es-

tablished the feasibility of recovering (raw, unannotated) assembly

original binary

test suite

traces

conservative
disassembler

policy learner

IRM rewriter

trimming
policy (CCFG)

trimmed
binary

Figure 1: Binary control-flow trimming system architecture

files from binaries for easier code transformation, allowing us to

use assembly files as input to our prototype during evaluations (§5).

Discerning a consumer-desired CCFG policy based on traces

without access to sources is challenging. Our approach applies

machine learning to traces generated from the test suite to learn a

subgraph of the developer-intended flows. The output of this step

is a decision tree forest, with one tree for each control-flow transfer

point in the disassembled program. Each decision tree consults

the history of immediately previous branch destinations, along

with the impending branch target, to decide whether to permit the

impending branch. The forest therefore defines a CCFG policy.

Since decision trees tend to overfit the training, it is important

to detect overfitting and relax the policy to permit traces that were

not exhibited during training, but whose removal might break

consumer-desired functionalities. We therefore assign an entropy-

based confidence score to each node of the decision forest. Nodes

with unacceptable confidence receive relaxed enforcement by prun-

ing their children from the tree. In the extreme case, pruning all trees

to a height of 1 results in a non-contextual CFG that matches the

policy enforced by most non-contextual (backward- and forward-

edge) CFI. Trimming therefore always enforces a policy that is at

least as strict as non-contextual CFI, and usually stricter.

After deriving a suitable CCFG, the policy is enforced via in-lined

reference monitoring. Specifically, we surround each control-flow

transfer instruction in the program with guard code that maintains

and updates a truncated history of branch targets expressed as a

hash code. A read-only hash table determines whether the impend-

ing branch is permitted. Policy-violating branches yield a security

violation warning and premature termination of the program.

2.3 Threat Model
Like prior research on CFI and artificial diversity, success of our

approach can be measured in terms of two independent criteria: (1)

inference of an accurate policy to enforce, and (2) enforcement of

the inferred policy. For example, COOP attacks [69] exploit lapses

in the first criterion; they hijack software by traversing only edges

permitted by the policy, which is insufficiently precise. In con-

trast, coarse-grained CFI approaches are susceptible to lapses in

the second criterion; to achieve high performance, they enforce

a policy approximation, which sometimes allows attackers to ex-

ploit approximation errors to hijack the code (e.g., [17]). Artificial



diversity defenses can experience similar failures, as in the case of

implementation disclosure attacks [10, 24, 31, 71, 73].

With regard to the first criterion, our approach is probabilistic,

so success is evaluated empirically in §5 in terms of false negatives

and false positives. (The false classification rates measure accu-

racy against a policy that differs from CFI policies, however, since

control-flow trimming has a stricter model of ground truth than

CFI, as described in §1.) With regard to the second criterion, we

assume a relatively strong threat model in which attackers have

complete read-access to the program image as it executes, and even

have write-access to all writable data pages, but lack the power

to directly change page access permissions. Thus, attackers know

the policy being enforced but lack the ability to change it since

its runtime encoding resides in read-only memory. (We assume

that DEP or W

⊕
X protections prevent writes to code and static

data sections.) Attackers also cannot directly corrupt CPU machine

registers, affording our defense a safe place to store security state.

Since our defense enforces a control-flow policy, non-control

data attacks are out of scope for this work. We defer mitigations of

such attacks to other defense layers.

3 DETAILED DESIGN
3.1 Learning CCFG Policies
Since it is usually easier for code-consumers to exhibit all features

they wish to preserve (e.g., through software quality testing), rather

than discovering those they wish to remove, we adopt a whitelisting

approach when learning consumer control-flow policies:

A trace e1, e2, e3, . . . is defined as the sequence of control-flow

edge traversals during one run of the program, where ei is the
ith edge taken. We include in the edge set all binary control-flow

transfers except for unconditional branches and fall-throughs of

non-branching instructions (whose destinations are fixed and there-

fore not useful to monitor). Thus, the edge set includes targets of

conditional branches, indirect (computed) branches, and returns.

Let T1 be a set of program execution traces that exhibit only

software features that must be preserved, and letT2 be a set that in-
cludes traces for both wanted and unwanted features.T1 is provided
by the user, and is assumed to be noise-free; every trace exhibited

during training is a critical one that must be preserved after control-

flow trimming. However, we assume there may be additional critical

traces requiring preservation that do not appear inT1. The learning
algorithm must therefore conservatively generalize T1 in an effort

to retain desired functionalities. T2 is assumed to be unavailable

during training, and is used only for evaluation purposes to assess

whether our training methodology learns accurate policies.

Control-flow contexts are defined as finite-length sub-sequences

of traces. A CCFG policy can therefore be defined as a set of permis-

sible control-flow contexts. While the logic for precisely enforcing

an entire CCFG policy could be large, the logic needed to enforce

the policy at any particular branch origin need only consider the

subset of the policy whose final edge begins at that branch origin.

This distributes and specializes the logic needed to enforce the

policy at any given branch site in the program.

Context lengths are not fixed in our model. While an upper

bound on context lengths is typically established for practical rea-

sons, our approach considers different context lengths at different

e3
γ = 2, λ = 5

e2
γ = 2, λ = 4

e1
γ = 1, λ = 1

e1
γ = 1, λ = 1

e3
γ = 1, λ = 1

e2
γ = 2, λ = 2

e2
γ = 1, λ = 1

Figure 2: Sample decision tree for edge e3

branch sites based on an estimate of the benefits, as measured by

information gain. In our design, we first suppose there is a fixed

size (possibly large) for the contexts, and then proceeded to accom-

modate variable-sized contexts.

To maximize effectiveness, contexts must include as much policy-

relevant control-flow information as possible without being pol-

luted with uninformative edges. Indirect branches and returns are

the primary sources of control-flow hijacks, so are included. Direct

calls and jumps are also included even though they have fixed desti-

nations, because we found that doing so allows the training to learn

a form of call-return matching that improves accuracy. We also

include conditional branch destinations in the contexts, since they

often implement series of tests that conditionally activate software

features that may be targets of trimming.

The learning algorithm is a binary classification that decides

for each control-flow edge whether it is permissible, based on the

last k edges currently in the context. We chose decision trees as

our learning model, since they are relatively simple and efficient

to implement at the binary level. While decision trees can suffer

from overfitting, such overfitting is potentially advantageous for

our problem because every trace in T1 must be preserved. Higher

security therefore results from a conservatively tight model that

can be conditionally relaxed at points of uncertainty.

