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A standard analysis of variance (ANOVA) provides an F test, which is called an omnibus test 

because it reflects all possible differences between the means of the groups analyzed by the 

ANOVA. However, most experimenters want to draw conclusions more precise than “the 

experimental manipulation had an effect on the participants’ behavior.” Precise conclusions 

can be obtained from contrast analysis because a contrast expresses a specific question about 

the pattern of results of an ANOVA. Specifically, a contrast corresponds to a prediction precise 

enough to be translated into a set of numbers called contrast coefficients, which together reflect 

the prediction. The correlation between the contrast coefficients and the observed group means 

directly evaluates the similarity between the prediction and the results. 

When performing a contrast analysis, one needs to distinguish whether the contrasts are 

planned or post hoc. Planned, or a priori, contrasts are selected before running the experiment. 

In general, they reflect the hypotheses the experimenter wanted to test, and there are usually 

few of them. Post hoc, or a posteriori (after the fact), contrasts are decided after the experiment 

has been run. The goal of a posteriori contrasts is to ensure that unexpected results are reliable. 

When performing a planned analysis involving several contrasts, one needs to evaluate 

whether these contrasts are mutually orthogonal or not. Two contrasts are orthogonal when 

their contrast coefficients are uncorrelated (i.e., their coefficient of correlation is zero). The 

number of possible orthogonal contrasts is one less than the number of levels of the independent 

variable. 

All contrasts are evaluated by the same general procedure. First, the contrast is formalized 

as a set of contrast coefficients (also called contrast weights). Second, a specific F ratio 
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(denoted ) is computed. Finally, the probability associated with  is evaluated. This last 

step changes with the type of analysis performed. 

Research Hypothesis as a Contrast Expression 

When a research hypothesis is precise, it is possible to express it as a contrast. A research 

hypothesis, in general, can be expressed as a shape, a configuration, or a rank ordering of the 

experimental means. In all these cases, one can assign numbers that will reflect the predicted 

values of the experimental means. These numbers are called contrast coefficients when their 

mean is zero. To convert a set of numbers into a contrast, it suffices to subtract their mean from 

each of them. Often, for convenience, contrast coefficients are expressed with integers. 

For example, assume that for a four-group design, a theory predicts that the first and second 

groups should be equivalent, the third group should perform better than these two groups, and 

the fourth group should do better than the third with an advantage of twice the gain of the third 

over the first and the second. When translated into a set of ranks, this prediction gives 

 

After subtracting the mean, we get the following contrast: 

 

In case of doubt, a good heuristic is to draw the predicted configuration of results, and then 

to represent the position of the means by ranks. 

A Priori Orthogonal Contrasts 

For Multiple Tests 

When several contrasts are evaluated, several statistical tests are performed on the same data 

set, and this increases the probability of a Type I error (i.e., rejection of the null hypothesis 

when it is true). In order to control the Type I error at the level of the set (also known as the 

family) of contrasts, one needs to correct the  level used to evaluate each contrast. This 

correction for multiple contrasts can be done with the use of the Šidák equation, the Bonferroni 

(also known as Boole, or Dunn) inequality, or the Monte Carlo method. 
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Šidák and Bonferroni 

The probability of making at least one Type I error for a family of orthogonal (i.e., statistically 

independent) contrasts (C) is denoted a[PF], it is computed as 

 

Here, [PF] is the Type I error for the family of contrasts and [PC] is the Type I error per 

contrast. This equation can be rewritten as 

 

This formula, called the Šidák equation, shows how to correct the [PC] values used for each 

contrast. 

Because the Šidák equation involves a fractional power, one can use an approximation 

known as the Bonferroni inequality (obtained from the first term of a Taylor expension), which 

relates [PC] to [PF]: 

 

Šidák and Bonferroni are related by the inequality 

 

These two equations give, in general, results very close to each other. As can be seen, the 

Bonferroni inequality is a pessimistic estimation. Consequently, Šidák should be preferred. 

However, the Bonferroni inequality is easier to compute and more well known and hence it is 

used and cited more often. 

Monte Carlo 

The Monte Carlo technique can also be used to correct for multiple contrasts. The Monte Carlo 

technique consists of running a simulated experiment many times using random data, with the 

aim of obtaining a pattern of results showing what would happen just on the basis of chance. 

