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CONFIRM (CONtrol-Flow Integrity Relevance Metrics) is a
new evaluation methodology and microbenchmarking suite
for assessing compatibility, applicability, and relevance of
control-flow integrity (CFI) protections for preserving the in-
tended semantics of software while protecting it from abuse.
Although CFI has become a mainstay of protecting certain
classes of software from code-reuse attacks, and continues
to be improved by ongoing research, its ability to preserve
intended program functionalities (semantic transparency) of
diverse, mainstream software products has been under-studied
in the literature. This is in part because although CFI solu-
tions are evaluated in terms of performance and security, there
remains no standard regimen for assessing compatibility. Re-
searchers must often therefore resort to anecdotal assessments,
consisting of tests on homogeneous software collections with
limited variety (e.g., GNU Coreutils), or on CPU benchmarks
(e.g., SPEC) whose limited code features are not representa-
tive of large, mainstream software products.

Reevaluation of CFI solutions using CONFIRM reveals
that there remain significant unsolved challenges in securing
many large classes of software products with CFI, includ-
ing software for market-dominant OSes (e.g., Windows) and
code employing certain ubiquitous coding idioms (e.g., event-
driven callbacks and exceptions). An estimated 47% of CFI-
relevant code features with high compatibility impact remain
incompletely supported by existing CFI algorithms, or receive
weakened controls that leave prevalent threats unaddressed
(e.g., return-oriented programming attacks). Discussion of
these open problems highlights issues that future research
must address to bridge these important gaps between CFI
theory and practice.

1 Introduction

Control-flow integrity (CFI) [1] (supported by vtable protec-
tion [29] and/or software fault isolation [73]), has emerged as
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one of the strongest known defenses against modern control-
flow hijacking attacks, including return-oriented program-
ming (ROP) [60] and other code-reuse attacks. These attacks
trigger dataflow vulnerabilities (e.g., buffer overflows) to ma-
nipulate control data (e.g., return addresses) to hijack victim
software. By restricting program execution to a set of legiti-
mate control-flow targets at runtime, CFI can mitigate many
of these threats.

Inspired by the initial CFI work [1], there has been prolific
new research on CFI in recent years, mainly aimed at improv-
ing performance, enforcing richer policies, obtaining higher
assurance of policy-compliance, and protecting against more
subtle and sophisticated attacks. For example, between 2015–
2018 over 25 new CFI algorithms appeared in the top four
applied security conferences alone. These new frameworks
are generally evaluated and compared in terms of performance
and security. Performance overhead is commonly evaluated
in terms of the CPU benchmark suites (e.g., SPEC), and se-
curity is often assessed using the RIPE test suite [80] or with
manually crafted proof-of-concept attacks (e.g., COOP [62]).
For example, a recent survey systematically compared various
CFI mechanisms against these metrics for precision, security,
and performance [13].

While this attention to performance and security has stimu-
lated rapid gains in the ability of CFI solutions to efficiently
enforce powerful, precise security policies, less attention
has been devoted to systematically examining which gen-
eral classes of software can receive CFI protection without
suffering compatibility problems. Historically, CFI research
has struggled to bridge the gap between theory and practice
(cf., [84]) because code hardening transformations inevitably
run at least some risk of corrupting desired, policy-permitted
program functionalities. For example, introspective programs
that read their own code bytes at runtime (e.g., many VMs,
JIT compilers, hot-patchers, and dynamic linkers) can break
after their code bytes have been modified or relocated by CFI.

Compatibility issues of this sort have dangerous security
ramifications if they prevent protection of software needed in
mission-critical contexts, or if the protections must be weak-



ened in order to achieve compatibility. For example, due in
part to potential incompatibilities related to return address
introspection (wherein some callees read return addresses as
arguments) the three most widely deployed compiler-based
CFI solutions (LLVM-CFI [69], GCC-VTV [69], and Mi-
crosoft Visual Studio MCFG [66]) all presently leave return
addresses unprotected, potentially leaving code vulnerable to
ROP attacks—the most prevalent form of code-reuse.

Understanding these compatibility limitations, including
their impacts on real-world software performance and secu-
rity, requires a new suite of CFI functional tests with substan-
tially different characteristics than benchmarks typically used
to assess compiler or hardware performance. In particular,
CFI relevance and effectiveness is typically constrained by
the nature and complexity of the target program’s control-
flow paths and control data dependencies. Such complexities
are not well represented by SPEC benchmarks, which are de-
signed to exercise CPU computational units using only simple
control-flow graphs, or by utility suites (e.g., GNU Coreutils)
that were all written in a fairly homogeneous programming
style for a limited set of compilers, and that use a very lim-
ited set of standard libraries chosen for exceptionally high
cross-compatibility.

To better understand the compatibility and applicability
limitations of modern CFI solutions on diverse, modern soft-
ware products, and to identify the coding idioms and features
that constitute the greatest barriers to more widespread CFI
adoption, we present CONFIRM (CONtrol-Flow Integrity
Relevance Metrics), a new suite of CFI tests designed to ex-
hibit code features most relevant to CFI evaluation.1 Each test
is designed to exhibit one or more control-flow features that
CFI solutions must guard in order to enforce integrity, that
are found in a large number of commodity software products,
but that pose potential problems for CFI implementations.

It is infeasible to capture in a single test set the full diversity
of modern software, which embodies myriad coding styles,
build processes (e.g., languages, compilers, optimizers, ob-
fuscators, etc.), and quality levels. We therefore submit CON-
FIRM as an extensible baseline for testing CFI compatibility,
consisting of code features drawn from experiences building
and evaluating CFI and randomization systems for several
architectures, including Linux, Windows, Intel x86/x64, and
ARM32 in academia and industry [7, 33, 45, 47, 75, 77–79].

Our work is envisioned as having the following qualitative
impacts: (1) CFI designers (e.g., compiler developers) can
use CONFIRM to detect compatibility flaws in their designs
that are currently hard to anticipate prior to full scale produc-
tization. This can lower the currently steep barrier between
prototype and distributable product. (2) Defenders (e.g., de-
velopers of secure software) can use CONFIRM to better
evaluate code-reuse defenses, in order to avoid false senses of
security. (3) The research community can use CONFIRM to

1https://github.com/SoftwareLanguagesSecurityLab/ConFIRM

identify and prioritize missing protections as important open
problems worthy of future investigation.

We used CONFIRM to reevaluate 12 publicly available CFI
implementations published in the open literature. The results
show that about 47% of solution-test pairs exhibit incompat-
ible or insecure operation for code features needed to sup-
port mainstream software products, and a cross-thread stack-
smashing attack defeats all tested CFI defenses. Microbench-
marking additionally reveals some performance/compatibility
trade-offs not revealed by purely CPU-based benchmarking.

In summary, our contributions include the following:

• We present CONFIRM, the first testing suite designed
specifically to test compatibility characteristics relevant
to control-flow security hardening evaluation.

• A set of 20 code features and coding idioms are iden-
tified, that are widely found in deployed, commodity
software products, and that pose compatibility, perfor-
mance, or security challenges for modern CFI solutions.

• Evaluation of 12 CFI implementations using CONFIRM
reveals that existing CFI implementations are compat-
ible with only about half of code features and coding
idioms needed for broad compatibility, and that micro-
benchmarking using CONFIRM reveals performance
trade-offs not exhibited by SPEC benchmarks.

• Discussion and analysis of these results highlights sig-
nificant unsolved obstacles to realizing CFI protections
for widely deployed, mainstream, commodity products.

Section 2 begins with a summary of technical CFI attack
and defense details important for understanding the evaluation
approach. Section 3 next presents CONFIRM’s evaluation
metrics in detail, including a rationale behind why each metric
was chosen, and how it impacts potential defense solutions;
and Section 4 describes implementation of the resulting tests.
Section 5 reports our evaluation of CFI solutions using CON-
FIRM and discusses significant findings. Finally, Section 6
describes related work and Section 7 concludes.