For a given edge e , the learning algorithm creates a decision tree

as follows: The root is labeled with e and the depth of the tree is k ,
where k is the maximum size of the context. Each node at level i ≥ 1

of the tree is labeled with the edge e ′ appearing immediately before

the context defined by the path from the node’s parent at level i up
to the root. It is additionally annotated with the number of traces

γ and number of contexts λ in which that particular edge-label

occurs at that context position. These numbers are used during

uncertainty detection and policy relaxation (§3.2).

Every leaf of this tree represents a permissible control-flow his-

tory encoded by the path from it to the root. The feature encoded

by a node at level i + 1 is the i-to-last edge in the context when the

edge labeled at the root is reached. So, given a context χ we can

check whether it is permissible as follows: The last edge in χ must

be a root of some tree in our learned decision tree forest; otherwise

the impending branch is rejected. The penultimate edge in χ should

be one of that root’s children; otherwise the impending branch is

rejected. We continue to check the context edges in χ in reverse

order until we reach a decision tree leaf. Reaching a leaf implies

policy-compliance, and the impending branch is permitted.

To illustrate, consider a hypothetical program with two sam-

ple traces: one containing sub-sequences [e1, e2, e3], [e2, e2, e3] and
[e3, e2, e3]; and the other containing sub-sequences [e2, e1, e3] and
[e2, e2, e3]. Figure 2 shows the decision tree made for edge e3 out of



these sub-traces. The root is labeled with (e3,γ = 2, λ = 5), since

there are 2 traces and 5 histories having edge e3. Edge e2 is the

penultimate edge in 4 of those cases, and e1 is the penultimate edge

in 1 case, causing nodes (e2,γ = 2, λ = 4), and (e1,γ = 1, λ = 1) to

comprise the next level of the tree. In the same way, the nodes at the

bottom level correspond to the antepenultimate edges appearing

in each context. Edges e1, e3, and e2 are antepenultimate when e2
is penultimate, and e2 is antepenultimate when e1 is penultimate.

Observe that the labels are not unique; the same label or edge can

be assigned to some other node of the same tree. In addition, for

any node, λ is the sum of its child λ’s, while γ is not.

3.2 CCFG Policy Relaxation
To cope with the inevitable incompleteness of training data that

is assumed to be amassed without guidance from source code, we

next consider the problem of generalizing the decision tree forest to

include more child nodes than were explicitly observed during train-

ing. In general, if training observes many diverse jump destinations

for a specific subtree, that subtree may have a complex behavior

that was not exhaustively covered by training. There is therefore a

high chance that additional consumer-desired destinations for that

branch site exist that were not explicitly observed.

The same is true for diverse collections of contexts. If the con-

textual information at a given tree node is highly diverse and offers

little information gain, this indicates that the context at that po-

sition is not a useful predictor of whether the impending branch

is permissible. For example, the branch may be the start of what

the user considers an independent semantic feature of the software,

in which case the context is reflecting a previous semantic feature

that has little relevance to the permissibility of this branch point.

Thus, nodes with numerous low-frequency child nodes should be

considered with low confidence.

To estimate this confidence level, we use entropy to calculate an

uncertainty metric using the number of times different child nodes

of a node appear in the training. Nodes with diverse children have

higher entropy. The confidence score of a node n is computed as

confidence(n) =
γ

N
× −

1

M2

M∑
m=1

λm
λ

logM

(
λm
λ

)
(1)

where (e,γ , λ) is noden’s label,M is the number of noden’s children,
(em,γm, λm ) is childm’s label, and N is the total number of traces.

This formula combines the probability of a node being in a trace,

the entropy of its children λ, and the number of its children. It

is inversely related to entropy because, for any given number of

childrenM , we have higher confidence if the distribution of child

frequencies is relatively flat. For example, if we observe two children

with λ’s 5 and 5, we have higher confidence than if we observe

two children with λ’s 1 and 9. The former indicates a well-covered,

predictable behavior, whereas the latter is indicative of a behavior

with rare outliers that were not covered well during training. Fewer

children likewise engender higher confidence in the node.

An ideal confidence threshold t∗ that maximizes accuracy on the

training set is computed using crossfold validation (see §5), and all

children with confidence below t∗ are pruned from the forest. In

the worst case, pruning all the trees to a height of 1 yields a non-

contextual CFG that is the policy that would be enforced by typical

non-contextual CFI (i.e., no debloating). Pruning therefore finds a

middle ground between trimming only the developer-unintended

features and over-trimming the consumer-wanted features.

For example, in Figure 2 the confidence score of the root and

the node labeled (e2,γ = 2, λ = 4) are 0.36 and 0.31, respectively. If

our confidence threshold exceeds a node’s confidence score, then

context is disregarded when making policy decisions at that origin.

So in our example, a confidence threshold of 0.35 prunes the tree

after node (e2,γ = 2, λ = 4), making that node a leaf. This refines

the policy by disregarding policy-irrelevant context information.

3.3 Enforcing CCFG Policies
In-lining guard code that enforces a highly context-sensitive pol-

icy at every computed branch without incurring prohibitive over-

heads raises some difficult implementation challenges. To track

and maintain contexts, our enforcement must additionally instru-

ment all direct calls, conditional branches, and interrupt handlers

with context-update logic. Space-efficiency is a challenge because

CCFG policies are potentially large—code with b branch sites and

context-length bound k can have CCFG policies of sizeO(bk ) in the

worst case. Time-efficiency is a challenge because policy decisions

for CCFGs potentially require O(k) operations, in contrast to non-

contextual CFG policies, which engender constant-time decisions.

To obtain acceptable overheads in the face of these challenges,

our implementation compactly represents contexts as hash codes,

and represents CCFG policies as sparse hash tables of bits, where

an entry of 1 indicates a permitted context. The hash function need

not be secure since our enforcement protects hash values via access

controls (see §4), but it must be efficiently computable and uniform.

