COEFFICIENT OF CORRELATION

Herve Abdi*

The coefficient of correlation, typically denoted by the letter », evaluates the similarity
of two sets of measurements (i.e., two dependent variables) obtained from the same sample.
To do so, the coefficient of correlation quantifies the amount of information, or shared variance,
common to the two variables.

The idea of correlation is rather old but the modern approach and definition of the
coefficient of correlation was initiated by Francis Galton (in an evolutionary context) in the
end of the 19th century and formalized by Karl Pearson in the early 20th century. The sampling
distribution of this coefficient was mostly derived a few years later by Ronald Fisher and this
was the source of a lifelong enmity between these two giants of statistics.

The correlation coefficient takes values between —1 and +1 (inclusive). A value of +1 shows
that the two series of measurements are measuring the same thing, whereas a value of —1
indicates that the two measurements are still measuring the same thing, but one measurement
varies inversely to the other. A value of 0 indicates that the two series of measurements have
nothing in common. It is important to note that the coefficient of correlation measures only the
linear relationship between two variables and that its value is very sensitive to outliers.

The squared correlation gives the proportion of common variance between two variables
and is also called the coefficient of determination. Subtracting the coefficient of determination
from unity gives the proportion of variance not shared between two variables. This quantity is
called the coefficient of alienation.

The significance of the coefficient of correlation can be tested with an F or a ¢ test. This
entry presents three different approaches that can be used to obtain p values: (1) the classical

approach, which relies on Fisher's ' distributions; (2) the Monte Carlo approach, which relies
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on computer simulations to derive empirical approximations of sampling distributions; and (3)
the nonparametric permutation (also known as randomization) test, which evaluates the
likelihood of the actual data against the set of all possible configurations of these data. In
addition to p values, confidence intervals can be computed using Fisher's Z transform or the
more modern, computationally based, and nonparametric Efron's bootstrap.

The coefficient of correlation always overestimates the intensity of the correlation in the
population and needs to be “corrected” in order to provide a better estimation. The corrected
value is called shrunken or adjusted.

This entry also presents variations of the correlation coefficients (often called

nonparametric measures of correlation) that can be used with ordinal or nominal data.

Notations and Definition

Suppose we have S observations, and for each observation s, we have two measurements,
denoted W; and Y, with respective means denoted My and My. For each observation, we define
the cross-product as the product of the deviations of each variable from its mean. The sum of

these cross-products, denoted SCPyy, is computed as

S

SCBy = (W, - M, (X, -M, ). ()

N

The sum of the cross-products reflects the association between the variables. When the
deviations have the same sign, they indicate a positive relationship, and when they have
different signs, they indicate a negative relationship.

The average value of the SCPwy is called the covariance (just like the variance, the
covariance can be computed by dividing by S or by §— 1):

SCP _scp
Number of Observations S

(2)

COV,,y =

The covariance reflects the association between the variables, but it is expressed in the
original units of measurement. To eliminate the units, the covariance is normalized by division
by the standard deviation of each variable. This defines the coefficient of correlation, denoted

rw,y, which is equal to

COVwy
Twy = ) (3)
owoy
where oy (respectively, oy) denotes the standard deviation of W (respectively, Y), which is the

square root of the variances computed as:
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Rewriting Equation 3 gives a more practical formula:
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where SCP is the sum of the cross-product and SSy and SSy are the sum of squares of W and ¥,

respectively.

Correlation Computation: An Example

The computation for the coefficient of correlation is illustrated with the following data,
describing the values of W and Y for S=6 subjects:

W =1W,=3,W,=4W, =4, W, =5,W, =7

Y, =16,Y, =10,Y, =12,Y, =4,Y. =8,Y, =10.

Step 1
Compute the sum of the cross-products. First compute the means of W and Y:
1< 24
M,=—> W =—=4 and
w S ; K 6
1 60
M,=—>»Y =—=10
TS Zl T6

The sum of the cross-products is then equal to

SCP, =2(Y.-M,)(W.-M,)
=(16-10)(1-4)
+(10-10)(3-4)
+(12-10)(4—4)
+(4-10)(4-4)
+(8-10)(5-4)
+(10-10)(7—4) (5)
=(6x-3)(0x—1)
+(2%x0)(-6x0)
+(—2x1)+(0x3)
=—18+0+0+0-2+0
=-20.