2 Background

CFI defenses first emerged from an arms race against early
code-injection attacks, which exploit memory corruptions
to inject and execute malicious code. To thwart these ma-
licious code-injections, hardware and OS developers intro-
duced Data Execution Prevention (DEP), which blocks ex-
ecution of injected code. Adversaries proceeded to bypass
DEP with “return-to-libc” attacks, which redirect control to
existing, abusable code fragments (often in the C standard
libraries) without introducing attacker-supplied code. In re-
sponse, defenders introduced Address Space Layout Random-
ization (ASLR), which randomizes code layout to frustrate
its abuse. DEP and ASLR motivated adversaries to craft even
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more elaborate attacks, including ROP and Jump-Oriented
Programming (JOP) [11], which locate, chain, and execute
short instruction sequences (gadgets) of benign code to im-
plement malicious payloads.

CFI emerged as a more comprehensive and principled de-
fense against this malicious code-reuse. Most realizations con-
sist of two main phases: (1) A program-specific control-flow
policy is first formalized as a (possibly dynamic) control-flow
graph (CFG) that whitelists the code’s permissible control-
flow transfers. (2) To constrain all control flows to the CFG,
the program code is instrumented with guard code at all com-
puted (e.g., indirect) control-flow transfer sites. The guard
code decides at runtime whether each impending transfer
satisfies the policy, and blocks it if not. The guards are de-
signed to be uncircumventable by confronting attackers with
a chicken-and-egg problem: To circumvent a guard, an attack
must first hijack a control transfer; but since all control trans-
fers are guarded, hijacking a control transfer requires first
circumventing a guard.

Both CFI phases can be source-aware (implemented as a
source-to-source transformation, or introduced during com-
pilation), or source-free (implemented as a binary-to-binary
transformation). Source-aware solutions typically benefit
from source-level information to derive more precise poli-
cies, and can often perform more optimization to achieve
better performance. Examples include WIT [5], NaCl [81],
CFL [11], MIP [48], MCFI [49], RockJIT [50], Forward
CFI [69], CCFI [42], πCFI [51], MCFG [66] CFIXX [14]
and µCFI [35]. In contrast, source-free solutions are po-
tentially applicable to a wider domain of software products
(e.g., closed-source), and have a more flexible deployment
model (e.g., consumer-side enforcement without developer
assistance). These include XFI [26], Reins [78], STIR [77],
CCFIR [84], bin-CFI [87], BinCC [74], Lockdown [54], Ty-
peArmor [72], OCFI [45], OFI [75] and τCFI [47].

The advent of CFI is a significant step forward for defend-
ers, but was not the end of the arms race. In particular, each
CFI phase introduces potential loopholes for attackers to ex-
ploit. First, it is not always clear which policy should be
enforced to fully protect the code. Production software often
includes complex control-flow structures, such as those intro-
duced by object-oriented programming (OOP) idioms, from
which it is difficult (even undecidable) to derive a CFG that
precisely captures the policy desired by human developers
and users. Second, the instrumentation phase must take care
not to introduce guard code whose decision procedures con-
stitute unacceptably slow runtime computations [34]. This
often results in an enforcement that imprecisely approximates
the policy. Attackers have taken advantage of these loop-
holes with ever more sophisticated attacks, including Coun-
terfeit Object Oriented Programming (COOP) [62], Control
Jujutsu [28], and Control-Flow Bending [15].

These weaknesses and threats have inspired an array of new
and improved CFI algorithms and supporting technologies in

recent years. For example, to address loopholes associated
with OOP, vtable protections prevent or detect virtual method
table corruption at or before control-flow transfers that depend
on method pointers. Source-aware vtable protections include
GNU VTV [68], CPI [40], SAFEDISPATCH [37], Readac-
tor++ [19], and VTrust [82]; whereas source-free instantia-
tions include T-VIP [29], VTint [83], and VfGuard [58].

However, while the security and performance trade-offs
of various CFI solutions have remained actively tracked and
studied by defenders throughout the arms race, attackers are
increasingly taking advantage of CFI compatibility limita-
tions to exploit unprotected software, thereby avoiding CFI
defenses entirely. For example, 88% of CFI defenses cited
herein have only been realized for Linux software, but over
95% of desktops worldwide are non-Linux.2 These include
many mission-critical systems, including over 75% of con-
trol systems in the U.S. [39], and storage repositories for top
secret military data [53]. None of the top 10 vulnerabilities ex-
ploited by cybercriminals in 2017 target Linux software [25].

While there is a hope that small-scale prototyping will
result in principles and approaches that eventually scale to
more architectures and larger software products, follow-on
works that attempt to bridge this gap routinely face significant
unforeseen roadblocks. We believe many of these obstacles
remain unforeseen because of the difficulty of isolating and
studying many of the problematic software features lurking
within large, commodity products, which are not well repre-
sented in open-source codes commonly available for study by
researchers during prototyping.

The goal of this research is therefore to describe and ana-
lyze a significant collection of code features that are routinely
found in large software products, but that pose challenges
to effective CFI enforcement; and to make available a suite
of CFI test programs that exhibit each of these features on
a small scale amenable to prototype development. The next
section discusses this feature set in detail.

3 Compatibility Metrics

To measure compatibility of CFI mechanisms, we propose a
set of metrics that each includes one or more code features
from either C/C++ source code or compiled assembly code.
We derived this feature set by attempting to apply many CFI
solutions to large software products, then manually testing
the functionalities of the resulting hardened software for cor-
rectness, and finally debugging each broken functionality
step-wise at the assembly level to determine what caused the
hardened code to fail. Since many failures manifest as subtle
forms of register or memory corruption that only cause the
program to crash or malfunction long after the failed oper-
ation completes, this debugging constitutes many hundreds

2http://gs.statcounter.com/os-market-share/desktop/worldwide
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Table 1: CONFIRM compatibility metrics
Compatibility metric Real-world software examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, TeXstudio, Visual Studio, Windows Defender, WinSCP

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer, Visual Studio, WinSCP
Exporting/Importing Data 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS PowerPoint, PowerShell, TeXstudio, UPX, Visual

Studio
Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, TeXstudio, Visual Studio, Windows Defender, WinSCP
CODE-COOP Attack Programs built on GTK+ or Microsoft COM can pass objects to trusted modules as arguments.
Tail Calls Mainstream compilers provide options for tail call optimization. e.g. /O2 in MSVC, -O2 in GCC, and -O2 in LLVM.
Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer, PuTTY,

TeXstudio, Visual Studio, WinSCP
Returns Every benign program has returns.
Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio
Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, Visual Studio, Windows Defender, WinSCP
Calling Conventions Every program adopts one or more calling convention.
Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
Memory Protection 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, PotPlayer, TeXstudio, Visual Studio, Windows

Defender, WinSCP

JIT Compiler Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, PowerShell, Skype, Visual Studio, WinSCP
Self-Unpacking Programs decompressed by self-extractors (e.g., UPX, NSIS).
Windows API Hooking Microsoft Office family software, including MS Excel, MS PowerPoint, etc.

Table 2: Source code compiled to indirect call
Source code Assembly code

1 void foo() { return; }
2 void bar() { return; }
3 void main() {
4 void (*fptr)(); 1 ...
5 int n = input(); 2 call _input
6 if (n) 3 test eax, eax
7 fptr = foo; 4 mov edx, offset_foo
8 else 5 mov ecx, offset_bar
9 fptr = bar; 6 cmovnz ecx, edx

10 fptr(); 7 call ecx
11 } 8 ...

of person-hours amassed over several years of development
experience involving CFI-protected software.

Table 1 presents the resulting list of code features organized
into one row for each root cause of failure. Column two
additionally lists some widely available, commodity software
products where each of these features can be observed in non-
malicious software in the wild. This demonstrates that each
feature is representative of real-world software functionalities
that must be preserved by CFI implementations in order for
their protections to be usable and relevant in contexts that
deploy these and similar products.