This approach can be used to quantify [PF], the inflation of Type I error due to multiple 

testing. Equation 1 can then be used to set [PC] in order to control the overall value of the 

Type I error. 

As an illustration, suppose that six groups with 20 observations per group are created with 

data randomly sampled from a normal population. By construction, the H0 is true (i.e., all 
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population means are equal). Now, construct five independent contrasts from these six groups. 

For each contrast, compute an F test. If the probability associated with the statistical index is 

smaller than  = .05, the contrast is said to reach significance (i.e., [PC] is used). Then have 

a computer redo the experiment a large number of times, here 100,000 times. In sum, there are 

100,000 experiments, therefore 100,000 families of 5 contrasts each, and 5 ́  100,000 = 500,000 

contrasts total. The results of one such simulation are given in Table 1. 

Table 1 shows that the H0 is rejected for 24,969 contrasts out of the 500,000 contrasts 

actually performed (i.e., 5 contrasts ´ 100,000 experiments). From these data, an estimation of 

[PC] is computed as 

 
This value falls very close to the theoretical value of  = .05. 

Table 1 Results of a Monte Carlo Simulation 

Number of Families With X Type 

I Errors 

X: Number of Type 1 Errors 

per Family 

Number of Type I 

Errors 

77,381 0 0 

20,390 1 20,390 

2,111 2 4,222 

115 3 345 

3 4 12 

0 5 0 

Total           100,000 
 

Total         24,969 

Notes: Numbers of Type I errors when performing C = 5 contrasts for 100,000 analyses of 

variance performed on a six-group design when the H0 is true. For example, 2,111 families out 

of the 100,000 have two Type I errors. This gives 2 ´ 2,111 = 4,222 Type I errors. 

It can be seen also that for 77,381 experiments, no contrast reached significance. 

Correspondingly, for 22,619 experiments (i.e., 100,000 – 77,381), at least one Type I error was 

made. From these data, [PF] can be estimated as 
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This value falls close to the theoretical value given by Equation 1: 

 

Checking the Orthogonality of Two Contrasts 

Two contrasts are orthogonal (or independent) if their contrast coefficients are uncorrelated. 

Contrast coefficients have zero sum (and therefore a zero mean). Therefore, two contrasts, 

whose A contrast coefficients are denoted Ca,1 and Ca,2, are orthogonal if and only if 

 

Computing Sum of Squares, Mean Square, and F 

The sum of squares for a contrast can be computed with the Ca coefficients. Specifically, the 

sum of square of j is computed  

 

where S is the number of subjects in a group and Ma. is the mean of Group a. 

Also, because the sum of squares for a contrast has one degree of freedom, it is equal to the 

mean square of effect for this contrast: 

 

The  ratio for a contrast is now computed as 

 

Note, incidentally that because the numerator of F (i.e., MSj) has only one degree of freedom, 

its square root is equal to a t-statistics which is the statistic reported by some software. 
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Table 2 Data From a (Fictitious) Replication of an Experiment by Smith (1979). 
 

Experimental Context 
 

Group 1 Group 2 Group 3 Group 4 Group 5 
 

Same Different Imagery Photo Placebo 
 

25 11 14 25 8 

 
26 21 15 15 20 

 
17 9 29 23 10 

 
15 6 10 21 7 

 
14 7 12 18 15 

 
17 14 22 24 7 

 
14 12 14 14 1 

 
20 4 20 27 17 

 
11 7 22 12 11 

 
21 19 12 11 4 

Ya. 180 110 170 190 100 

Ma. 18 11 17 19 10 

Ma. – M.. 3 – 4 2 4 – 5 

S (Yas – Ma.)2 218 284 324 300 314 

Source: Adapted from Smith (1979) and Abdi et al. 2009. 

Note: The dependent variable is the number of words recalled. 

Evaluating F for Orthogonal Contrasts 

Planned orthogonal contrasts are equivalent to independent questions asked to the data. 

Because of that independence, the current procedure is to act as if each contrast were the only 
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contrast tested: This amounts to not correcting for multiple tests. This procedure gives 

maximum power to the test. Practically, the null hypothesis for a contrast is tested by 

computing an F ratio as indicated in Equation 10 and evaluating its p value using a Fisher 

sampling distribution with v1 = 1 and v2 being the number of degrees of freedom of MSerror [e.g., 

in independent measurement designs with A groups and S observations per group, v2 = A(S – 

1)]. 