Step 2
Compute the sums of squares. The sum of squares of W; is obtained as

S

SS, =Y. (W,-M,)

s=1
=(1-4>+(3-4)>+(4-4)
+(4-4) +(5-4) +(7-4)
=(=3)*+(-1)’+0° +0’ (6)
+17+3°
=9+14+0+0+1+9
=-18+0+0+0-2+0
=20.

The sum of squares of Y is
S
2
SSy =Y (Y, —M,)
s=1
=(16-10)* +(10-10)*
+(12-10)* +(4—10)* + (8 —10)
+(10-10)*
=6>+0° +2> +(=6)" +(-2)* +0°
=36+0+4+36+4+0
=80. (7)

Step 3
Compute 7, . The coefficient of correlation between W and Y is equal to

E(K_MY)(VV; _MW) SCPWY

T SS, x8S, S5, S5,
20 20 20
J80x20 1600 40
=—_5. @®)

This value of » = .5 can be interpreted as an indication of a negative linear relationship

between W and Y—a conclusion confirmed by the visual examination of Figure 1.



16 ©

1

12 - )

&
6
> ® L4
2
5
8- °

4 - °

| 4
2 4 6

Figure 1. The Scatter-plot of variables W and Y. The plot shows that values of /¥ and Y are
negatively correlated because large values of one variable are paired with small value of the
other variable and vice versa.

Properties of the Coefficient of Correlation

The coefficient of correlation is a number without unit. This occurs because dividing the units
of the numerator by the same units in the denominator eliminates the units. Hence, the
coefficient of correlation can be used to compare different studies performed using different
variables.

The magnitude of the coefficient of correlation is always smaller than or equal to 1. This
happens because the numerator of the coefficient of correlation (see Equation 4) is always

smaller than or equal to its denominator (this property follows from the Cauchy—Schwartz



inequality). A coefficient of correlation that is equal to +1 or 1 indicates that the plot of the
observations will have all observations positioned on a line.
The squared coefficient of correlation gives the proportion of common variance between

two variables. It is also called the coefficient of determination. In our example, the coefficient

of determination is equal to 7, =.25. The proportion of variance not shared between the

variables is called the coefficient of alienation, and for our example, it is equal to 17, =.75.

Interpreting Correlation

The ubiquity of the coefficient of correlation in applied statistics and science is such that it is
sometimes incorrectly interpreted. So it is worth stressing that: 1) the coefficient of correlation
measures only /inear relationships, 2) that it is very sensitive to the effect of outliers (this is
why the computation of a coefficient of correlation should always go with a graphical display
of the relationship between the variables of interest), 3) that the correlation between two
variables cannot be directly used to conclude that there is a causal relationship between these
variables. These themes are developed below.

Linear and Nonlinear Relationship

The coefficient of correlation measures only linear relationships between two variables and
will miss nonlinear relationships. For example, Figure 2 displays a perfect nonlinear
relationship between two variables (i.e., the data show a U-shaped relationship with Y being

proportional to the square of W), but the coefficient of correlation is equal to 0.



Figure 2 A Perfect Nonlinear Relationship With a 0 Correlation (rw.y= 0)

Effect of Outliers
Observations far from the center of the distribution contribute a lot to the sum of the cross-

products. In fact, as illustrated in Figure 3, a single extremely deviant observation (often called
an outlier) can dramatically influence the value of . Another famous example of the sensitivity
of the coefficient of correlation to specific observations was provided, in 1973, by the
statistician Francis Anscombe who created four very different bivariate distributions all having

a coefficient of correlation equal to .82.

Geometric Interpretation
Each set of observations can also be seen as a vecfor in an S dimensional space (one dimension

per observation). Within this framework, the correlation is equal to the cosine of the angle
between the two vectors after they have been centered by subtracting their respective mean.
For example, a coefficient of correlation of » = .50 corresponds to a 150-degree angle. A
coefficient of correlation of 0 corresponds to a right angle, and therefore two uncorrelated

variables are called orthogonal (which is derived from the Greek word for right angle).
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Correlation and Causation
The fact that two variables are correlated does not mean that one variable causes the other one:

Correlation is not causation. For example, in France, the number of Catholic churches in a
city, as well as the number of schools, is highly correlated with the number of cases of cirrhosis
of the liver, the number of teenage pregnancies, and the number of violent deaths. Does this
mean that churches and schools are sources of vice and that newborns are murderers? Here, in
fact, the observed correlation is due to a third variable, namely the size of the cities: the larger
a city, the larger the number of churches, schools, alcoholics, and so forth. In this example, the
correlation between number of churches or schools and alcoholics is called a spurious
correlation because it reflects only their mutual correlation with a third variable (i.e., size of

the city).