3.1 Indirect Branches

We first discuss compatibility metrics related to the code
feature of greatest relevance to most CFI works: indirect
branches. Indirect branches are control-flow transfers whose
destination addresses are computed at runtime—via pointer
arithmetic and/or memory-reads. Such transfers tend to be
of high interest to attackers, since computed destinations are
more prone to manipulation. CFI defenses therefore guard
indirect branches to ensure that they target permissible destina-
tions at runtime. Indirect branches are commonly categorized
into three classes: indirect calls, indirect jumps, and returns.

Table 2 shows a simple example of source code being
compiled to an indirect call. The function called at source
line 5 depends on user input. This prevents the compiler from
generating a direct branch that targets a fixed memory address
at compile time. Instead, the compiler generates a register-
indirect call (assembly line 7) whose target is computed at
runtime. While this is one common example of how indirect
branches arise, in practice they are a result of many different
programming idioms, discussed below.

Function Pointers. Calls through function pointers typi-
cally compile to indirect calls. For example, using gcc with
the -O2 option generates register-indirect calls for function
pointers, and MSVC does so by default.



Callbacks. Event-driven programs frequently pass function
pointers to external modules or the OS, which the receiv-
ing code later dereferences and calls in response to an event.
These callback pointers are generally implemented by using
function pointers in C, or as method references in C++. Call-
backs can pose special problems for CFI, since the call site is
not within the module that generated the pointer. If the call
site is within a module that cannot easily be modified (e.g.,
the OS kernel), it must be protected in some other way, such
as by sanitizing and securing the pointer before it is passed.

Dynamic Linking. Dynamically linked shared libraries re-
duce program size and improve locality. But dynamic linking
has been a challenge for CFI compatibility because CFG
edges that span modules may be unavailable statically.

In Windows, dynamically linked libraries (DLLs) can be
loaded into memory at load time or runtime. In load-time
dynamic linking, a function call from a module to an ex-
ported DLL function is usually compiled to a memory-indirect
call targeting an address stored in the module’s import ad-
dress table (IAT). But if this function is called more than
once, the compiler first moves the target address to a reg-
ister, and then generates register-indirect calls to improve
execution performance. In run-time dynamic linking, a mod-
ule calls APIs, such as LoadLibrary(), to load the DLL at
runtime. When loaded into memory, the module calls the
GetProcAddress() API to retrieve the address of the ex-
ported function, and then calls the exported function using
the function pointer returned by GetProcAddress().

Additionally, MSVC (since version 6.0) provides linker
support for delay-loaded DLLs using the /DELAYLOAD linker
option. These DLLs are not loaded into memory until one of
their exported functions is invoked.

In Linux, a module calls functions exported by a shared
library by calling a stub in its procedure linkage table (PLT).
Each stub contains a memory-indirect jump whose target
depends on the writable, lazy-bound global offset table (GOT).
As in Windows, an application can also load a module at
runtime using function dlopen(), and retrieve an exported
symbol using function dlsym().

Supporting dynamic and delay-load linkage is further com-
plicated by the fact that shared libraries can also export data
pointers within their export tables in both Linux and Win-
dows. CFI solutions that modify export tables must usually
treat code and data pointers differently, and must therefore
somehow distinguish the two types to avoid data corruptions.

Virtual Functions. Polymorphism is a key feature of OOP
languages, such as C++. Virtual functions are used to sup-
port runtime polymorphism, and are implemented by C++
compilers using a form of late binding embodied as virtual
tables (vtables). The tables are populated by code pointers
to virtual function bodies. When an object calls a virtual
function, it indexes its vtable by a function-specific constant,
and flows control to the memory address read from the table.

At the assembly level, this manifests as a memory-indirect
call. The ubiquity and complexity of this process has made
vtable hijacking a favorite exploit strategy of attackers.

Some CFI and vtable protections address vtable hijack-
ing threats by guarding call sites that read vtables, thereby
detecting potential vtable corruption at time-of-use. Others
seek to protect vtable integrity directly by guarding writes to
them. However, both strategies are potentially susceptible to
COOP [62] and CODE-COOP [75] attacks, which replace
one vtable with another that is legal but is not the one the
original code intended to call. The defense problem is further
complicated by the fact that many large classes of software
(e.g., GTK+ and Microsoft COM) rely upon dynamically gen-
erated vtables. CFI solutions that write-protect vtables or
whose guards check against a static list of permitted vtables
are incompatible with such software.

Tail Calls. Modern C/C++ compilers can optimize tail-calls
by replacing them with jumps. Row 8 of Table 1 lists rele-
vant compiler options. With these options, callees can return
directly to ancestors of their callers in the call graph, rather
than to their callers. These mismatched call/return pairs affect
precision of some CFG recovery algorithms.

Switch-case Statements. Many C/C++ compilers optimize
switch-case statements via a static dispatch table populated
with pointers to case-blocks. When the switch is executed,
it calculates a dispatch table index, fetches the indexed code
pointer, and jumps to the correct case-block. This introduces
memory-indirect jumps that refer to code pointers not con-
tained in any vtable, and that do not point to function bound-
aries. CFI solutions that compare code pointers to a whitelist
of function boundaries can therefore cause the switch-case
code to malfunction. Solutions that permit unrestricted in-
direct jumps within each local function risk unsafety, since
large functions can contain abusable gadgets.

Returns. Nearly every benign program has returns. Unlike
indirect branches whose target addresses are stored in reg-
isters or non-writable data sections, return instructions read
their destination addresses from the stack. Since stacks are
typically writable, this makes return addresses prime targets
for malicious corruption.

On Intel-based CISC architectures, return instructions have
one of the shortest encodings (1 byte), complicating the ef-
forts of source-free solutions to replace them in-line with
secured equivalent instruction sequences. Additionally, many
hardware architectures heavily optimize the behavior of re-
turns (e.g., via speculative execution powered by shadow
stacks for call/return matching). Source-aware CFI solutions
that replace returns with some other instruction sequence can
therefore face stiff performance penalties by losing these op-
timization advantages.

Unmatched call/return Pairs. Control-flow transfer mech-
anisms, including exceptions and setjmp/longjmp, can yield
flows in which the relation between executed call instructions



and executed return instructions is not one-to-one. For ex-
ample, exception-handling implementations often pop stack
frames from multiple calls, followed by a single return to the
parent of the popped call chain. Shadow stack defenses that
are implemented based on traditional call/return matching
may be incompatible with such mechanisms.

3.2 Other Metrics

While indirect branches tend to be the primary code feature of
interest to CFI attacks and defenses, there are many other code
features that can also pose control-flow security problems, or
that can become inadvertently corrupted by CFI code trans-
formation algorithms, and that therefore pose compatibility
limitations. Some important examples are discussed below.

Multithreading. With the rise of multicore hardware, mul-
tithreading has become a centerpiece of software efficiency.
Unfortunately, concurrent code execution poses some serious
safety problems for many CFI algorithms.

For example, in order to take advantage of hardware call-
return optimization (see §3.1), most CFI algorithms produce
code containing guarded return instructions. The guards
check the return address before executing the return. How-
ever, on parallelized architectures with flat memory spaces,
this is unsafe because any thread can potentially write to any
other (concurrently executing) thread’s return address at any
time. This introduces a TOCTOU vulnerability in which
an attacker-manipulated thread corrupts a victim thread’s re-
turn address after the victim thread’s guard code has checked
it but before the guarded return executes. We term this a
cross-thread stack-smashing attack. Since nearly all modern
architectures combine concurrency, flat memory spaces, and
returns, this leaves almost all CFI solutions either inapplica-
ble, unsafe, or unacceptably inefficient for a large percentage
of modern production software.

Position-Independent Code. Position-independent code
(PIC) is designed to be relocatable after it is statically gen-
erated, and is a standard practice in the creation of shared
libraries. Unfortunately, the mechanisms that implement PIC
often prove brittle to code transformations commonly em-
ployed for source-free CFI enforcement. For example, PIC
often achieves its position independence by dynamically com-
puting its own virtual memory address (e.g., by performing a
call to itself and reading the pushed return address from the
stack), and then performing pointer arithmetic to locate other
code or data at fixed offsets relative to itself. This procedure
assumes that the relative positions of PIC code and data are
invariant even if the base address of the PIC block changes.