We therefore use the relatively simple hash function given by

hash(χ ) =
|χ |⊕
i=1

((π2χi ) ≪ (|χ | − i)s) (2)

where

⊕
is xor, |χ | is the length of context χ , π2χi is the destination

(second projection) of the ith edge in χ ,≪ is bit-shift-left, and s ≥ 0

is a shift constant. This has the advantage of being computable in

an amortized fashion based on the following recursion:

hash(χe) = (hash(χ ) ≪ s) ⊕ (π2e) (3)

The CCFG hash table is constructed by storing a 1 at the hash of

every policy-permitted context. This can introduce some impreci-

sion in the form of hash collisions, since a policy-violating context

can have the same hash code as a policy-permitted context, causing

both to be accepted. However, this collision rate can be arbitrarily

reduced by increasing shift-constant s and the bit-widthw of shift

operation ≪. For example, setting s to the address-width a and

usingw = ka guarantees no collisions, at the expense of creating a

large table of size 2
ka−3

bytes. On 64-bit architectures, we found

that using s = 1 and w ≈ log
2
c where c is the code segment size

works well, since all branch destination offsets (into their respective
code segments) are less than c , and the offset portion of the address

is where the most policy-relevant bits reside. This yields a hash

table of size O(c), which scales linearly with program size.



Table 3: Guard checks for each kind of branch type

Description Original code Rewritten Code

Conditional

Jumps

jcc l call jcc_fall
.quad l

Indirect calls call r/[m] mov r/[m], %rax
call indirect_call

Indirect Jumps jmp r/[m] mov %rax, -16(%rsp)
mov r/[m], %rax
call indirect_jump

Variable Returns ret n pop %rdx
lea n(%rsp), %rsp
push %rdx
jmp return

Returns ret mov (%rsp), %rdx
jmp return

4 IMPLEMENTATION
To generate sample traces, we use Pin [46] and DynamoRIO [14]

to track all branches during each run of each test program. We

then apply our machine learning algorithm with the hash function

defined in §3.3 to generate the CCFG hash table. The hash table

is added in a relocatable, read-only data section accessible from

shared libraries while protecting it from malicious corruption.

Table 3 transforms each type of branch instruction (column 2)

to guard code (column 3). To reduce code size overhead, the guard

code is modularized into trampolines that jump to a policy-check

before jumping to each target. This trades smaller code size for

slightly higher runtime overhead. Table 4 shows the details of the

trampoline code called by branch guards (Table 3), which invoke

policy checks and state updates (Table 5).

Guard code for conditional jumps must carefully preserve all

CPU status flags until the branch decision is made. Since sequences

ofn consecutive conditional jumps can implement ann-way branch,
we avoid corrupting status flags by updating the context before the

sequence is complete, in-lining only one fall-through trampoline

for the sequence. This is achieved by using another trampoline

jcc_back for the first n − 1 instructions, which fall-through with-

out checking the destination because the guards in Table 5 are the

only parts that affect flags. A similar strategy applies to conditional

branches followed by Intel conditional-moves (setcc and cmovcc).
This results in a maximum of 67 trampolines for all possible condi-

tional jumps (2× 32 for the two directions of each of the 32 possible

conditional jump instructions on x86-64, plus 3 other trampolines

fall_l, back_l, and jump_l).
Table 5 shows the common guard invoked by the trampolines,

which updates the context and consults the hash table to enforce the

policy. Two implementations are provided: the center column uses

SSE instructions, which are widely available on Intel-based pro-

cessors; while the rightmost column provides a more efficient imple-

mentation that leverages SHA-extensions (sha1msg1 and sha1msg2)
that are presently only available on a few processor lines [5]. Our

experiments and the descriptions that follow use the legacy-mode

implementation, but we expect improved performance of our algo-

rithm as SHA extensions become more available.

Table 4: Trampolines used in guards referred in Table 3

Label Assembly Code
indirect_jump: push %rax

common-guard
mov -8(%rsp), %rax
ret

indirect_call: push %rax
common-guard
ret

return: common-guard
ret

jcc_fall: jcc jump_l
jmp fall_l

jcc_back: jcc jump_l
jmp back_l

jump_l: xchg (%rsp), %rax
mov (%rax), %rax
jmp condition_jump

fall_l: xchg (%rsp), %rax
lea 8(%rax), %rax
jmp condition_jump

back_l: xchg (%rsp), %rax
lea 8(%rax), %rax
xchg (%rsp), %rax
ret

condition_jump: push %rax
common-guard
pop %rax
xchg (%rsp), %rax
ret

For efficiency and safety, we store contexts in 128-bit xmm regis-

ters rather than memory. Register %xmm14maintains a length-4 con-

text as four packed 32-bit unsigned integers, and %xmm15 maintains

the context hash. On entry to the before-check code, %xmm13 con-
tains the section base address and general (64-bit) register r holds
the impending branch target to check. Register r varies depending
on the branch type (%rdx for returns and %rax for others).

This implementation strategy requires the target program to

have at most 12 live xmm registers (out of 16 total) at each pro-

gram point, leaving at least 2 to globally maintain context and

context-hash, plus 2 more for scratch use at each guard site. More

constrained xmm register usage is rare, but can be supported by

spilling xmm registers to general-purpose registers or to memory.

Two of the evaluated programs in §5 require this special treatment

(postgres and postmaster), and exhibited slightly higher than aver-

age overheads of 3% as a result.

Lines 1–2 of before-check calculate the target offset. Line 3

then updates the hash code using Equation 3. After this, %xmm12
and %xmm15 have the target offset and the new hash, respectively.

The check operation implements the policy check. Line 5 trun-

cates the hash value to the size of the hash table. Finally, line 6

finds the bit corresponding to the hash value in the table, and line 7

jumps to the trap in case it is unset, indicating a policy rejection.

The after-check code updates the history in %xmm14 and the

hash code in %xmm15. It does so by extracting the oldest context

entry about to be evicted (line 8), shifting the context left to evict

the oldest entry and make space for a new one (line 9), adding the

new entry (line 10), and leveraging involutivity of xor to remove the

evicted entry from the hash code (lines 11–12). Finally, lines 13–14

left-shift the context and hash code by one bit in preparation for

the next context and hash update.