( N
000

Figure 3 The Dangerous Effect of Outliers on the Value of the Coefficient of Correlation

Note: The correlation of the set of points represented by the circles is equal to —. 87. When

the point represented by the diamond is added to the set, the correlation is now equal to



+.61—a change that shows that a single outlier can determine the value of the coefficient of

correlation.

Testing the Significance of r

A null hypothesis test for » can be performed using an F statistic obtained as

2

F=-"_x(S-2. (9

—r
For our example, we find that

25

F= x(6-2)=
1-.25 ( )

'2—5x4:1x4:i:1.33.

75 3 3

To perform a statistical test, the next step is to evaluate the sampling distribution of the F-
statistic. This sampling distribution provides the probability of finding any given value of the
F criterion (i.e., the p value) under the null hypothesis (i.e., when there is no correlation
between the variables). If this p value is smaller than the chosen level (e.g., .05 or .01), then
the null hypothesis can be rejected, and 7 is considered significant. The problem of finding the
p value can be addressed in three ways: (1) the classical approach, which uses Fisher's F'
distributions; (2) the Monte Carlo approach, which generates empirical probability
distributions; and (3) the (nonparametric) permutation test, which evaluates the likelihood of

the actual configuration of results among all other possible configurations of results.

Fisher F: V1=1,V2=4
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Figure 4 The Fisher Distribution for vi =1 and v = 4, Along With a = .05
Note: Critical value of F'=7.7086.



r? Distribution: Monte Carlo Approach
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Figure 5 Histogram of Values of ? and F Computed From 1,000 Random Samples When the

Null Hypothesis Is True

Note: The histograms show the empirical distribution of F and 72 under the null hypothesis.

Classical Approach

To analytically derive the sampling distribution of F, several assumptions need to be made: (a)
the error of measurement is added to the true measure; (b) the error is independent of the

measure; and (c) the mean error is normally distributed, has a mean of zero, and has a variance
of o?. When these assumptions hold and when the null hypothesis is true, the F statistic is
distributed as a Fisher's F with y1=1 and v2= S — 2 degrees of freedom. (Incidentally, an
equivalent test can be performed using ¢ = JF , which is distributed under Ho as a Student's

distribution with y = § -2 degrees of freedom).
For our example, the Fisher distribution shown in Figure 4 has y1=1and v.=S5-2=6
—2 =4 and gives the sampling distribution of F. The use of this distribution will show that the

probability of finding a value of F =1.33 under H is equal to p=~.313 (most current

statistical packages will routinely provide this value). Such a p value does not lead to rejecting
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Hy at the usual levels of ¢ =.05 or o =.01. An equivalent way of performing a test uses critical
values that correspond to values of F whose p value is equal to a given ¢ level. For our
example, the critical value (found in tables available in most standard textbooks) for ¢ =.05

is equal to F(1,4)=7.7086. Any F with a value larger than the critical value leads to rejection

of the null hypothesis at the chosen ¢ level, whereas an F value smaller than the critical value
leads one to fail to reject the null hypothesis. For our example, because F = 1.33 is smaller than

the critical value of 7.7086, we cannot reject the null hypothesis.

Monte Carlo Approach

A modern alternative to the analytical derivation of the sampling distribution is to empirically
obtain the sampling distribution of /" when the null hypothesis is true. This approach is often
called a Monte Carlo approach.

With the Monte Carlo approach, we generate a large number of random samples of
observations (e.g., 1,000 or 10,000) and compute » and F for each sample. To generate these
samples, we need to specify the shape of the population from which these samples are obtained.
Let us use a normal distribution (this makes the assumptions for the Monte Carlo approach
equivalent to the assumptions of the classical approach). The frequency distribution of these
randomly generated samples provides an estimation of the sampling distribution of the statistic
of interest (i.e., 7 or F). For our example, Figure 5 shows the histogram of the values of * and
F obtained for 1,000 random samples of 6 observations each. The horizontal axes represent the
different values of 7* (top panel) and F (bottom panel) obtained for the 1,000 trials, and the
vertical axis the number of occurrences of each value of 72 and F. For example, the top panel
shows that 160 samples (of the 1,000 trials) have a value of 2= .01, which was between 0 and
.01 (this corresponds to the first bar of the histogram in Figure 5).

Figure 5 shows that the number of occurrences of a given value of r* and F decreases as an
inverse function of their magnitude: The greater the value, the less likely it is to obtain it when
there is no correlation in the population (i.e., when the null hypothesis is true). However, Figure
5 shows also that the probability of obtaining a large value of 7 or F'is not null. In other words,
even when the null hypothesis is true, very large values of 7* and F can be obtained.