However, CFI transforms typically violate this assumption
by introducing guard code that changes the sizes of code
blocks, and therefore their relative positions. To solve this,
PIC-compatible CFI solutions must detect the introspection
and pointer arithmetic operations that implement PIC and

adjust them to compute corrected pointer values. Since there
are typically an unlimited number of ways to perform these
computations at both the source and native code levels, CFI
detection of these computations is inevitably heuristic, allow-
ing some PIC instantiations to malfunction.

Exceptions. Exception raising and handling is a main-
stay of modern software design, but introduces control-flow
patterns that can be problematic for CFI policy inference
and enforcement. Object-oriented languages, such as C++,
boast first-class exception machinery, whereas standard C pro-
grams typically realize exceptional control-flows with gotos,
longjumps, and signals. In Linux, compilers (e.g., gcc) im-
plement C++ exception handling in a table-driven approach.
The compiler statically generates read-only tables that hold
exception-handling information. For instance, gcc produces a
gcc_except_table comprised of language-specific data ar-
eas (LSDAs). Each LSDA contains various exception-related
information, including pointers to exception handlers.

In Windows, structured exception handling (SEH) extends
the standard C language with first-class support for both hard-
ware and software exceptions. SEH uses stack-based excep-
tion nodes, wherein exception handlers form a linked list on
the stack, and the list head is stored in the thread information
block (TIB). Whenever an exception occurs, the OS fetches
the list head and walks through the SEH list to find a suitable
handler for the thrown exception. Without proper protec-
tion, these exception handlers on the stack can potentially be
overwritten by an attacker. By triggering an exception, the
attacker can then redirect the control-flow to arbitrary code.
CFI protection against these SEH attacks is complicated by
the fact that code outside the vulnerable module (e.g., in the
OS and/or system libraries) uses pointer arithmetic to fetch,
decode, and call these pointers during exception handling.
Thus, suitable protections must typically span multiple mod-
ules, and perhaps the OS kernel.

From Windows XP onward, applications have additionally
leveraged vectored exception handling (VEH). Unlike SEH,
VEH is not stack-based; applications register a global handler
chain for VEH exceptions with the OS, and these handlers are
invoked by the OS by interrupting the application’s current ex-
ecution, no matter where the exception occurs within a frame.

There are at least two features of VEH that are potentially
exploitable by attackers. First, to register a vectored exception
handler, the application calls an API AddVecoredException-
Handler() that accepts a callback function pointer parameter
that points to the handler code. Securing this pointer requires
some form of inter-module callback protection.

Second, the VEH handler-chain data structure is stored
in the application’s writable heap memory, making the han-
dler chain data directly susceptible to data corruption at-
tacks. Windows protects the handlers somewhat by obfus-
cating them using the EncodePointer() API. However,
EncodePointer() does not implement a cryptographically
secure function (since doing so would impose high overhead);



it typically returns the XOR of the input pointer with a process-
specific secret. This secret is not protected against memory
disclosure attacks; it is potentially derivable from disclosure
of any encoded pointer with value known to the attacker (since
XOR is invertible), and it is stored in the process environment
block (PEB), which is readable by the process and therefore
by an attacker armed with an information disclosure exploit.
With this secret, the attacker can overwrite the heap with
a properly obfuscated malicious pointer, and thereby take
control of the application.

From a compatibility perspective, CFI protections that do
not include first-class support for these various exception-
handling mechanisms often conservatively block unusual
control-flows associated with exceptions. This can break
important application functionalities, making the protections
unusable for large classes of software that use exceptions.

Calling Conventions. CFI guard code typically instruments
call and return sites in the target program. In order to pre-
serve the original program’s functionality, this guard code
must therefore respect the various calling conventions that
might be implemented by calls and returns. Unfortunately,
many solutions to this problem make simplifying assumptions
about the potential diversity of calling conventions in order
to achieve acceptable performance. For example, a CFI so-
lution whose guard code uses EDX as a scratch register might
suddenly fail when applied to code whose calling convention
passes arguments in EDX. Adapting the solution to save and
restore EDX to support the new calling convention can lead to
tens of additional instructions per call, including additional
memory accesses, and therefore much higher overhead.

The C standard calling convention (cdecl) is caller-pop,
pushes arguments right-to-left onto the stack, and returns
primitive values in an architecture-specific register (EAX on
Intel). Each architecture also specifies a set of caller-save and
callee-save registers. Caller-popped calling conventions are
important for implementing variadic functions, since callees
can remain unaware of argument list lengths.

Callee-popped conventions include stdcall, which is the
standard convention of the Win32 API, and fastcall, which
passes the first two arguments via registers rather than the
stack to improve execution speed. In OOP languages, every
nonstatic member function has a hidden this pointer argument
that points to the current object. The thiscall convention
passes the this pointer in a register (ECX on Intel).

Calling conventions on 64-bit architectures implement sev-
eral refinements of the 32-bit conventions. Linux and Win-
dows pass up to 14 and 4 parameters, respectively, in registers
rather than on the stack. To allow callees to optionally spill
these parameters, the caller additionally reserves a red zone
(Linux) or 32-byte shadow space (Windows) for callee tem-
porary storage.

Highly optimized programs also occasionally adopt non-
standard, undocumented calling conventions, or even blur
function boundaries entirely (e.g., by performing various

forms of function in-lining). For example, some C compilers
support language extensions (e.g., MSVC’s naked declara-
tion) that yield binary functions with no prologue or epilogue
code, and therefore no standard calling convention. Such
code can have subtle dependencies on non-register processor
elements, such as requiring that certain Intel status flags be
preserved across calls. Many CFI solutions break such code
by in-lining call site guards that violate these undocumented
conventions.

TLS Callbacks. Multithreaded programs require efficient
means to manipulate thread-local data without expensive lock-
ing. Using thread local storage (TLS), applications export
one or more TLS callback functions that are invoked by the
OS for thread initialization or termination. These functions
form a null-terminated table whose base is stored in the PE
header. For compiler-based CFI solutions, the TLS callback
functions do not usually need extra protection, since both the
PE header and the TLS callback table are in unwritable mem-
ory. But source-free solutions must ensure that TLS callbacks
constitute policy-permitted control-flows at runtime.

Memory Protection. Modern OSes provide APIs for mem-
ory page allocation (e.g., VirtualAlloc and mmap) and
permission changes (e.g., VirtualProtect and mprotect).
However, memory pages changed from writable to executable,
or to simultaneously writable and executable, can potentially
be abused by attackers to bypass DEP defenses and execute
attacker-injected code. Many software applications neverthe-
less rely upon these APIs for legitimate purposes (see Table 1),
so conservatively disallowing access to them introduces many
compatibility problems. Relevant CFI mechanisms must
therefore carefully enforce memory access policies that per-
mit virtual memory management but block code-injection
attacks.

Runtime Code Generation. Most CFI algorithms achieve
acceptable overheads by performing code generation strictly
statically. The statically generated code includes fixed run-
time guards that perform small, optimized computations to
validate dynamic control-flows. However, this strategy breaks
down when target programs generate new code dynamically
and attempt to execute it, since the generated code might
not include CFI guards. Runtime code generation (RCG) is
therefore conservatively disallowed by most CFI solutions,
with the expectation that RCG is only common in a few, spe-
cialized application domains, which can receive specialized
protections.

Unfortunately, our analysis of commodity software prod-
ucts indicates that RCG is becoming more prevalent than
is commonly recognized. In general, we encountered RCG
compatibility limitations in at least three main forms across a
variety of COTS products:

1. Although typically associated with web browsers, just-
in-time (JIT) compilation has become increasingly rel-
evant as an optimization strategy for many languages,



including Python, Java, the Microsoft .NET family of
languages (e.g., C#), and Ruby. Software containing
any component or module written in any JIT-compiled
language frequently cannot be protected with CFI.