Table 5: Guard checks implementation for trampolines referred as common-guard in Table 4
Guard Code

Guard Name Legacy-mode SHA-extension

before-check 1:movd r, %xmm12 1:movd r, %xmm12
2:psubd %xmm13, %xmm12 2:psubd %xmm13, %xmm12

3:sha1msg1 %xmm14, %xmm15
4:sha1msg2 %xmm15, %xmm15
5:pslrdq $4, %xmm15

3:pxor %xmm12, %xmm15 6:pxor %xmm12, %xmm15

check 4:movd %xmm15, r 7:movd %xmm15, r
5:and max_hash − 1, r 8:and max_hash − 1, r
6:bt r, (HASH_TABLE) 9:bt r, (HASH_TABLE)
7:jnb TRAP 10:jnb TRAP

after-check 8:pextrd $3, %xmm14, r 11:pslldq $4, %xmm14
9:pslldq $4, %xmm14 12:psllw $1, %xmm14
10:pxor %xmm12, %xmm14 13:pxor %xmm12, %xmm14
11:movd r, %xmm12
12:pxor %xmm12, %xmm15
13:pslld $1, %xmm15
14:pslld $1, %xmm14

One important deployment consideration is whether to exclude

library control-flows from the program flow, since they are shared,

and it may therefore be infeasible to learn appropriate policies for

them based on profiling only some applications that load them. On

the other hand, if security is a priority, the user may be interested in

generating a specialized, non-shared version of the shared library

specifically for use by each security-sensitive application. For this

work, we enforce the policy on all branches from any portion of

the program code section and all the shared libraries shipped with

it, but we leave system shared libraries unaltered. The latter can

optionally be trimmed by making a local copy to which the policy

is applied, though the result is obviously no longer a library that

can be shared across multiple applications.

When rewriting app-included shared libraries, we add trampo-

lines to each image, and declare them with .hidden visibility to

avoid symbol name-clashes between the images. The hash table

can be specialized to each image or centralized for all. For this work

we use one centralized table for all interoperating images, accessed

via the .got table for concurrent, shared access between modules.

5 EVALUATION
We experimentally evaluated our control-flow trimming system in

terms of performance, security, and accuracy. Performance evalua-

tion measures the overhead that our system imposes in terms of

space and runtime. Our security analysis examines the system’s

ability to withstand the threats modeled in §2.3. Security failures

therefore correspond to false negatives in the classification. Finally,

accuracy is measured in terms of false positives—premature aborts

of the trimmed program when no policy violation occurred.

Test programs consist of the real-world software products in

Table 6, plus bash, gcc, ImageMagic, the epiphany and uzbl browsers,

and the SPEC2017 benchmarks. We also successfully applied our

prototype to rewrite the full GNU Coreutils 8.30 collection. The

browsers were chosen primarily for their compatibility with Pin

and DynamoRIO, which we use for trace collection and replay.
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Figure 3: Runtime overhead for SPEC2017 intspeed suite and
some ftp- and web-servers

To evaluate accuracy, we created or obtained test suites for each

program. For example, in the gcc evaluations, we used the gcc

source code as its own input for unit testing. That test suite there-

fore consists of all C source files needed to compile gcc on the

the experiment machine. For ImageMagic, we randomly gathered

hundreds of JPEG and PNG images. We unit-tested ftp servers by

downloading and uploading randomly selected files interspersed

with random ftp commands (e.g., cd, mkdir, ls, append, and rename).

For exim we used a script to launch sendmail and randomly send

an email to a specific address. Browser experiments entail loading

pages randomly drawn from the Quantcast top 475K urls, and uzbl

experiments additionally include random user interactions (e.g.,

back/forward navigation, scrolling in all directions, zoom in/out,

search, etc.). All results were obtained using a DELL T7500 machine

with 24G of RAM and Intel Xeon E5645 processor.

5.1 Performance Overhead
Figure 3 graphs the runtime overhead for SPEC2017 benchmarks

and several ftp- and web-servers. We used Apache benchmark [8] to



Table 6: Space overhead for SPEC2017 intspeed suite bench-
marks and some real-world applications

Original Size (KB) Size Increase (%)

Binary File Code File Code

perlbench_s 10686 1992 10.17 35.14

sgcc 63243 8499 12.76 59.15

mcf_s 131 19 8.80 35.20

omnetpp_s 28159 1567 5.15 55.37

cpuxalan_s 80762 4701 4.19 48.25

x264_s 3320 567 6.41 23.40

deepsjeng_s 508 85 10.23 42.17

leela_s 3819 191 2.15 45.14

exchange2_s 182 111 16.01 18.61

xz_s 1082 146 0.69 2.12

exim 1407 1187 32.14 14.70

lighttpd 1304 294 13.12 27.12

memcached 746 156 13.50 23.89

nginx 1674 1444 29.76 19.07

openssh 2467 638 15.12 21.40

proftpd 3310 803 16.34 29.12

pureftpd 470 118 17.12 27.04

vsftpd 143 133 25.78 28.99

postgresrl 757 544 41.35 33.53

node.js 36758 30059 28.63 17.84

median 1541 556 16.42 28.06

issue 25,000 requests with concurrency level of 10 for benchmarking

lighttpd and nginx. To benchmark the FTP servers, we wrote a

Python script based on the pyftpdlib benchmark [66] to make 100

concurrent clients, each of which request 100 1KB-sized files.

The median runtime overhead is 1.87%, and all benchmarks ex-

hibit an overhead of 0.37–4.78%. The good performance is partially

attributable to Table 5’s reliance on SIMD instructions, which tend

to exercise CPU execution units independent of those constrained

by the mostly general-purpose instructions in the surrounding code.

This allows out-of-order execution (OoOE) hardware optimizations

in modern processors [39] to parallelize many guard code µops
with those of prior and subsequent instructions in the stream.

Table 6 shows the space overhead for the SPEC2017 benchmarks

and a sampling of the other tested binaries. On average, the test

binaries increase in size by 16.42% and their code sizes increase

by 28.06%. The main size contributions are the extra control-flow

security guard code in-lined into code sections, and the addition of

the hash table that encodes the CCFG policy.

Although these size increases are an important consideration

for memory and disk resources needed to support our approach,

we emphasize that they are not an accurate measure of the result-

ing software attack surface, since many of the added bytes are

non-executable or erased (exception-throwing) opcodes (e.g., int3).
Attack surface must therefore be measured in terms of reachable

code bytes, not raw file or code section size.

To evaluate this, Table 7 measures the reachable, executable code

from the decision trees for binaries with a test suite. Despite the

increase in total file and code sizes, the amount of reachable code

is reduced by an average of 36%. For example, the attack surface of

ImageMagic convert is reduced by 94.5%. (Themethod of computing

Table 7 is detailed in §5.3.)