From this point on, this entry focuses on the F distribution, but everything also applies to
the 2 distribution. After the sampling distribution has been obtained, the Monte Carlo
procedure follows the same steps as the classical approach. Specifically, if the p value for the

criterion is smaller than the chosen ¢ level, the null hypothesis can be rejected. Equivalently,
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a value of ' larger than the -level critical value leads one to reject the null hypothesis for this
a level.

For our example, we find that 310 random samples (out of 1,000) had a value of F larger
than F = 1.33, and this corresponds to a probability of p = .310 (compare with a value of p =

.313 for the classical approach). Because this p value is not smaller than ¢ =.05, we cannot

reject the null hypothesis. Using the critical-value approach leads to the same decision. The
empirical critical value for ¢ =.05 is equal to 7.55 (see Figure 5). Because the computed value

of F'=1.33 is not larger than the critical value of 7.55, we do not reject the null hypothesis.

Permutation Tests

For both the Monte Carlo and the traditional (i.e., Fisher) approaches, we need to specify the
shape of the distribution under the null hypothesis. The Monte Carlo approach can be used with
any distribution (but we need to specify which one we want, but more of the time the normal
distribution is chosen), and the classical approach assumes a normal distribution. An alternative
way to look at a null hypothesis test is to evaluate whether the pattern of results for the
experiment is a rare event by comparing it to all the other patterns of results that could have
arisen from these data. This is called a permutation test or sometimes a randomization test.

This nonparametric approach originated with William Gosset (better known under his nom
de plume of Student) and Fisher, who developed the (now standard) F approach because it was
possible then to compute one F but very impractical to compute the Fs for all possible
permutations. If Student and Fisher could have had access to modern computers, it is likely
that permutation tests would nowadays be the standard procedure.

So, to perform a permutation test, we need to evaluate the probability of finding the value
of the statistic of interest (e.g., 7 or F) that we have obtained, compared with all the values we
could have obtained by permuting the values of the sample. For our example, we have six
observations, and therefore there are

6!=6x5x4x3%x2="720
different possible patterns of results. Each of these patterns corresponds to a given permutation

of the data. For instance, here is a possible permutation of the results for our example:

Wi=1, Wo=3;, Ws=4; Wa=4; Ws=5;, We="17
Y1=8; 2=10; Y3=16; Ya=12; Y5=10; Ys=4
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(Note that we need to permute just one of the two series of numbers; here we permuted Y). This
permutation gives a value of » =-30 and of r; =.09. We computed the value of ry.y for

the remaining 718 permutations. The histogram is plotted in Figure 6, where, for convenience,

we have also plotted the histogram of the corresponding F' values.

r2: Permutation test for v, =1, v, =4
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Figure 6 Histogram of ' Values Computed From the 6! = 720 Possible Permutations of the
Six Scores of the Example

For our example, we want to use the permutation test to compute the probability associated

with 7 =.25. This is obtained by computing the proportion of ;. larger than .25. We counted
220 ., out of 720 larger or equal to .25; this gives a probability of

220
=220 _ 306.
P=90

It is interesting to note that this value is very close to the values found with the two other
approaches (cf. Fisher distribution p = .313 and Monte Carlo p = .310). This similarity is
confirmed by comparing Figure 6, where we have plotted the permutation histogram for F,

with Figure 4, where we have plotted the Fisher distribution.
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When the number of observations is small (as is the case for this example with six
observations), it is possible to compute all the possible permutations. In this case we have an
exact permutation test. But the number of permutations grows very fast as the number of
observations increases. For example, with 20 observations the total number of permutations is
close to 2.4 x 10" (this is a very big number). Such large numbers obviously prohibit
computing all the permutations. Therefore, for samples of large size, we approximate the
permutation test by using a large number (say 10,000 or 100,000) of random permutations (this

approach is sometimes called a Monte Carlo permutation test).

Confidence Intervals

A null hypothesis test for a correlation coefficient computed on a (random) sample of
observations obtained from a given population only evaluates if the population value of the
correlation is zero but this null hypothesis test informs neither about the size of the correlation
in the population nor about the expected size of the correlation if the original study were to be
replicated. These concerns are addressed by computing confidence intervals as they provide a
range of likely values of the correlation in the population or for replications of the original
studies. These intervals can be theoretically computed from analytical approaches (which, in
general, require statistical assumptions such as normality of the scores in the population) or,
more recently, by computational approaches such as the bootstrap (that require modern
computation resources).