2. Mobile code is increasingly space-optimized for quick
transport across networks. Self-unpacking executables
are therefore a widespread source of RCG. At runtime,
self-unpacking executables first decompress archived
data sections to code, and then map the code into
writable and executable memory. This entails a dynamic
creation of fresh code bytes. Large, component-driven
programs sometimes store rarely used components as
self-unpacking code that decompresses into memory
whenever needed, and is deallocated after use. For ex-
ample, NSIS installers pack separate modules support-
ing different install configurations, and unpack them at
runtime as-needed for reduced size. Antivirus defenses
hence struggle to distinguish benign NSIS installers from
malicious ones [21].

3. Component-driven software also often performs a vari-
ety of obscure API hooking initializations during compo-
nent loading and clean-up, which are implemented using
RCG. As an example, Microsoft Office software dynam-
ically redirects all calls to certain system API functions
within its address space to dynamically generated wrap-
per functions. This allows it to modify the behaviors
of late-loaded components without having to recompile
them all each time the main application is updated.

To hook a function f within an imported system DLL
(e.g., ntdll.dll), it first allocates a fresh memory page
f ′ and sets it both writable and executable. It next copies
the first five code bytes from f to f ′, and writes an in-
struction at f ′+5 that jumps to f +5. Finally, it changes
f to be writable and executable, and overwrites the first
five code bytes of f with an instruction that jumps to
f ′. All subsequent calls to f are thereby redirected to f ′,
where new functionality can later be added dynamically
before f ′ jumps to the preserved portion of f .

Such hooking introduces many dangers that are difficult
for CFI protections to secure without breaking the appli-
cation or its components. Memory pages that are simulta-
neously writable and executable are susceptible to code-
injection attacks, as described previously. The RCG
that implements the hooks includes unprotected jumps,
which must be secured by CFI guard code. However, the
guard code itself must be designed to be rewritable by
more hooking, including placing instruction boundaries
at addresses expected by the hooking code ( f +5 in the
above example). No known CFI algorithm can presently
handle these complexities.

3.3 Compositional Defense Evaluation
Some CFI solutions compose CFI controls with other defense
layers, such as randomization-based defenses (e.g., [8, 9, 18,
45, 52, 77]). Randomization defenses can be susceptible to
other forms of attack, such as memory disclosure attacks (e.g.,
[27, 63–65]). CONFIRM does not test such attacks, since
their implementations are usually specific to each defense and
not easy to generalize.

Evaluation of composed defenses should therefore be con-
ducted by composing other attacks with CONFIRM tests. For
example, to test a CFI defense composed with stack canaries,
one should first simulate attacks that attempt to steal the ca-
nary secret, and then modify any stack-smashing CONFIRM
tests to use the stolen secret. Incompatibilities of the evaluated
defense generally consist of the union of the incompatibilities
of the composed defenses.

4 Implementation

To facilitate easier evaluation of the compatibility considera-
tions outlined in Section 3 along with their impact on security
and performance, we developed the CONFIRM suite of CFI
tests. CONFIRM consists of 24 programs written in C++
totalling about 2,300 lines of code. Each test isolates one
of the compatibility metrics of Section 3 (or in some cases a
few closely related metrics) by emulating behaviors of COTS
software products. Source-aware solutions can be evaluated
by applying CFI code transforms to the source codes, whereas
source-free solutions can be applied to native code after com-
pilation with a compatible compiler (e.g., gcc, LLVM, or
MSVC). Loop iteration counts are configurable, allowing
some tests to be used as microbenchmarks. The tests are
described as follows:

fptr. This tests whether function calls through function
pointers are suitably guarded or can be hijacked. Overhead is
measured by calling a function through a function pointer in
an intensive loop.

callback. As discussed in Section 3, call sites of callback
functions can be either guarded by a CFI mechanism directly,
or located in immutable kernel modules that require some
form of indirect control-flow protections. We therefore test
whether a CFI mechanism can secure callback function calls
in both cases. Overhead is measured by calling a function
that takes a callback pointer parameter in an intensive loop.

load_time_dynlnk. Load-time dynamic linking tests deter-
mine whether function calls to symbols that are exported by
a dynamically linked library are suitably protected. Over-
head is measured by calling a function that is exported by a
dynamically linked library in an intensive loop.

run_time_dynlnk. This tests whether a CFI mechanism
supports runtime dynamic linking, whether it supports retriev-
ing symbols from the dynamically linked library at runtime,



and whether it guards function calls to the retrieved symbol.
Overhead is measured by loading a dynamically linked li-
brary at runtime, calling a function exported by the library,
and unloading the library in an intensive loop.

delay_load (Windows only). CFI compatibility with delay-
loaded DLLs is tested, including whether function calls to
symbols that are exported by the delay-loaded DLLs are pro-
tected. Overhead is measured by calling a function that is
exported by a delay-loaded DLL in an intensive loop.

data_symbl. Data and function symbol imports and exports
are tested, to determine whether any controls preserve their
accessibility and operation.

vtbl_call. Virtual function calls are exercised, whose call
sites can be directly instrumented. Overhead is measured by
calling virtual functions in an intensive loop.

code_coop. This tests whether a CFI mechanism is robust
against CODE-COOP attacks. For the object-oriented inter-
faces required to launch a CODE-COOP attack, we choose
Microsoft COM API functions in Windows, and gtkmm API
calls that are part of the C++ interface for GTK+ in Linux.

tail_call. Tail call optimizations of indirect jumps are tested.
Overhead is measured by tail-calling a function in a loop.

switch. Indirect jumps associated with switch-case control-
flow structures are tested, including their supporting data
structures. Overhead is measured by executing a switch-case
statement in an intensive loop.

ret. Validation of return addresses (e.g., dynamically via
shadow stack implementation, or statically by labeling call
sites and callees with equivalence classes) is tested. Overhead
is measured by calling a function that does nothing but return
in an intensive loop.

unmatched_pair. Unmatched call/return pairs resulting
from exceptions and setjmp/longjmp are tested.

signal. This test uses signal-handling in C to implement
error-handling and exceptional control-flows.

cppeh. C++ exception handling structures and control-flows
are exercised.

seh (Windows only). SEH-style exception handling is tested
for both hardware and software exceptions. This test also
checks whether the CFI mechanism protects the exception
handlers stored on the stack.

veh (Windows only). VEH-style exception handling is tested
for both hardware and software exceptions. This test also
checks whether the CFI mechanism protects callback function
pointers passed to AddVecoredExceptionHandler().

convention. Several different calling conventions are tested,
including conventions widely used in C/C++ languages on
32-bit and 64-bit x86 processors.

multithreading. Safety of concurrent thread executions is
tested. Specifically, one thread simulates a memory corrup-

tion exploit that attempts to smash another thread’s stack and
break out of the CFI-enforced sandbox.

tls_callback (Windows source-free only). This tests whether
static TLS callback table corruption is detected and blocked
by the protection mechanism.

pic. Semantic preservation of position-independent code is
tested.

mem. This test performs memory management API calls for
legitimate and malicious purposes, and tests whether security
controls permit the former but block the latter.

jit. This test generates JIT code by first allocating writable
memory pages, writing JIT code into those pages, making the
pages executable, and then running the JIT code. To emulate
behaviors of real-world JIT compilers, the JIT code performs
different types of control-flow transfers, including calling
back to the code of JIT compiler and calling functions located
in other modules.

api_hook (Windows only). Dynamic API hooking is per-
formed in the style described in Section 3.

unpacking (source-free only). Self-unpacking executable
code is implemented using RCG.

5 Evaluation

5.1 Evaluation of CFI Solutions

To examine CONFIRM’s effect on real CFI defenses, we used
it to reevaluate 12 major CFI implementations for Linux and
Windows that are either publicly available or were obtainable
in a self-contained, operational form from their authors at the
time of writing. Our purpose in performing this evaluation
is not to judge which compatibility features solutions should
be expected to support, but merely to accurately document
which features are currently supported and to what degree,
and to demonstrate that CONFIRM can be used to conduct
such evaluations.

