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Discriminant Correspondence
Analysis

Hervé Abdi1

1 Overview

As the name indicates, discriminant correspondence analysis (DCA)
is an extension of discriminant analysis (DA) and correspondence
analysis (CA). Like discriminant analysis, the goal of DCA is to cat-
egorize observations in pre-defined groups, and like correspon-
dence analysis, it is used with nominal variables.

The main idea behind DCA is to represent each group by the
sum of its observations and to perform a simple CA on the groups
by variables matrix. The original observations are then projected
as supplementary elements and each observation is assigned to
the closest group. The comparison between the a priori and the
a posteriori classifications can be used to assess the quality of the
discrimination. A similar procedure can be used to assign new ob-
servations to categories. The stability of the analysis can be evalu-
ated using cross-validation techniques such as jackknifing or boot-
strapping.

1In: Neil Salkind (Ed.) (2007). Encyclopedia of Measurement and Statistics.
Thousand Oaks (CA): Sage.
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2 An example

It is commonly thought that the taste of wines depends upon their
origin. As an illustration we have sampled 12 wines coming from
3 different origins (4 wines per origin) and asked a professional
taster (unaware of the origin of the wines) to rate these wines on 5
scales. The scores of the taster were then transformed into binary
codes to form an indicator matrix (as in multiple correspondence
analysis). For example, a score of 2 on the “Fruity" scale would be
coded by the following pattern of 3 binary values: 0 1 0. An ad-
ditional unknown wine was also evaluated by the taster with the
goal of predicting its origin from the ratings. The data are given in
Table 1.

3 Notations

There are K groups, each group comprising Ik observations and
the sum of the Ik ’s is equal to I which is the total number of obser-
vations. For convenience, we assume that the observations con-
stitute the rows of the data matrix, and that the variables are the
columns. There are J variables. The I × J data matrix is denoted
X. The indicator matrix is an I ×K matrix denoted Y in which a
value of 1 indicates that the row belongs to the group represented
by the column and a value of 0 indicates that it does not. The K × J
matrix denoted N, is called the “group matrix,” it stores the total of
the variables for each category. For our example, we find that:

N = YTX =



3 1 0 0 1 3 0 2 2 2 2 0 1 1 1 1
1 2 1 1 2 1 2 1 1 0 1 3 1 1 1 1
0 1 3 3 1 0 1 1 2 3 1 0 1 1 1 1


 .

(1)
Performing CA on the group matrix N provides two sets of fac-

tor scores: one for the groups (denoted F) and one for the variables
(denoted G). These factor scores are, in general scaled such that
their variance is equal to the eigenvalue associated with the factor.

The grand total of the table is noted N , and the first step of
the analysis is to compute the probability matrix Z = N−1N. We
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denote r the vector of the row totals of Z, (i.e., r = Z1, with 1 being
a conformable vector of 1’s) c the vector of the column totals, and
Dc = diag {c}, Dr = diag {r}. The factor scores are obtained from the
following singular value decomposition:

D
− 1

2
r

(
Z−rcT

)
D

− 1
2

c = P∆QT . (2)

(∆ is the diagonal matrix of the singular values, and Λ =∆2 is the
matrix of the eigenvalues). The row and (respectively) column fac-
tor scores are obtained as

F = D
− 1

2
r P∆ and G = D

− 1
2

c Q∆ . (3)

The squared (χ2) distances from the rows and columns to their re-
spective barycenters are obtained as

dr = diag
{

FFT
}

and dc = diag
{

GGT
}

. (4)

The squared cosines between row i and factor ` and column j and
factor ` are obtained respectively as:

oi ,` =
f 2

i ,`

d 2
r,i

and o j ,` =
g 2

j ,`

d 2
c, j

. (5)

(with d 2
r,i , and d 2

c, j , being respectively the i -th element of dr and
the j -th element of dc). Squared cosines help locating the factors
important for a given observation. The contributions of row i to
factor ` and of column j to factor ` are obtained respectively as:

ti ,` =
f 2

i ,`

λ`
and t j ,` =

g 2
j ,`

λ`
. (6)

Contributions help locating the observations important for a given
factor.