Classical Approach

The value of » computed from a sample is an estimation of the correlation of the population
from which the sample was obtained. Suppose that we obtain a new sample from the same
population and that we compute the value of the coefficient of correlation for this new sample.
In what range is this value likely to fall? This question is answered by computing the confidence
interval of the coefficient of correlation. This gives an upper bound and a lower bound between
which the population coefficient of correlation is likely to stand. For example, we want to
specify the range of values of 7.y in which the correlation in the population has a 95% chance
of falling.

Using confidence intervals is more general than a null hypothesis test because if the
confidence interval excludes the value 0 then we can reject the null hypothesis. But a
confidence interval also gives a range of probable values for the correlation. Using confidence
intervals has another big advantage: We can act as if we could accept the null hypothesis. To

do so, we first compute the confidence interval of the coefficient of correlation and look at the
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largest magnitude it can have. If we consider that this value is small, then we can say that even
if the magnitude of the population correlation is not zero, it is too small to be of interest.

Conversely, we can give more weight to a conclusion if we show that the smallest possible
value for the coefficient of correlation will still be large enough to be impressive.

The problem of computing the confidence interval for » has been explored (once again) by
Student and Fisher. Fisher found that the problem was not simple but that it could be simplified
by transforming » into another variable called Z. This transformation, which is called Fisher's
Z transform, creates a new Z variable whose sampling distribution is close to the normal
distribution. Therefore, we can use the normal distribution to compute the confidence interval
of Z, and this will give a lower and a higher bound for the population values of Z. Then we can
transform these bounds back into » values (using the inverse Z transformation), and this gives

a lower and upper bound for the possible values of 7 in the population.

Fisher's Z Transform

Fisher's Z transform is applied to a coefficient of correlation » according to the following

formula:

z =%[ln(1+r)—ln(l—r)], (10)

where In is the natural logarithm.
The inverse transformation, which gives » from Z, is obtained with the following formula:
2xZ{—1
o SR2ZYTL
exp{2xZ}+2

where exp{x} means to raise the number e to the power x (i.e.,exp {x}= € and e is Euler's

constant, which is approximately 2.71828). Most hand calculators can be used to compute both
transformations.

Fisher showed that the new Z variable has a sampling distribution that is normal, with a
mean of 0 and a variance of S — 3. From this distribution we can compute directly the upper

and lower bounds of Z and then transform them back into values of 7.

Example

The computation of the confidence interval for the coefficient of correlation is illustrated using

the previous example, in which we computed a coefficient of correlation of » =.5 on a sample
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made of § = 6 observations. The procedure can be decomposed into six steps, which are detailed

next.

Step 1

Before doing any computation, we need to choose an o level that will correspond to the
probability of finding the population value of » in the confidence interval. Suppose we chose
the value a = .05. This means that we want to obtain a confidence interval such that there is a
95% chance, or (1 —a) = (1 —.05) = .95, of having the population value being in the confidence

interval that we will compute.

Step 2
Find in the table of the normal distribution the critical values corresponding to the chosen
o level. Call this value Z,. The most frequently used values are
Z _,=1.645(a=.10)
Z ,.=1.960 (a=.05)
Z ,=2575(a=.01)
Z . =3.325 (a=001).

a=001

Step 3
Transform r into Z using Equation 10. For the present example, with » = .50, we find that

Z=.5493.

Step 4
Compute a quantity called Q as

For our example we obtain

0=7, x| :1.96O><\/I:1.1316.
“"V6-3 3

Step 5
Compute the lower and

Lower Limit=2__=7Z-0
=-0.5493-1.1316=-1.6809
Upper Limit=2_ =Z+Q

=-0.5493+1.1316 = 0.5823.
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Step 6
Transform Ziower and Zupper into 7iower and rupper. This is done with the use of Equation 11.
For the present example, we find that
Lower Limit =7, =-.9330
Upper Limit =r,_ =.5243.

Figure 7 Histogram of 7.y Values Computed From 1,000 Bootstrapped Samples Drawn With
Replacement From the Data From Our Example

The range of possible values of r is very large: the value of the coefficient of correlation
that we have computed could come from a population whose correlation could have been as

low as » =-9330 or as high as rypper = .5243. Also, because zero is in the range of possible

lower
values, we cannot reject the null hypothesis (which is also the conclusion reached with the null
hypothesis tests).