Table 3 reports the evaluation results. Columns 2–6 report
results for Windows CFI approaches, and columns 7–14 re-
port those for Linux CFI. All Windows experiments were
performed on an Intel Xeon E5645 workstation with 24 GB of
RAM running 64-bit Windows 10. Linux experiments were
conducted on different versions of Ubuntu VM machines cor-
responding to the version tested by each CFI framework’s
original developers. All the VM machines had 16GB of RAM
with 6 Intel Xeon CPU cores. The overheads for source-free
approaches were evaluated using test binaries compiled with
most recent version of gcc available for each test platform.
All source-aware approaches were applied before or during
compilation with the most recent version of LLVM for each
test platform (since LLVM provides greatest compatibility
between the tested source-aware solutions).



Table 3: Tested results for CFI solutions on CONFIRM

LLVM (Windows) LLVM (Linux)

Test CFI ShadowStack MCFG OFI Reins GCC-VTV CFI ShadowStack MCFI πCFI πCFI (nto) PathArmor Lockdown

fptr 6.35% B 20.13% 4.35% 4.08% B 6.97% B 7 −14.00% −13.79% B 174.92%
callback B B B 128.39% 114.84% B B B 7 7 7 B 7

load_time_dynlnk 2.74% B 8.83% 3.36% 2.66% B 1.33% B 30.83% 31.52% 34.05% 74.54% 1.45%
run_time_dynlnk B B 17.63% 12.57% 11.48% B 4.44% B 7 7 7 1,221.48% 7

delay_load� N/A N/A 8.16% 3.61% 7 N/A N/A N/A N/A N/A N/A N/A N/A
data_symbl 3 B 3 3 7 3 3 B 3 3 3 3 3

vtbl_call 5.62% B 27.71% 35.94% 31.17% 33.56% 5.94% B 7 −8.19% −9.31% B 227.82%
code_coop B B B 3 7 B B B B B B B B

tail_call 6.17% B 9.51% 0.05% 0.05% B 6.82% B 7 −17.69% −17.37% B 178.06%
switch −5.80% B 3.51% 22.82% 17.69% B −6.93% B −29.01% −27.19% −28.46% B 85.85%
ret B 18.04% B 49.34% 48.49% B B 20.88% 70.72% 72.40% 71.52% B 106.71%
unmatched_pair B B B 3 3 B B B 3 3 3 B B

signal 3 B 3 7 7 3 3 B 3 3 3 7 3

cppeh 3 B 3 3 7 3 3 B 3 3 3 7 3

seh� 3 B 3 3 7 N/A N/A N/A N/A N/A N/A N/A N/A
veh� B B B 3 7 N/A N/A N/A N/A N/A N/A N/A N/A
convention 3 3 3 3 7 3 3 3 3 3 3 3 3

multithreading B B B B B B B B B B B B B

tls_callback�,$ N/A N/A N/A 3 7 N/A N/A N/A N/A N/A N/A N/A N/A
pic 3 3 3 B B 3 3 3 3 3 3 3 3

mem B B B B B B B B 7 7 7 3 7

jit B B B 7 7 B B B 7 7 7 B 7

unpacking$ N/A N/A N/A 7 7 N/A N/A N/A N/A N/A N/A 7 7

api_hook� B B B 7 7 N/A N/A N/A N/A N/A N/A N/A N/A

(nto) stands for no tail-call optimization
%: CFI defense passes compatibility and security test, and microbenchmark yields indicated performance overhead
3: same as %, but this test provides no performance number
B: CFI defense passes compatibility but not security check
7: test does not compile (compilation error), or crashes at runtime
N/A: test is not applicable to the CFI mechanism being tested
�: test is Windows-only
$: test is only for source-free defenses



Two forms of compatibility are assessed in the evaluation:
A CFI solution is categorized as permissively compatible with
a test if it produces an output program that does not crash and
exhibits the original test program’s non-malicious functional-
ity. It is effectively compatible if it is permissively compatible
and any malicious functionalities are blocked. Effective com-
patibility therefore indicates secure and transparent support
for the code features exhibited by the test.

In Table 3, Columns 2–3 begin with an evaluation of LLVM
CFI and LLVM ShadowCallStack on Windows. With both
CFI and ShadowCallStack enabled, LLVM on Windows en-
forces policies that constrain impending control-flow transfers
at every call site, except calls to functions that are exported
by runtime-loaded DLLs. Additionally, LLVM on Windows
does not secure callback pointers passed to external modules
not compiled with LLVM, leaving it vulnerable CODE-COOP
attacks. Although ShadowCallStack protects against return
address overwrites, its shadow stack is incompatible with
unmatched call/return pairs.

Column 4 of Table 3 reports evaluation of Microsoft’s
MCFG, which is integrated into the MSVC compiler. MCFG
provides security checks for function pointer calls, vtable
calls, tail calls, and switch-case statements. It also passes all
tests related to dynamic linking, including load_time_dynlnk,
run_time_dynlnk, delay_load, and data_symbl. As a part of
MSVC, MCFG provides transparency for generating position-
independent code and handling various calling conventions.
With respect to exception handling, MCFG is permissively
compatible with all relevant features, but does not protect
vectored exception handlers. MCFG’s most significant short-
coming is its weak protection of return addresses. In addition,
it generates call site guard code at compile-time only. There-
fore, code that links to immutable modules or modules com-
piled with a different protection scheme remains potentially
insecure. This results in failures against callback corruption
and CODE-COOP attacks.

Columns 5–6 of Table 3 report compatibility testing re-
sults for Reins and OFI, which are source-free solutions for
Windows. Reins validates control-flow transfer targets for
function pointer calls, vtable calls, tail calls, switch-case state-
ments, and returns. It supports dynamic linking at load time
and runtime, and is one of the only solutions we tested that
secures callback functions whose call sites cannot be directly
instrumented (with a high overhead of 114.84%). Like MCFG,
Reins fails against CODE-COOP attacks. However, OFI ex-
tends Reins with additional protections that succeed against
CODE-COOP. OFI also exhibits improved compatibility with
delay-loaded DLLs, data exports, all three styles of exception
handling, all tested calling conventions, and TLS callbacks.
Both Reins and OFI nevertheless proved vulnerable against
attacks that abuse position-independent code and memory
management API functions.

The GNU C-compiler does not yet have built-in CFI sup-
port, but includes virtual table verification (VTV). VTV is

first introduced in gcc 4.9.0. It checks at virtual call sites
whether the vtable pointer is valid based on the object type.
This blocks many important OOP vtable corruption attacks, al-
though type-aware COOP attacks can still succeed by calling
a different virtual function of the same type (e.g., supertype).
As shown in column 7 of Table 3, VTV does not protect other
types of control-flow transfers, including function pointers,
callbacks, dynamic linking for both load-time and run-time,
tail calls, switch-case jumps, return addresses, error handling
control-flows, or JIT code. However, it is permissively com-
patible with all the applicable tests, and can compile any
feature functionality we considered.

As reported in Columns 8–9, LLVM on Linux shows sim-
ilar evaluation results as LLVM on Windows. It has better
effective compatibility by providing proper security checks
for calls to functions that are exported by runtime loaded
DLLs. LLVM on Linux overheads range from -6.93% (for
switch control structures) to 20.88% (for protecting returns).

MCFI and πCFI are source-aware control-flow techniques.
We tested them on x64 Ubuntu 14.04.5 with LLVM 3.5. The
results are shown in columns 10–12 of Table 3. ΠCFI comes
with an option to turn off tail call optimization, which in-
creases the precision at the price of a small overhead increase.
We therefore tested both configurations, observing no com-
patibility differences between πCFI with and without tail call
optimizations. Incompatibilities were observed in both MCFI
and πCFI related to callbacks and runtime dynamic linking.
MCFI additionally suffered incompatibilities with the func-
tion pointer and virtual table call tests. For callbacks, both
solutions incorrectly terminate the process reporting a CFI
violation. In terms of effective compatibility, MCFI and πCFI
both securely support dynamic linking, switch jumps, return
addresses, and unmatched call/return pairs, but are suscep-
tible to CODE-COOP attacks. In our performance analysis,
we did not measure any considerable overheads for πCFI’s
tail call option (only 0.3%). This option decreases the per-
formance for dynamic linking but increases the performance
of vtable calls, switch-case, and return tests. Overall, πCFI
scores more compatible and more secure relative to MCFI,
but with slightly higher performance overhead.