5.2 Security
5.2.1 Vulnerability Removal. A primary motivation for control-

flow trimming is the possible removal of defender-unknown vul-

nerabilities within code features of no interest to code consumers.

To test the efficacy of our approach for removing such zero-days,

we tested the effects of control-flow trimming on unpatched ver-

sions of Bash 4.2, ImageMagic 6.8.6–10, Proftpd 1.3.5, Node.js 8.12,

and Exim 4.86 that are vulnerable to the CVEs shown in Table 2,

including Shellshock and ImageTragick.

Shellshock attacks exploit a bug in the bash command-line parser

to execute arbitrary shellcode. The bug erroneously executes text

following function definitions in environment variables as code.

This affords adversaries who control inputs to environment vari-

ables remote code execution capabilities. Because of its severity,

prevalence, and the fact that it remained exploitable for over 20

years before it was discovered, Shellshock has been identified as

one of the highest impact vulnerabilities in history [25].

ImageMagick is used by web services to process images and

is also pre-installed in many commonly used Linux distributions

such as Ubuntu 18.04. ImageTragick vulnerabilities afford attackers

remote code execution; delete, move, and read access to arbitrary

files; and server-side request forgery (SSRF) attack capabilities in

ImageMagic versions before 6.9.3–10, and in 7.x before 7.0.1-1.

ProFTPD 1.3.5 allows remote attackers to read and write from/to

arbitrary files via SITE CPFR and SITE CPTO commands. In node

serialize package 0.0.4, the unserialize function can be exploited

by being passed a maliciously crafted JS object to achieve arbi-

trary code execution. Exim before 4.86.2 allows a local attacker to

gain root privilege when Exim is compiled with Perl support and

contains a perl_startup configuration variable.

Unit tests for the bash experiment consist of the test scripts

in the bash source package, which were created and distributed

with bash before Shellshock became known. The tests therefore

reflect the quality assurance process of users for whom Shellshock

is a zero-day. For the remaining programs, we manually exposed

each to a variety of inputs representative of common usages. For

ImageMagic, our unit tests execute the application’s convert util-

ity to convert images to other formats. We unit-tested ProFTPD

by exposing it to a variety of commands (e.g. FEAT, HASH), exclud-
ing the SITE command. For Node.js we wrote some JS code that

does not leverage node-serialize package. We ran Exim without a

perl_startup configuration variable.

Using these test suites, we applied the procedure described in §3

to learn a CCFG policy for these five vulnerable programs, and au-

tomatically in-lined an enforcement of that policy approximated as

a bit hash table. No source code was used in any of the experiments.

Control-flow trimming these programs with these test suites

has the effect of removing all the listed vulnerabilities. For exam-

ple, Shellshock-exploiting environment variable definitions push

bash’s control-flow to an obscure portion of the parser logic that is

trimmed by the learned CCFG policy, and that the in-lined guard

code therefore rejects. Similar policy rejections occur when at-

tempting to trigger the vulnerabilities in the other binaries. This

demonstrates that control-flow trimming can effectively remove

zero-days if the vulnerability is unique to a semantic feature that

remains unexercised by unit testing.



Table 7: False positive ratios (%). Zero threshold means no pruning (most conservative) (§3.2).

Context Anomalies Origin Anomalies Trace Anomalies

Program Samples t* t=0.00 t=0.25 t=t* t=0.00 t=0.25 t=t* t=0.00 t=0.25 t=t*
Reachable
Code (%)

proftpd 10 0.48 3.04 2.37 1.75 4.51 3.95 2.81 45.00 30.00 25.00 47.31
100 0.37 0.43 0.17 0.05 1.68 1.02 0.37 3.00 1.50 1.00 47.81
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.85

vsftpd 10 0.38 2.45 2.16 1.60 3.74 3.23 1.80 35.00 25.00 25.00 51.11
100 0.23 0.33 0.07 0.14 0.91 0.17 0.22 2.00 1.50 1.50 51.47
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51.47

pure-ftpd 10 0.41 2.23 1.96 1.43 3.61 3.14 2.83 25.00 25.00 10.00 49.89
100 0.28 0.04 0.00 0.00 0.15 0.00 0.00 2.50 1.50 1.50 50.03
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.05

exim 10 0.25 2.72 1.12 1.88 5.12 4.06 4.81 35.00 15.00 20.00 10.31
100 0.53 0.58 0.01 0.00 1.36 0.01 0.00 7.50 1.00 0.00 10.63
200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.65

ImageMagic 10 0.64 0.21 0.10 0.04 1.51 1.23 0.91 20.00 15.00 10.00 5.27
convert 100 0.54 0.09 0.07 0.00 0.17 0.10 0.00 2.50 1.00 0.00 5.53

200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.55

gcc 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66
200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66

epiphany 10 0.93 10.91 0.22 0.00 19.60 1.29 0.00 85.00 40.00 0.00 23.41
100 0.81 10.76 0.20 0.08 15.50 1.14 0.57 40.00 10.00 6.50 23.73
500 0.33 2.94 0.01 0.01 12.14 0.09 0.08 8.70 0.40 0.30 24.01
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.01

uzbl 10 0.92 2.16 0.25 0.12 18.90 1.30 0.81 90.00 40.00 30.00 30.81
100 0.83 2.09 0.04 0.03 17.36 0.96 0.75 50.50 3.50 2.50 30.83
500 0.65 0.57 0.01 0.01 9.08 0.34 0.17 10.70 0.90 0.60 30.91
1000 0.45 0.46 0.03 0.02 7.94 0.52 0.33 4.30 0.85 0.35 30.91

Unit-tested features of the test programs all remain functional

after CCFG learning and enforcement. Section 5.3 evaluates the

accuracy more precisely by measuring false positive rates under a

variety of conditions.

5.2.2 Gadget Analysis. Although control-flow trimming is primar-

ily envisioned as a semantic feature removal method and not a

gadget removal method, gadget chains are nevertheless one ex-

ample of a class of unwanted semantic features that control-flow

trimming might remove. To study the effect of control-flow trim-

ming on gadget reachability, we used ROPgadget [67] to find all

gadgets in the rewritten test binaries. Since our threat model pes-

simistically assumes attackers have unrestricted write-access to the

stack and heap, our gadget reachability analysis assumes that the

attacker can cause any of these gadget addresses to flow as input to

any indirect branch or return instruction in the original program.