Example 

This example is inspired by an experiment that Steven M. Smith ran 1979. The main purpose 

of this experiment was to show that one’s being in the same mental context for learning and 

for testing leads to better performance than being in different contexts. During the learning 

phase, participants learned a list of 80 words in a room painted with an orange color, decorated 

with posters, paintings, and a quite a large amount of paraphernalia. At the end of the learning 

phase, a memory test was performed to give subjects the impression that the experiment was 

over. One day later, the participants were unexpectedly retested on their memory. An 

experimenter asked them to write down all the words from the list that they could remember. 

The test took place in five different experimental conditions. Fifty subjects (10 per group) were 

randomly assigned to one of the five experimental groups. The five experimental conditions 

were 

1. Same context. Participants were tested in the same room in which they learned the 

list. 

2. Different context. Participants were tested in a room very different from the one 

in which they learned the list. The new room was located in a different part 

of the campus, painted grey, and looked very austere. 

3. Imaginary context. Participants were tested in the same room as participants from 

Group 2. In addition, they were told to try to remember the room in which 

they learned the list. In order to help them, the experimenter asked them 

several questions about the room and the objects in it. 

4. Photographed context. Participants were placed in the same condition as Group 

3, and in addition, they were shown photos of the orange room in which they 

learned the list. 
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5. Placebo context. Participants were in the same condition as participants in Group 

2. In addition, before starting to try to recall the words, they are asked to 

perform a warm-up task, namely, to try to remember their living room. 

The data and ANOVA results of the replication of Smith’s experiment are given in Tables 

2 and 3. 

Table 3 ANOVA Table for a (Fictitious) Replication of Smith’s Experiment (1979) 

Source df SS MS F Pr(F) 

Experimental 4 700.00 175.00 5.469** .00119 

Error 45 1,440.00 32.00 
  

Total 49 21,400.00 
   

Source: Adapted from Smith (1979) and Abdi et al., (2009). 

Note: **p < .01. 

Research Hypotheses for Contrast Analysis 

Several research hypotheses can be tested with Smith’s experiment. Suppose that the 

experiment was designed to test these hypotheses: 

• Research Hypothesis 1. Groups for which the 

context at test matches the context during learning 

(i.e., is the same or is simulated by imaging or 

photography) will perform better than groups with 

different or placebo contexts. 

• Research Hypothesis 2. The group with the same 

context will differ from the group with imaginary 

or photographed contexts. 

• Research Hypothesis 3. The imaginary context 

group differs from the photographed context group. 

• Research Hypothesis 4. The different context group 

differs from the placebo group. 
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Table 4 Orthogonal Contrasts for the Replication of Smith (1979) 

Contrast Group 1 Group 2 Group 3 Group 4 Group 5 PCa 

y1 +2 –3 +2 +2 –3 0 

y2 +2 0 –1 –1 0 0 

y3 0 0 +1 –1 0 0 

y4 0 +1 0 0 –1 0 

Source: Adapted from Smith (1979). 

Contrasts 

The four research hypotheses are easily transformed into statistical hypotheses. For example, 

the first research hypothesis is equivalent to stating the following null hypothesis: The means 

of the population for Groups 1, 3, and 4 have the same value as the means of the population for 

Groups 2 and 5. This is equivalent to contrasting Groups 1, 3, and 4, on one hand, and Groups 

2 and 5, on the other. This first contrast is denoted : 

 
The null hypothesis to be tested is 

 
This first contrast is equivalent to defining the following set of coefficients : 

 
Note that the sum of the coefficients  is zero, as it should be for a contrast. Table 4 shows 

all four contrasts. 

Are the Contrasts Orthogonal? 

Now the problem is to decide whether the contrasts constitute an orthogonal family. We check 

that every pair of contrasts is orthogonal by using Equation 7. For example, Contrasts 1 and 2 

are orthogonal because 
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Table 5 Steps for the Computation of SSc1 of Smith (1979) 

Group Ma. Ca CaMa. C2a 

1 18.00 +2 +36.00 4 

2 11.00 –3 –33.00 9 

3 17.00 +2 +34.00 4 

4 19.00 +2 +38.00 4 

5 10.00 –3 –30.00 9 

  
0 45.00 30 

Source: Adapted from Smith (1979). 

