
BARYCENTRIC DISCRIMINANT ANALYSIS 

Hervé Abdi* & Lynne Williams 
 

 

Barycentric discriminant analysis (BADA) generalizes discriminant analysis, and like 

discriminant analysis, it is performed when measurements made on some observations are 

combined to assign these observations, or new observations, to a priori defined categories. For 

example, BADA can be used (a) to assign people to a given diagnostic group (e.g., patients 

with Alzheimer’s disease, patients with other dementia, or people aging without dementia) on 

the basis of brain imaging data or psychological tests (here the a priori categories are the clinical 

groups), (b) to assign wines to a region of production on the basis of several physical and 

chemical measurements (here the a priori categories are the regions of production), (c) to use 

brain scans taken on a given participant to determine what type of object (e.g., a face, a cat, a 

chair) was watched by the participant when the scans were taken (here the a priori categories 

are the types of object), or (d) to use DNA measurements to predict whether a person is at risk 

for a given health problem (here the a priori categories are the types of health problem). 

BADA is more general than standard discriminant analysis because it can be used in cases 

for which discriminant analysis cannot be used. This is the case, for example, when there are 

more variables than observations, when the predictors are colinear, or when the measurements 

are categorical. 

BADA is a class of methods that all rely on the same principle: Each category of interest is 

represented by the barycenter of its observations (i.e., the weighted average of the observations 

of a given category; the barycenter is also called the center of gravity or center of mass), and a 

generalized principal components analysis (GPCA) is performed on the category by variable 

matrix. This analysis gives a set of discriminant factor scores for the categories and another set 

of factor scores for the variables. The original observations are then projected onto the category 
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factor space, providing a set of factor scores for the observations. The distance of each 

observation to the set of categories is computed from the factor scores, and each observation is 

assigned to the closest category. The a priori and a posteriori category assignments are 

compared to assess the quality of the discriminant procedure. The prediction for the 

observations that were used to compute the barycenters is called the fixed-effect prediction. The 

fixed-effect performance is evaluated by counting the number of correct and incorrect 

assignments and storing these numbers in a confusion matrix. Another index of the 

performance of the fixed-effect model—equivalent to a squared coefficient of correlation—is 

the ratio of the category variance to the sum of the category variance and the variance of the 

observations within each category. This coefficient is denoted  and is interpreted as the 

proportion of variance of the observations explained by the categories or as the proportion of 

the variance explained by the discriminant model. The performance of the fixed-effect model 

can also be represented graphically as a tolerance ellipsoid that encompasses a given proportion 

(say 95%) of the observations. The overlap between the tolerance ellipsoids of two categories 

is proportional to the number of misclassifications between these two categories. 

New observations can also be projected onto the discriminant factor space, and they can be 

assigned to the closest category. When the actual assignment of these observations is not 

known, the model can be used to predict category membership. The model is then called a 

random model (as opposed to the fixed model). An obvious problem, then, is to evaluate the 

quality of the prediction for new observations. Ideally, the performance of the random-effect 

model is evaluated by counting the number of correct and incorrect classifications for new 

observations and computing a confusion matrix based on these new observations. However, it 

is not always practical or even feasible to obtain new observations, and therefore the random-

effect performance is often evaluated using computational cross-validation techniques such as 

the Leave One Out (LOO) or the Bootstrap. For example, a leave one out approach can be used 

by which each observation is taken out of the set, in turn, and predicted from the model built 

on all the other observations. The predicted observations are then projected in the space of the 

fixed-effect discriminant scores. This can also be represented graphically as a prediction 

ellipsoid. A prediction ellipsoid encompasses a given proportion (say 95%) of the new 

observations. The overlap between the prediction ellipsoids of two categories is proportional 

to the number of misclassifications of new observations between these two categories. 

The stability of the discriminant model can be assessed by a cross-validation model such 

as the Bootstrap. In this procedure, multiple sets of observations are generated by sampling 
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with replacement from the original set of observations, and the category barycenters are 

computed from each of these sets. These barycenters are then projected onto the discriminant 

factor scores. The variability of the barycenters can be represented graphically as a confidence 

ellipsoid that encompasses a given proportion (say 95%) of the barycenters. When the 

confidence intervals of two categories do not overlap, these two categories are significantly 

different. 

In summary, BADA is a GPCA performed on the category barycenters. GPCA 

encompasses various techniques, such as correspondence analysis, biplot, Hellinger distance 

analysis, discriminant analysis, and canonical variate analysis. For each specific type of GPCA, 

there is a corresponding version of BADA. For example, when the GPCA is correspondence 

analysis, this gives the most well-known version of BADA: discriminant correspondence 

analysis (DICA). Because BADA is based on GPCA, it can also analyze data tables obtained 

by the concatenation of blocks (i.e., subtables). In this case, the importance (often called the 

contribution) of each block to the overall discrimination can also be evaluated and represented 

as a graph. 
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See also Bootstrapping; Canonical Correlation Analysis; Correspondence Analysis; 

Discriminant Analysis; Jackknife; Matrix Algebra; Principal Components Analysis 
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