Our defense substitutes all such instructions with guarded-branches

and replaces unreachable instructions with int3; thus, in order to

circumvent (i.e., jump over) the guards to reach a hijackable instruc-

tion, the attacker must first supply at least one malicious gadget

address that the guards accept, in order to initiate the chain.

To evaluate whether this is possible, for each program we col-

lected all contexts of length k − 1 observed during training and

testing, appended each discovered gadget address to each, and

computed the hashes of the resulting length-k contexts. We then

examined whether the hash table that approximates the CCFG pol-

icy contains a 0 or 1 for each hash value. In all cases, the hash table

entry was 0, prompting a policy rejection of the hijacking attempt.

We also simulated the attacks discovered by ROPgadget using Pin

and verified that the guards indeed block the attacks in practice.

We can also study the theoretical probability of realizing a gadget

chain. The probability of finding a gadget address that can pass

the guard code to initiate a gadget chain is approximately equal

to the ratio p of 1’s to 0’s in the hash table that encodes the CCFG

policy. This can be reduced almost arbitrarily small by increasing

the hash table size relative to the code size (see §3). For example, in

gcc this ratio is as small as 0.004. Only 650KB of the original 8499KB

code section is visited by the unit tests and remains reachable after

control-flow trimming—an attack surface reduction of 92%.

Moreover, if control-flow trimming is coupled with software

fault isolation (SFI) [50, 82, 89] to enforce indivisible basic blocks

for the guarded-jump trampolines in Table 4, then the probability

of realizing a length-n gadget chain reduces to pn . Since SFI is

much easier to realize than CFI for source-free binaries (because

it enforces a very simple CFG recoverable by binary disassembly),

and tends to impose very low runtime overhead, we consider such

a pairing to be a promising direction of future work.

5.3 Accuracy
5.3.1 Specificity. To measure our approach’s accuracy in retaining

consumer-desired features while excluding undesired ones, we used

the programs in Table 7, including several real-world ftp servers,

exim, ImageMagic convert, gcc, and two web browsers, since they

constitute large, complex pieces of software.

To test gcc, we trained by compiling its own source code to a 64-

bit binary, and tested by attempting to compile many C programs to

various architectures (32-bit and 64-bit) using the trimmed binary.

For other programs we used the test suites described earlier. In

the ImageMagic experiments, the desired functionality is convert-

ing a JPG picture to PNG format, and the undesired functionality is
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Figure 4: Accuracy vs. interaction diversity with uzbl, using
a fixed training set size of 100 and t = 0.0

resizing a picture. For ftp servers, the undesired functionalities are

the SITE and DELETE commands, and the remaining commands are

desired. Ftp file content and command order were randomized dur-

ing training and evaluation. For exim, the undesired functionality

is -oMs (which sets the sender host name instead of looking it up).

The undesired functionalities for epiphany and uzbl-browser are

incognito mode and cookie add/delete, respectively.

Positives in the classification are execution failures during testing,
as signaled by premature abort with a security violation warning.

False negatives are runs that exercise a consumer-undesired seman-

tic feature even after trimming. In contrast, a false positive occurs
when the defense aborts a consumer-desired functionality.

For all these experiments, the false negative rate is zero. That is,
no consumer-unwanted functionality is available in any of the test

binaries after trimming. For example, after instrumenting gcc with

training data that uses the -m64 command-line flag to target 64-bit

architectures, the trimmed binary is unable to compile any program

for 32-bit architectures; specifying -m32 on the command-line yields

a security abort. This is because our method is a whitelisting ap-

proach that prefers overfitting to maintain high assurance. The

same experiments performed using prior CFI-only solutions yield

the 100% false negative rate reported in Table 1.

A classification’s susceptibility to false positives can be measured

in terms of its false positive ratio (i.e., the complement of its speci-
ficity). The false positive ratio of control-flow trimming is driven

by the unit testing’s ability to comprehensively model the set of

semantic features desired by the consumer. We therefore measure

accuracy as the false positive ratio, broken down into three mea-

sures: the percentage of contexts incorrectly identified as anomalies,

the percentage of branch origins that at least one context anomaly

incorrectly detected at that branch site, and the total percentage of

traces in which at least one anomaly was incorrectly detected.

Table 7 shows the resulting false positive ratios. Each entry in

the table is averaged over 10 different experiments in which trace

samples are randomly drawn. Since the training phase’s accuracy

depends significantly on the size of the training data, we conducted

experiments with 10–1000 samples for training, evaluation, and

testing with a ratio of 3 : 1 : 1. The experiments consider the effects

of two different confidence thresholds for CCFG pruning (see §3.2):

0.0, 0.25, and an optimal threshold t∗ experimentally determined

as the minimum threshold that achieves zero false negatives for

evaluation sample traces. A threshold of 0.0 means no pruning,

which is the most conservative CCFI policy (no relaxation). All

experiments use contexts of length 4 as described in §4.
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Figure 5: False negative ratios with varying table sizes

As expected, increasing the training data size significantly im-

proves classification accuracy, until at higher training sizes, almost

all experiments exhibit perfect accuracy. More aggressive CCFG

policy pruning via lower confidence thresholds helps to offset the

effects of overfitting when limited training data is available. Increas-

ing context size has a reverse effect; the increased discriminatory

power of the classifier (due to widening its feature space by a mul-

tiplicative factor for each additional context entry) creates a more

complex concept for it to learn. More comprehensive training is

therefore typically required to learn the concept.

5.3.2 Interactive Experiments. As a whitelisting approach, our de-
sign primarily targets software whose desired features are well

known to the consumer, and can therefore be fully exercised during

training. Table 7 shows that highly interactive products, such as

browsers, might require more training to learn all their features as

a result of this design. Experiments on epiphany and uzbl require

about 500 traces to obtain high accuracy, with a few rare corner

cases for epiphany only discovered after about 1000 traces, and uzbl

never quite reaching perfect accuracy.

To better understand the relationship between interaction di-

versity and training burden for such products, Figure 4 plots the

accuracy rate for uzbl as the diversity of interactions increases,

with the training set size held fixed at 100 traces. Each data point

characterizes an experiment in which training and testing are lim-

ited to x ∈ [1, 12] different types of user interactions (e.g., using

forward-backward navigation but not page-zoom). The results show

an approximately linear decline in accuracy as the diversity of inter-

actions increases, indicating that more training is needed to learn

the consumer’s more complex policy.