F test 

The sum of squares and Fy for a contrast are computed from Equations 8 and 10. For example, 

the steps for the computations of SSy1 are given in Table 5. 

 

The significance of a contrast is evaluated with a Fisher distribution with 1 and A(S – 1) = 

45 degrees of freedom, which gives a critical value of 4.06 for α = 0.5 (7.23 for α = .01). 

The sums of squares for the remaining contrasts are SSψ 2 = 0, SSψ 3 = 20, and SSψ 4 = 5 

with 1 and A(S –1) = 45 degrees of freedom. Therefore, y2, y3, and y4 are nonsignificant. Note 

that the sums of squares of the contrasts add up to SSexperimental. That is, 

SSexperimental = SSψ 1+ SSψ 2+ SSψ 3+ SSψ 4 =  675.00 + 0.00 + 20.00 + 5.00 = 700.00. 

When the sums of squares are orthogonal, the degrees of freedom are added the same way as 

the sums of squares are. This explains why the maximum number of orthogonal contrasts is 

equal to the number of degrees of freedom of the experimental sum of squares. 

A Priori Nonorthogonal Contrasts 
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So orthogonal contrasts are relatively straightforward because each contrast can be evaluated 

on its own. Nonorthogonal contrasts, however, are more complex. The main problem is to 

assess the importance of a given contrast conjointly with the other contrasts. There are currently 

two (main) approaches to this problem. The classical approach corrects for multiple statistical 

tests (e.g., using a Šidák or Bonferroni correction), but essentially evaluates each contrast as if 

it were coming from a set of orthogonal contrasts. The multiple regression (or modern) 

approach evaluates each contrast as a predictor from a set of nonorthogonal predictors and 

estimates its specific contribution to the explanation of the dependent variable. The classical 

approach evaluates each contrast for itself, whereas the multiple regression approach evaluates 

each contrast as a member of a set of contrasts and estimates the specific contribution of each 

contrast in this set. For an orthogonal set of contrasts, the two approaches are equivalent. 

The Classical Approach 

Some problems are created by the use of multiple nonorthogonal contrasts. The most important 

one is that the greater the number of contrasts, the greater the risk of a Type I error. The general 

strategy adopted by the classical approach to this problem is to correct for multiple testing. 

Šidák and Bonferroni Corrections 

When a family’s contrasts are nonorthogonal, Equation 10 gives a lower bound for a[PC]. So, 

instead of having the equality, the following inequality, called the Šidák inequality, holds: 

 

This inequality gives an upper bound for [PF], and therefore the real value of [PF] is 

smaller than its estimated value. 

As earlier, we can approximate the Šidák inequality by Bonferroni as 

 

And, as earlier, Šidák and Bonferroni are linked to each other by the inequality 
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Table 6 Nonorthogonal Contrasts for the Replication of Smith (1979) 

Contrast Group 1 Group 2 Group 3 Group 4 Group 5 PCa  

y1 2 –3 2 2 –3 0 

y2 3 3 –2 –2 –2 0 

y3 1 –4 1 1 1 0 

Source: Adapted from Smith (1979). 

Example 

Let us go back to Smith’s (1979) study (see Table 2). Suppose that Smith wanted to test these 

three hypotheses: 

• Research Hypothesis 1. Groups for which the 

context at test matches the context during learning 

will perform better than groups with different 

contexts; 

• Research Hypothesis 2. Groups with real contexts 

will perform better than those with imagined 

contexts; 

• Research Hypothesis 3. Groups with any context 

will perform better than those with no context. 

These hypotheses can easily be transformed into the set of contrasts given in Table 6. The 

values of  were computed with Equation 10 (see also Table 3) and are in shown in Table 7, 

along with their p values. If we adopt a value of [PF] = .05, a Šidák correction will entail 

evaluating each contrast at the  level of [PF] = .0170 (Bonferroni will give the 

approximate value of [PF] = .0167). So, with a correction for multiple comparisons one can 

conclude that Contrasts 1 and 3 are significant. 