Supplementary or illustrative elements can be projected onto
the factors using the so called transition formula. Specifically, let
iTsup being an illustrative row and jsup being an illustrative column
to be projected. Their coordinates fsup and gsup are obtained as:

fsup =
(
iTsup1

)−1
iTsupG∆−1 and gsup =

(
jTsup1

)−1
jTsupF∆−1 . (7)

4
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[note that the scalar terms
(
iTsup1

)−1
and

(
jTsup1

)−1
are used to in-

sure that the sum of the elements of isup or jsup is equal to one, if
this is already the case, these terms are superfluous].

After the analysis has been performed on the groups, the orig-
inal observations are projected as supplementary elements and
their factor scores are stored in a matrix denoted Fsup. To compute
these scores, first compute the matrix of row profiles

R = (
diag {X1}

)−1 X (8)

and then apply Equation 7 to obtain

Fsup = RG∆−1 . (9)

The Euclidean distance between the observations and the groups
computed from the factor scores is equal to the χ2-distance be-
tween their row profiles. The I ×K distance matrix between obser-
vations and groups is computed as

D = ssup1T+1sT−2FsupFT (10)

with
ssup = diag

{
FsupFT

sup

}
and s = diag

{
FFT

}
. (11)

Each observation is then assigned to the closest group.

3.1 Model Evaluation

The quality of the discrimination can be evaluated as a fixed effect
model or as a random effect model. For the fixed effect model, the
correct classifications are compared to the assignments obtained
from Equation 10. The fixed effect model evaluates the quality of
the classification on the sample used to build the model.

The random effect model evaluates the quality of the classifi-
cation on new observations. Typically, this step is performed using
cross-validation techniques such as jackknifing or bootstrapping.

5
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a b
Figure 1: Discriminant Correspondence Analysis. Projections on the
�rst 2 dimensions. (a) The I set: rows (i.e., wines), The wines are
projected as supplementary elements, Wine ? is an unknown wine.
(b) The J set: columns (i.e., descriptors). The wines categories have
also been projected for ease of interpretation. Both �gures have the
same scale (some projection points have been slightly moved to
increase readability). (Projections from Tables 2 and 3).

a b
Figure 2: Discriminant Correspondence Analysis. Projections on the
�rst 2 dimensions. (a) Fixed e�ect model. The three regions and
the convex envelop for the wines. (b) Random e�ect model. The
jackknifed wines have been projected back onto the �xed e�ect so-
lution. The convex envelop shows that the random e�ect categories
have a larger variability and have moved.
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4 Results

Tables 2 and 3 give the results of the analysis and Figure 1 displays
them. The fixed effect quality of the model is evaluated by the fol-
lowing confusion matrix:




4 0 0
0 3 0
0 1 4


 . (12)

In this matrix, the rows are the assigned groups and the columns
are the real groups. For example, out of 5 wines assigned to the
wine region Beaujolais (Group 3), one wine was in fact from the
Rhône region (Group 2) and 4 wines were from Beaujolais. The
overall quality can be computed from the diagonal of the matrix.
Here we find that 11 (4+3+4) wines out of 12 were correctly clas-
sified.

A jackknife procedure was used in order to evaluate the gen-
eralization capacity of the analysis to new wines (i.e., this corre-
sponds to a random effect analysis). Each wine was in turn taken
out of the sample, a DCA was performed on the remaining sam-
ple of 11 wines, and the wine taken out was assigned to the closest
group. This gave the following confusion matrix:




2 1 1
1 2 1
1 1 2


 . (13)

As expected, the performance of the model as a random effect is
less impressive than as a fixed effect model. Now only 6 (2+2+2)
wines out of 12 are correctly classified.

The differences between the fixed and the random effect mod-
els are illustrated in Figure 2 where the jackknifed wines have been
projected onto the fixed effect solution (using metric multidimen-
sional scaling, see entry). The quality of the model can be eval-
uated by drawing the convex envelop of each category. For the
fixed effect model, the centers of gravity of the convex envelops
are the categories and this illustrates that DCA is a least square es-
timation technique. For the random effect model, the degradation

9
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of performance is due to a larger variance (the areas of the convex
envelops are larger) and to a rotation of the envelops (the convex
envelops are no longer centered on the category centers of grav-
ity).
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