5.3.3 Table Size. For efficiency purposes, our enforcement approx-

imates the policy being enforced as a hash table (see §3.3). Poor

approximations that use an overly small hash table could permit

dangerous false negatives (e.g., undetected attacks), since the en-

forcement would inadvertently accept policy-violating contexts

whose hashes happen to collide with at least one policy-permitted

context. To investigate the minimum table sizes needed to avoid

these risks, we therefore performed an additional series of experi-

ments wherein we varied the hash table size without changing the

policy, and measured the false negative ratio for each size.

Figure 5 plots the results for six of the programs with test suites,

with hash table size on the x-axis and false negative ratio on the

y-axis. The results show that even hash table sizes as small as 128

bytes (1024 bit-entries) reliably achieve a zero false negative rate.

This is because policy-accepted contexts are so rare relative to the



space of all possible contexts that almost any sequence of contexts

that implements an undesired feature quickly witnesses at least

one context that is policy-violating, whereupon it is rejected.

Our experiments nevertheless use larger table sizes than this

minimum in order to minimize population ratiop, which §5.2 shows
is important for resisting implementation-aware code-reuse attacks.

Specifically, table sizes that scale with the code section size are

recommended for security-sensitive scenarios where the threat

model anticipates that adversaries have read-access to the table,

and might use that knowledge to craft gadget chains.

6 DISCUSSION
6.1 Control-flow Obfuscation
Although our evaluation presently only targets non-obfuscated

binary code, we conjecture that control-flow trimming via CCFG

enforcement has potentially promising applications for hardening

obfuscated binaries as well. Instruction-level diversification [21],

opaque predicates [47], and control-flow flattening [84] are some

examples of code obfuscation and anti-piracy techniques that are

commonly applied by code-producers to prevent effective binary

reverse-engineering.

For example, flattening adds a dispatcher to the program through

which all control-flow transfers are rerouted. This makes it more

difficult for adversaries to reverse-engineer the control-flows, but

it also prevents context-insensitive CFI protections from secur-

ing them, since the flattening transforms individual CFG edges

into chains of edges that must be permitted or rejected. Context-

sensitivity is needed to reject the chain without rejecting the indi-

vidual edges in the chain. The context-sensitivity of our approach

therefore makes it well-suited to such obfuscations.

6.2 Shared Libraries
Our experiments report results for CCFG policies enforced on user-

level applications and their dedicated libraries, but not on system

shared libraries. Securing system shared libraries can be accom-

plished similarly, but if the library continues to be shared, its policy

must permit all the semantic features of all the applications that

import it. This can introduce unavoidable false negatives for the

individual applications that share it. We therefore recommend that

consumers who prioritize security should avoid shared versions of

the system libraries in security-critical applications, so that control-

flow trimming can specialize even the system library code to the

application’s specific usage requirements.

6.3 Concurrency, Non-determinism, and
Non-control Data Attacks

Our IRM implementation stores contextual information in thread-

local machine registers for safety and efficiency. This immunizes

it against context pollution due to concurrency. However, it also

means that it cannot block attacks that have no effect upon any

thread’s control-flow, such as non-control data attacks in which

one thread corrupts another thread’s data without affecting its own

control-flows or those of the victim thread. Such attacks are beyond

the scope of all CFI-based defenses [2].

7 RELATEDWORK
7.1 Code Surface Reduction
Software debloating has been used in the past to reduce code sizes

for performance and security. Such techniques were initially applied

to Linux kernels to save memory on embedded systems [19, 35,

45]. Later the focus shifted to reducing the kernel’s attack surface

to improve security [33, 42–44, 77]. Prior work has shown that

certain Linux kernel deployments leave 90% of kernel functions

unused [42]. kRazor learns the set of used functions based on

runtime traces, and limits the code reachability using a kernel

module. Face-Change [33] makes multiple minimized kernels in a

VM and exposes each minimized kernel to a particular application

upon context-switching. In contrast to these works, our approach

is not kernel-specific, can enforce context-sensitive control-flow

policies, and can debloat code at instruction-level granularity.

Code surface reduction has recently started to be applied to user-

level libraries and programs. Winnowing [48] is a source-aware

static analysis and code specialization technique that uses partial

evaluation to preserve developer-intended semantics of programs.

It implements Occam, which performs both intra-module and inter-

module winnowing atop LLVM, and produces specific version of

the program based on the deployment setup. Piecewise Debloat-

ing [64] uses piece-wise compilation to maintain intra-modular de-

pendencies, and a piece-wise loader that generates an inter-modular

dependency graph. The loader removes all code that is not in the

dependency graph. Chisel [36] debloats the program given a high-

level specification from the user. The specification identifies wanted

and unwanted program input/output pairs, and requires the source

code and the compilation toolchain. To accelerate program reduc-

tion, Chisel uses reinforcement learning. It repeats a trial and error

approach to make a more precise Markov Decision Process that

corresponds to the specification.

Source-free, binary code reduction has been achieved for certain

closed-sourceWindows applications by removing unimported func-

tions in shared libraries at load time [54]. The approach requires

image freezing, which prevents any new code section or executable

memory page from being added. Shredder [51] is another source-

free approach that specializes the API interface available to the

application. It combines inter-procedural backwards data flow anal-

ysis and lightweight symbolic execution to learn a policy for each

function in the program. Although these approaches boast source-

freedom, they can only permit or exclude program behaviors at the

granularity of functions with well-defined interfaces. Many critical

security vulnerabilities, including Shellshock, cannot be isolated to

individual functions, so cannot be pruned in this way without re-

moving desired program behaviors. Our approach therefore learns

and enforces policies definable as arbitrary CCFGs irrespective of

function boundaries or even the feasibility of recovering function

abstractions from the binary.

7.2 Control-flow Integrity
SFI [82] and CFI [1] confine software to a whitelist of permitted

control-flow edges by guarding control-transfer instructions with

dynamic checks that validate their destinations. In SFI, the policy is

typically a sandboxing property that isolates the software to a subset

of the address space, whereas CFI approaches typically enforce



stronger properties that restrict each module’s internal flows. In

both cases the policy is designed to prohibit flows unintended

or unwanted by software developers (e.g., developer-unwanted

component interactions or control-flow hijacks). Since the original

works, the research community have proposedmany variations (e.g.,

[4, 22, 23, 29, 49, 52, 57–60, 63, 78–80, 85, 89, 91, 92]), most of which

improve security, performance, compatibility, and/or applicability

to various code domains and architectures.