Multiple Regression Approach 

ANOVA and multiple regression are equivalent if one uses as many predictors for the multiple 

regression analysis as the number of degrees of freedom of the independent variable. An 

obvious choice for the predictors is to use a set of contrast coefficients. Doing so makes contrast 

Fy

a

a a

a
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analysis a particular case of multiple regression analysis. When used with a set of orthogonal 

contrasts, the multiple regression approach gives the same results as the ANOVA-based 

approach previously described. When used with a set of nonorthogonal contrasts, multiple 

regression quantifies the specific contribution of each contrast as the semi-partial coefficient of 

correlation between the contrast coefficients and the dependent variable. The multiple 

regression approach can be used for nonorthogonal contrasts as long as the following 

constraints are satisfied: 

1. There are no more contrasts than the number of degrees of freedom of the 

independent variable. 

2. The set of contrasts is linearly independent (i.e., not multicollinear). That is, no 

contrast can be obtained by combining the other contrasts. 

Table 7 Fy Values for the Nonorthogonal Contrasts From the Replication of 

Smith (1979). 

Contrast rY:  r2Y:  F  pF  

y1 .9820 .9643 21.0937 <.0001 

y2 –.1091 .0119 0.2604 .6123 

y3 .5345 .2857 6.2500 .0161 

Source: Adapted from Smith (1979). 

Example 

Let us go back once again to Smith’s (1979) study of learning and recall contexts. Suppose we 

take our three contrasts (see Table 6) and use them as predictors with a standard multiple 

regression program. We will find the following values for the semi-partial correlation between 

the contrasts and the dependent variable: 

 

with  being the squared correlation of  and the dependent variable with the effects 

of  and  partialled out. To evaluate the significance of each contrast, we compute an F 
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ratio for the corresponding semipartial coefficients of correlation. This is done with the 

following formula: 

 

This results in the following F ratios for the Smith example: 

 

These F ratios follow a Fisher distribution with  and  degrees of freedom. 

Fcritical = 4.06 when  = .05. In this case,  is the only contrast reaching significance (i.e., 

with ). The comparison with the classic approach shows the drastic differences 

between the two approaches. 

A Posteriori Contrasts 

For a posteriori contrasts, the family of contrasts is composed of all the possible contrasts even 

if they are not explicitly made. Indeed, because one chooses one of the contrasts to be made a 

posteriori, this implies that one has implicitly made and judged uninteresting all the possible 

contrasts that have not been made but could have been made. Hence, whatever the number of 

contrasts actually performed, the family is composed of all the possible contrasts. And, this 

number grows very fast: A conservative estimate indicates that the number of contrasts that 

can be made on A groups is equal to 

 

So, using a Šidàk or Bonferroni approach with a posteriori contrasts will, in general, not have 

enough power to be useful. 

Scheffé’s Test 

Scheffé’s test was devised to test all possible contrasts a posteriori while maintaining the 

overall Type I error level for the family at a reasonable level, as well as trying to have a 

conservative but relatively powerful test. The general principle is to ensure that no discrepant 

statistical decision can occur. A discrepant decision would occur if the omnibus test would fail 

to reject the null hypothesis, but one a posteriori contrast could be declared significant. 
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In order to avoid such a discrepant decision, the Scheffé approach first tests any contrast as 

if it were the largest possible contrast whose sum of squares is equal to the experimental sum 

of squares (this contrast is obtained when the contrast coefficients are equal to the deviations 

of the group means to their grand mean) and, second, makes the test of the largest contrast 

equivalent to the ANOVA omnibus test. So, if we denote by  the critical value for 

the ANOVA omnibus test (performed on A groups), the largest contrast is equivalent to the 

omnibus test if its  is tested against a critical value equal to 

 

Equivalently,  can be divided by (A 1), and its probability can be evaluated with a Fisher 

distribution with  = (A – 1) and  being equal to the number of degrees of freedom of the 

mean square error. Doing so makes it impossible to reach a discrepant decision. 

4.1.1 An example: Scheffé 

Suppose that the  ratios for the contrasts computed in Table 7 were obtained a posteriori. 

The critical value for the ANOVA is obtained from a Fisher distribution with  = A 1 = 4 and 

 = A(S – 1) = 45. For  = .05, this value is equal to Fcritical, omnibus = 2.58. In order to evaluate 

whether any of these contrasts reaches significance, one needs to compare them to the critical 

value of 

 
With Scheffé’s approach, only the first contrast is considered significant. 

Hervé Abdi and Lynne J. Williams 

See also Analysis of Variance (ANOVA); Type I Error 
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Fcritical, Sche↵é = (A� 1)⇥ Fcritical, omnibus = 4⇥ 2.58 = 10.32 . (18)