PathArmor offers improved power and precision over the
other tested solutions in the form of contextual CFI policy sup-
port. Contextual CFI protects dangerous system API calls by
tracking and consulting the control-flow history that precedes
each call. Efficient context-checking is implemented as an
OS kernel module that consults the last branch record (LBR)
CPU registers (which are only readable at ring 0) to check
the last 16 branches before the impending protected branch.
As reported in column 13, our evaluation demonstrated high
permissive compatibility, only observing crashes on tests for
C++ exception handling and signal handlers. However, our
tests were able to violate CFI policies using function point-
ers, callbacks, virtual table pointers, tail-calls, switch-cases,
return addresses, and unmatched call/return pairs, resulting



Table 4: Overall compatibility of CFI solutions
LLVM GCC- LLVM πCFI Path- Lock-

Tests (Windows)* MCFG OFI Reins VTV (Linux)* MCFI πCFI (nto) Armor down

applicable 21 22 24 24 18 18 18 18 18 19 19
permissively compatible 21 22 20 12 18 18 11 14 14 16 14
effectively compatible 12 13 17 9 6 12 9 12 12 6 11

Permissive compatibility 100.00% 100.00% 83.33% 50.00% 100.00% 100.00% 61.11% 77.78% 77.78% 84.21% 73.68%
Effective compatibility 57.14% 59.09% 70.83% 37.50% 33.33% 66.67% 50.00% 66.67% 66.67% 31.58% 57.89%
*Compatibility of LLVM is measured with both CFI and ShadowCallStack enabled.

in a lower effective compatibility score. Its careful guard-
ing of system calls also comes with high overhead for those
calls (1221.48%). This affects feasibility of dynamic loading,
whose associated system calls all receive a high performance
penalty per call. Similarly, load-time dynamic linking exhibits
a relatively high 74.54% overhead.

Lockdown enforces a dynamic control-flow integrity policy
for binaries with the help of symbol tables of shared libraries
and executables. Although Lockdown is a binary approach,
it requires symbol tables not available for stripped binaries
without sources, so we evaluated it using test programs spe-
cially compiled with symbol information added. Its loader
leverages the additional symbol information to more precisely
sandbox interactions between interoperating binary modules.
Lockdown is permissively compatible with most tests except
callbacks and runtime dynamic linking, for which it crashes.
In terms of security, it robustly secures function pointers, vir-
tual calls, switch tables, and return addresses. These security
advantages incur somewhat higher performance overheads
of 85.85–227.82% (but with only 1.45% load-time dynamic
loading overhead). Like most of the other tested solutions,
Lockdown remains vulnerable to CODE-COOP and multi-
threading attacks. Additionally, Lockdown implements a
shadow stack to protect return addresses, and thus is incom-
patible with unmatched call/return pairs.

5.2 Evaluation Trends

CONFIRM evaluation of these CFI solutions reveals some
notable gaps in the current state-of-the-art. For example, all
tested solutions fail to protect software from our cross-thread
stack-smashing attack, in which one thread corrupts another
thread’s return address. We hypothesize that no CFI solution
yet evaluated in the literature can block this attack except by
eliminating all return instructions from hardened programs,
which probably incurs prohibitive overheads. By repeatedly
exploiting a data corruption vulnerability in a loop, our test
program can reliably break all tested CFI defenses within
seconds using this approach.

Since concurrency, flat memory spaces, returns, and
writable stacks are all ubiquitous in almost all mainstream
architectures, such attacks should be considered a significant
open problem. Intel Control-flow Enforcement Technology

(CET) [36] has been proposed as a potential hardware-based
solution to this; but since it is not yet available for testing, it is
unclear whether its hardware shadow stack will be compatible
with software idioms that exhibit unmatched call-return pairs.

Memory management abuse is another major root of CFI
incompatibilities and insecurities uncovered by our experi-
ments. Real-world programs need access to the system mem-
ory management API in order to function properly, making
CFI approaches that prohibit it impractical. However, memory
API arguments are high value targets for attackers, since they
potentially unlock a plethora of follow-on attack stages, in-
cluding code injections. CFI solutions that fail to guard these
APIs are therefore insecure. Of the tested solutions, only
PathArmor manages to strike an acceptable balance between
these two extremes, but only at the cost of high overheads.

A third outstanding open challenge concerns RCG in the
form of JIT-compiled code, dynamic code unpacking, and run-
time API hooking. RockJIT [50] is the only language-based
CFI algorithm proposed in the literature that yet supports
any form of RCG, and its approach entails compiler-specific
modifications to source code, making it difficult to apply on
large scales to the many diverse forms of RCG that appear
in the wild. New, more general approaches are needed to
lend CFI support to the increasing array of software products
built atop JIT-compiled languages or linked using RCG-based
mechanisms—including many of the top applications targeted
by cybercriminals (e.g., Microsoft Office).

Table 4 measures the overall compatibility of all the tested
CFI solutions. Permissive and effective compatibility are
measured as the ratio of applicable tests to permissively and
effectively compatible ones, respectively. All CFI techniques
embedded in compilers (viz. LLVM on Linux and Windows,
MCFG, and GCC-VTV), are 100% permissively compatible,
avoiding all crashes. LLVM on Linux, LLVM on Windows,
and MCFG secure at least 57% of applicable tests, while
GCC-VTV only secures 33%.

OFI scores high overall compatibility, achieving 83% per-
missive compatibility and 71% effective compatibility on 24
applicable tests. Reins has the lowest permissive compat-
ibility score of only 50%. PathArmor and Lockdown are
permissively compatible with 84% and 74% of 19 applicable
tests. However PathArmor can only secure 32% of the tests,
giving it the lowest effective compatibility score.



Table 5: Correlation between SPEC CPU and CONFIRM performance
CFI Solution

SPEC CPU
Benchmark MCFG Reins GCC-VTV LLVM-CFI MCFI πCFI πCFI (nto) PathArmor Lockdown

Benchmark
Correlation

perlbench 2.4 5.0 5.0 5.3 15.0 150.0 0...09
bzip2 −0.3 9.2 −0.7 1.0 1.0 0.8 0.0 8.0 −−−0...12
gcc 4.5 4.5 10.5 9.0 50.0 0...02
mcf 0.5 9.1 3.6 4.5 4.5 1.8 1.0 2.0 −−−0...39
gobmk −0.2 0.2 7.0 7.5 11.8 0.0 43.0 −−−0...09
hmmer 0.7 0.1 0.0 0.0 −0.1 1.0 3.0 0...33
sjeng 3.4 1.6 5.0 5.0 11.9 0.0 80.0 −−−0...03
h264ref 5.4 5.3 6.0 6.0 8.3 1.0 43.0 −−−0...09
libquantum −6.9 0.0 −0.3 −1.0 3.0 5.0 0...51
omnetpp 3.8 5.8 5.0 5.0 18.8 −−−0...52
astar 0.1 3.6 0.9 3.5 4.0 2.9 17.0 0...92
xalancbmk 5.5 24.0 7.2 7.0 7.0 17.6 118.0 0...94

milc 2.0 0.2 2.0 2.0 1.4 4.0 8.0 0...40
namd 0.1 −0.1 0.1 −0.5 −0.5 −0.5 3.0 0...98
dealII −0.1 0.7 7.9 4.5 4.5 4.4 −−−0...36
soplex 2.3 0.5 −0.3 −4.0 −4.0 0.9 12.0 0...89
povray 10.8 −0.6 8.9 10.0 10.5 17.4 90.0 0...88
lbm 4.2 −0.2 1.0 1.0 −0.5 0.0 2.0 −−−0...22
sphinx3 −0.1 −0.8 1.5 1.5 2.4 3.0 8.0 0...31