CFI algorithms come in context-sensitive and context-insensitive

varieties. Context-sensitivity elevates the power of the policy lan-

guage using contextual information, such as return address history

or type information, usually in a protected shadow stack. The price

of such power is usually lower performance due to maintaining,

consulting, and securing the contexts. Low overhead solutions must

usually relax policies, introducing a sacrifice of assurance.

For example, kBouncer [61] enforces a context-sensitive policy

that considers the previous 16 jump destinations at each system

call. Unfortunately, enforcing the policy only at system calls makes

the defense susceptible to history-flushing attacks [18], wherein

attackers make 16 benign redundant jumps followed by a system

call. ROPecker [20] and PathArmor [79] implements OS kernel

modules that consult last branch record (LBR) CPU registers to

achieve lower performance, which are only available at ring 0. Both

systems implement sparse checking regimens to save overhead,

in which not every branch is checked. CCFI [49] uses message

authentication codes (MACs) to protect important pointers, such as

return addresses, function pointers, and vtable pointers, to enforce

call-return matching policies.

CFI methodologies can also be partitioned into source-aware and

source-agnostic approaches. Source-aware approaches are typically

more powerful and more efficient, because they leverage source

code information to infer more precise policies and optimize code.

However, they are inapplicable to consumers who receive closed-

source software in strictly binary form, and who wish to enforce

consumer-specific policies. They likewise raise difficulties for soft-

ware products that link to closed-source library modules. These

difficulties have motivated source-agnostic approaches.

WIT [4], MIP [57], MCFI [58], Forward CFI [78], RockJIT [59],

CCFI [49], π -CFI [60], VTrust [90], VTable Interleaving [12], Pitty-

Pat [26], CFIXX [16], and µCFI[38] are examples of source-aware

CFI. XFI [29], Native Client [89], MoCFI [22], CCFIR [91], bin-

CFI [92], O-CFI [52], BinCC [85], Lockdown [63], PathArmor [79],

TypeArmor [80], C-FLAT [3], OFI [87], and τCFI [55] are all exam-

ples of source-free approaches.

Our research addresses the problem of consumer-side software

feature trimming and customization, which calls for a combination

of source-agnosticism and context-sensitivity. Binary control-flow

trimming is therefore the first work to target this difficult combi-

nation for fine-grained CCFG learning and enforcement. Table 1

emphasizes the difference between this problem and the problems

targeted by prior works. For example, PathArmor enforces con-

textual CFG policies, but maintains a much sparser context that is

only checked at system API calls. This suffices to block exploita-

tion of developer-unintended features, but not abusable developer-

intended functionalities.

7.3 Partial Evaluation
Partial evaluation [40] is a program analysis and transformation

that specializes code designed to accommodate many inputs to

instead accommodate only a specific subset of possible inputs. This

can have the effect of shrinking and optimizing the code, at the

expense of deriving code of less generality. Although partial evalu-

ation has traditionally only been applied to source code programs,

recent work has applied it to de-bloat native codes without sources.

WiPEr [27, 75] lifts Intel IA-32 native code to CodeSurfer/x86 in-

termediate form [9], converts it to a quantifier-free bit-vector logic

amenable to specialization, and then synthesizes specialized native

code usingMcSynth [76]. While the approach is promising, it is

currently only applicable to relatively small binary programs with

clearly demarcated inputs, such as integers. Larger inputs, such

as string command-lines or user-interactive behaviors, prevent

the slicing algorithm from effectively extracting and eliminating

concept-irrelevant portions of the code automatically.

7.4 Abnormal Behavior Detection
Our approach to learning CCFG policies from traces is a form of

anomaly-based intrusion detection, which also has security appli-

cations for malware detection and software behavior prediction.

7.4.1 Malware Detection and Code Reuse. Static and dynamic anal-

yses are both used in modern malware detection. Static analysis

can be based on source code or binaries, and does not use any run-

time information. For example, Apposcopy [30] uses static taint

analysis and inter-component call graphs to match applications

with malware signatures specified in a high level language that de-

scribes semantic characteristics of malware. Static code analysis for

malware detection has been proved to be undecidable in general, as

witnessed by opaque constants [53], which can obfuscate register-

load operations from static analyses. As a result, most of the recent

works in this genre use dynamic or hybrid static-dynamic analyses

(e.g., [7, 41, 62]). As an example of dynamic analysis, Crowdroid [15]

uses system calls, information flow tracking, and network moni-

toring to detect malware and trojans as they are being executed.

TaintDroid [28] is another Android application that constantly

monitors the system and detects leaks of user-sensitive information

using dynamic taint analysis.

7.4.2 Software Behavior Prediction. Prior works have leveraged
machine learning to classify program traces. Markovmodels trained

on execution traces can learn a classifier of program behaviors [13].

Random forests are another effective technique [34]. Software be-

havioral anomalies have also be identified via intra-component

CFGs constructed from templates mined from execution traces [56].

Recent work has also applied clustering of input/output pairs and

their amalgamations for this purpose [6]. Our approach adopts a

decision tree forest model because of its efficient implementation

as in-lined native code (see §4) and its amenability to relaxation

and specialization at control-flow transfer points (see §3.2).

8 CONCLUSION
Control-flow trimming is the first work to offer an automated,

source-free solution for excluding developer-intended but con-

sumer-unwanted functionalities expressible as CCFGs from binary



software products with complex input spaces, such as command-

lines, files, user interactivity, or data structures. Using only traces

that exercise consumer-desired behaviors, the system learns a con-

textual CFG policy that whitelists desired semantic features, and in-

lines an enforcement of that policy in the style of context-sensitive

CFI into the target binary. A prototype implementation for Intel x86-

64 native code architectures exhibits low runtime overhead (about

1.87%) and high accuracy (zero misclassifications) for training sets

as small as 100–500 samples). Experiments on real-world software

demonstrate that control-flow trimming can eliminate zero-day

vulnerabilities associated with consumer-unwanted features, and

resist control-flow hijacking attacks based on code-reuse.
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