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1 Introduction

The least square methods (LSM) is probably the most popular tech-

nique in statistics. This is due to several factors. First, most com-

mon estimators can be casted within this framework. For exam-

ple, the mean of a distribution is the value that minimizes the sum

of squared deviations of the scores. Second, using squares makes

LSM mathematically very tractable because the Pythagorean theo-

rem indicates that, when the error is independent of an estimated

quantity, one can add the squared error and the squared estimated

quantity. Third, the mathematical tools and algorithms involved in

LSM (derivatives, eigendecomposition, singular value decomposi-

tion) have been well studied for a relatively long time.

LSM is one of the oldest techniques of modern statistics, and

even though ancestors of LSM can be traced up to Greek mathe-

matics, the first modern precursor is probably Galileo (see Harper,

1974, for a history and pre-history of LSM). The modern approach

was first exposed in 1805 by the French mathematician Legendre

in a now classic memoir, but this method is somewhat older be-

cause it turned out that, after the publication of Legendre’s mem-

oir, Gauss (the famous German mathematician) contested Legen-
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dre’s priority. Gauss often did not published ideas when he though

that they could be controversial or not yet ripe, but would mention

his discoveries when others would publish them (the way he did,

for example for the discovery of Non-Euclidean geometry). And

in 1809, Gauss published another memoir in which he mentioned

that he had previously discovered LSM and used it as early as 1795

in estimating the orbit of an asteroid. A somewhat bitter anterior-

ity dispute followed (a bit reminiscent of the Leibniz-Newton con-

troversy about the invention of Calculus), which, however, did not

diminish the popularity of this technique.

The use of LSM in a modern statistical framework can be traced

to Galton (1886) who used it in his work on the heritability of size

which laid down the foundations of correlation and (also gave the

name to) regression analysis. The two antagonistic giants of statis-

tics Pearson and Fisher, who did so much in the early develop-

ment of statistics, used and developed it in different contexts (fac-

tor analysis for Pearson and experimental design for Fisher).

Nowadays, the least square method is widely used to find or es-

timate the numerical values of the parameters to fit a function to

a set of data and to characterize the statistical properties of esti-

mates. It exists with several variations: Its simpler version is called

ordinary least squares (OLS), a more sophisticated version is called

weighted least squares (WLS), which often performs better than

OLS because it can modulate the importance of each observation

in the final solution. Recent variations of the least square method

are alternating least squares (ALS) and partial least squares (PLS).

2 Functional fit example: regression

The oldest (and still the most frequent) use of OLS was linear re-

gression, which corresponds to the problem of finding a line (or

curve) that best fits a set of data points. In the standard formu-

lation, a set of N pairs of observations {Yi , Xi } is used to find a

function relating the value of the dependent variable (Y ) to the

values of an independent variable (X ). With one variable and a
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linear function, the prediction is given by the following equation:

Ŷ = a +bX . (1)

This equation involves two free parameters which specify the in-

tercept (a) and the slope (b) of the regression line. The least square

method defines the estimate of these parameters as the values wh-

ich minimize the sum of the squares (hence the name least squares)

between the measurements and the model (i.e., the predicted val-

ues). This amounts to minimizing the expression:

E =

∑

i

(Yi − Ŷi )2
=

∑

i

[Yi − (a +bXi )]2 (2)

(where E stands for “error" which is the quantity to be minimized).

The estimation of the parameters is obtained using basic results

from calculus and, specifically, uses the property that a quadratic

expression reaches its minimum value when its derivatives van-

ish. Taking the derivative of E with respect to a and b and setting

them to zero gives the following set of equations (called the normal

equations):
∂E

∂a
= 2N a +2b

∑
Xi −2

∑
Yi = 0 (3)

and
∂E

∂b
= 2b

∑
X 2

i +2a
∑

Xi −2
∑

Yi Xi = 0 . (4)

Solving the normal equations gives the following least square esti-

mates of a and b as:

a = MY −bMX (5)

(with MY and MX denoting the means of X and Y ) and

b =

∑
(Yi −MY )(Xi −MX )

∑
(Xi −MX )2

. (6)

OLS can be extended to more than one independent variable (us-

ing matrix algebra) and to non-linear functions.
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2.1 The geometry of least squares

OLS can be interpreted in a geometrical framework as an orthog-

onal projection of the data vector onto the space defined by the

independent variable. The projection is orthogonal because the

predicted values and the actual values are uncorrelated. This is il-

lustrated in Figure 1, which depicts the case of two independent

variables (vectors x1 and x2) and the data vector (y), and shows

that the error vector (y− ŷ) is orthogonal to the least square (ŷ) es-

timate which lies in the subspace defined by the two independent

variables.

ŷ

ŷ

y

x y _

x2

1

Figure 1: The least square estimate of the data is the orthogonal

projection of the data vector onto the independent variable sub-

space.
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2.2 Optimality of least square estimates

OLS estimates have some strong statistical properties. Specifically

when (1) the data obtained constitute a random sample from a

well-defined population, (2) the population model is linear, (3) the

error has a zero expected value, (4) the independent variables are

linearly independent, and (5) the error is normally distributed and

uncorrelated with the independent variables (the so-called homo-

scedasticity assumption); then the OLS estimate is the best linear

unbiased estimate often denoted with the acronym “BLUE" (the 5

conditions and the proof are called the Gauss-Markov conditions

and theorem). In addition, when the Gauss-Markov conditions

hold, OLS estimates are also maximum likelihood estimates.

2.3 Weighted least squares

The optimality of OLS relies heavily on the homoscedasticity as-

sumption. When the data come from different sub-populations

for which an independent estimate of the error variance is avail-

able, a better estimate than OLS can be obtained using weighted

least squares (WLS), also called generalized least squares (GLS).

The idea is to assign to each observation a weight that reflects the

uncertainty of the measurement. In general, the weight wi , as-

signed to the i th observation, will be a function of the variance of

this observation, denoted σ
2
i
. A straightforward weighting schema

is to define wi = σ
−1
i

(but other more sophisticated weighted sch-

emes can also be proposed). For the linear regression example,

WLS will find the values of a and b minimizing:

Ew =

∑

i

wi (Yi − Ŷi )2
=

∑

i

wi [Yi − (a +bXi )]2 . (7)

2.4 Iterative methods: Gradient descent

When estimating the parameters of a nonlinear function with OLS

or WLS, the standard approach using derivatives is not always pos-

sible. In this case, iterative methods are very often used. These

methods search in a stepwise fashion for the best values of the es-

timate. Often they proceed by using at each step a linear approx-
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imation of the function and refine this approximation by succes-

sive corrections. The techniques involved are known as gradient

descent and Gauss-Newton approximations. They correspond to

nonlinear least squares approximation in numerical analysis and

nonlinear regression in statistics. Neural networks constitutes a

popular recent application of these techniques

3 Problems with least squares,

and alternatives

Despite its popularity and versatility, LSM has its problems. Prob-

ably, the most important drawback of LSM is its high sensitivity to

outliers (i.e., extreme observations). This is a consequence of us-

ing squares because squaring exaggerates the magnitude of differ-

ences (e.g., the difference between 20 and 10 is equal to 10 but the

difference between 202 and 102 is equal to 300) and therefore gives

a much stronger importance to extreme observations. This prob-

lem is addressed by using robust techniques which are less sensi-

tive to the effect of outliers. This field is currently under develop-

ment and is likely to become more important in the next future.
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