CONFIRM median 9.51 4.59 33.56 5.19 30.83 −11.10 −11.60 648.01 140.82 0...36

5.3 Performance Evaluation Correlation

Prior performance evaluations of CFI solutions primarily rely
upon SPEC CPU benchmarks as a standard of comparison.
This is based on a widely held expectation that CFI overheads
on SPEC benchmarks are indicative of their overheads on
real-world, security-sensitive software to which they might
be applied in practical deployments. However no prior work
has attempted to quantify a correlation between SPEC bench-
mark scores and overheads observed for the addition of CFI
controls to large, production software products. If, for ex-
ample, CFI introduces high overheads for code features not
well represented in SPEC benchmarks (e.g., because they are
not performance bottlenecks for CFI-free software and were
therefore not prioritized by SPEC), but that become real-world
bottlenecks once their overheads are inflated by CFI controls,
then SPEC benchmarks might not be good predictors of real-
world CFI overheads. Recent work has argued that prior CFI
research has unjustifiably drawn conclusions about real-world
software overheads from microbenchmarking results [70],
making this an important open question.

To better understand the relationship between CFI-specific
operation overheads and SPEC benchmark scores, we there-
fore computed the correlation between median performance
of CFI solutions on CONFIRM benchmarks with their per-
formances reported on SPEC benchmarks (as reported in the
prior literature). Although CONFIRM benchmarks are not
real-world software, they can serve as microbenchmarks of
features particularly relevant to CFI. High correlations there-
fore indicate to what degree SPEC benchmarks exercise code
features whose performance are affected by CFI controls.

Table 5 reports the results, in which correlations between
each SPEC CPU benchmark and CONFIRM median values
are computed as Pearson correlation coefficients:

ρx,y =
(∑n

i=1 xi× yi)− (n× x̄× ȳ)
(n−1)×σx×σy

(1)

where xi and yi are the CPU SPEC overhead and CONFIRM
median overhead scores for solution i, x̄ and ȳ are the means,
and σx and σy are the sample standard deviations of x and y,
respectively. High linear correlations are indicated by |ρ| val-
ues near to 1, and direct and inverse relationships are indicated
by positive and negative ρ, respectively.

The results show that although a few SPEC benchmarks
have strong correlations (namd, xalancbmk, astar, soplex, and
povray being the highest), in general SPEC CPU benchmarks
exhibit a poor correlation of only 0.36 on average with tests
that exercise CFI-relevant code features. Almost half the
SPEC benchmarks even have negative correlations. This indi-
cates that SPEC benchmarks consist largely of code features
unrelated to CFI overheads. While this does not resolve the
question of whether SPEC overheads are predictive of real-
world overheads for CFI, it reinforces the need for additional
research connecting CFI overheads on SPEC benchmarks to
those on large, production software.

6 Related Work

6.1 Prior CFI Evaluations
We surveyed 54 CFI algorithms and implementations pub-
lished between 2005–2019 to prepare CONFIRM, over half



of which were published within 2015–2019. Of these, 66%
evaluate performance overheads by applying SPEC CPU
benchmarking programs. Examples of such performance
evaluations include those of PittSFIeld [43], NaCl [81],
CPI [40], REINS [78], bin-CFI [87], control flow lock-
ing [10], MIP [48], CCFIR [84], ROPecker [16], T-VIP [29],
GCC-VTV [69], MCFI [49], VTint [83], Lockdown [54],
O-CFI [45], CCFI [42], PathArmor [71], BinCC [74],
πCFI [51], VTI [12], VTrust [82], VTPin [61], TypeAr-
mor [72], PITTYPAT [24], RAGuard [85], GRIFFIN [30],
OFI [75], PT-CFI [33], HCIC [86], µCFI [35], CFIXX [14],
and τCFI [47].

The remaining 34% of CFI technologies that are not eval-
uated on SPEC benchmarks primarily concern specialized
application scenarios, including JIT compiler hardening [50],
hypervisor security [41,76], iOS mobile code security [22,55],
embedded systems security [2–4], and operating system ker-
nel security [20, 31, 38]. These therefore adopt analogous test
suites and tools specific to those domains [17, 23, 56, 57, 67].

Several of the more recently published works addition-
ally evaluate their solutions on one or more large, real-world
applications, including browsers, web servers, FTP servers,
and email servers. For example, VTable protections pri-
marily choose browsers as their enforcement targets, and
therefore leverage browser benchmarks to evaluate perfor-
mance. The main browser benchmarks used for this pur-
pose are Microsoft’s Lite-Brite [44] Google’s Octane [32],
Mozilla’s Kraken [46], Apple’s Sunspider [6], and Right-
Ware’s BrowserMark [59].

Since compatibility problems frequently raise difficult chal-
lenges for evaluations of larger software products, these larger-
scale evaluations tend to have smaller sample sizes. Over-
all, 88% of surveyed works report evaluations on 3 or fewer
large, independent applications, with TypeArmor [72] having
the most comprehensive evaluation we studied, consisting
of three FTP servers, two web servers, an SSH server, an
email server, two SQL servers, a JavaScript runtime, and a
general-purpose distributed memory caching system.

To demonstrate security, prior CFI mechanisms are typi-
cally tested against proof-of-concept attacks or CVE exploits.
The most widely tested attack class in recent years is COOP.
Examples of security evaluations against COOP attacks in-
clude those reported for µCFI [35], τCFI [47], CFIXX [14],
OFI [75], PITTYPAT [24], VTrust [82], PathArmor [71], and
πCFI [51].

The RIPE test suite [80] is also widely used by many re-
searchers to measure CFI security and precision. RIPE con-
sists of 850 buffer overflow attack forms. It aims to provide
a standard way to quantify the security coverage of general
defense mechanisms. In contrast, CONFIRM focuses on a
larger variety of code features that are needed by many appli-
cations to implement non-malicious functionalities, but that
pose particular problems for CFI defenses. These include a
combination of benign behaviors and attacks.

6.2 CFI Surveys
There has been one prior survey of CFI performance, pre-
cision, and security, published in 2016 [13]. It surveys 30
previously published CFI frameworks, with qualitative and
quantitative comparisons of their technical approaches and
overheads as reported in each original publication. Five of
the approaches are additionally reevaluated on SPEC CPU
benchmarks.

In contrast, CONFIRM establishes a foundation for evalu-
ating compatibility and relevance of various CFI algorithms
to modern software products, and highlights important secu-
rity and performance impacts that arise from incompatibility
limitations facing the state-of-the-art solutions.

7 Conclusion

CONFIRM is the first evaluation methodology and micro-
benchmarking suite that is designed to measure applicabil-
ity, compatibility, and performance characteristics relevant to
control-flow security hardening evaluation. The CONFIRM
suite provides 24 tests of various CFI-relevant code features
and coding idioms, which are widely found in deployed COTS
software products.

Twelve publicly available CFI mechanisms are reevaluated
using CONFIRM. The evaluation results reveal that state-of-
the-art CFI solutions are compatible with only about 53% of
the CFI-relevant code features and coding idioms needed to
protect large, production software systems that are frequently
targeted by cybercriminals. Compatibility and security limita-
tions related to multithreading, custom memory management,
and various forms of runtime code generation are identified
as presenting some of the greatest barriers to adoption.

In addition, using CONFIRM for microbenchmarking re-
veals performance characteristics not captured by metrics
widely used to evaluate CFI overheads. In particular, SPEC
CPU benchmarks designed to assess CPU computational over-
head exhibit an only 0.36 correlation with benchmarks that
exercise code features relevant to CFI. This suggests a need
for more CFI-specific benchmarking to identify important
sources of performance bottlenecks, and their ramifications
for CFI security and practicality.
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