It is worth noting that because the Z transformation is nonlinear, the confidence interval is
not symmetric around 7.

Finally, current statistical practice recommends the routine use of confidence intervals

because this approach is more informative than null hypothesis testing.

Efron's Bootstrap

A modern Monte Carlo approach for deriving confidence intervals was proposed by Bradley
Efron. This approach, called the bootstrap, was probably the most important advance for
inferential statistics in the second part of the 20th century.

The idea behind the bootstrap is simple but could be implemented only with modern
computers, which explains why it is a recent development. With the bootstrap approach, we
treat the sample as if it were the population of interest in order to estimate the sampling
distribution of a statistic computed on the sample. Practically this means that to estimate the
sampling distribution of a statistic, we just need to create bootstrap samples obtained by
drawing observations with replacement (whereby each observation is put back into the sample
after it has been drawn) from the original sample. The distribution of the bootstrap samples is
taken as the population distribution. Confidence intervals are then computed from the

percentile of this distribution.
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For our example, the first bootstrap sample that we obtained comprised the following
observations (note that some observations are missing and some are repeated as a consequence
of drawing with replacement):

s, = observation 5,
s, = observation 1,
s, = observation 3,
s, = observation 2,
s, = observation 3,
s, = observation 6.

This gives the following values for the first bootstrapped sample obtained by drawing with
replacement from our example:

Wi=5,Wo=1, Ws=4; Wa=3;, Ws=4; W=7
Y1=8; Y»=16; Y3=12; Ya=10; Ys=12; Ys= 10.

This bootstrapped sample gives a correlation of .y = —.73.

If we repeat the bootstrap procedure for 1,000 samples, we obtain the sampling distribution
of rw.yas shown in Figure 7. This figure shows that the values of 7y yvary a lot with such a
small sample (in fact, these values cover the whole range of possible values, from —1 to +1). In
order to find the upper and the lower limits of a confidence interval, we look for the
corresponding percentiles. For example, if we select a value of o = .05, we look at the values
of the bootstrapped distribution corresponding to the 2.5th and the 97.5th percentiles. In our
example, we find that 2.5% of the values are smaller than —9487 and that 2.5% of the values
are larger than .4093. Therefore, these two values constitute the lower and the upper limits of
the 95% confidence interval of the population estimation of .y (cf. the values obtained with
Fisher's Z transform of —9330 and .5243). Contrary to Fisher's Z transform approach, the
bootstrap limits are not dependent on assumptions about the population or its parameters (but
it is comforting to see that these two approaches concur for our example). Because the value
of 0 is in the confidence interval of 7.y, we cannot reject the null hypothesis. This shows once
again that the confidence interval approach provides more information than the null hypothesis

approach.

Shrunken and Adjusted r

The coefficient of correlation is a descriptive statistic that always overestimates the population
correlation. This problem is similar to the problem of the estimation of the variance of a

population from a sample. To obtain a better estimate of the population, the value » needs to be
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corrected. The corrected value of 7 (denoted here by 7*.) goes under different names: corrected
r, shrunken 7, or adjusted r (there are some subtle differences between these different
appellations, but we will ignore them here). Several correction formulas are available; the one

most often used estimates the value of the population correlation as

—[(l—rz)(%ﬂ. 12)

S 1 5
_{(1 r) } 1—[(1—.25)xﬂ
[75x—} 0.06.
4

With this formula, we find that the estimation of the population correlation drops from a value

of r=-.50, to a value of 7’ = —\/fT =—.06 =-24.

For our example, this gives

Particular Cases of the Coefficient of Correlation

Mostly for historical reasons, some specific cases of the coefficient of correlation have their
own names (in part because these special cases lead to simplified computational formulas).
Specifically, when both variables are ranks (or transformed into ranks), we obtain the
Spearman rank correlation coefficient (a related transformation will provide the Kendall rank
correlation coefficient); when only one of the two variables is dichotomous and the other one
we obtain the point-biserial coefficient; when both variables are dichotomous (i.e., they take
only the values 0 and 1), we obtain the ¢? (squared) coefficient of correlation;, when both
variables are nominal we obtain the (squared coefficient) Cramer’s 72 coefficient also called
@’ coefficient. The ¢?, ¢’, and V? coefficients are directly linked to the »? statistic testing

independence for a contingency table.

Spearman Rank Correlation Coefficients

The Spearman rank correlation coefficient, often denoted p, is obtained as the plain correlation
coefficient computed on the rank ordered data (older texts often give a convenient
computational formula now made obsolete by computers). As an illustration, with our previous

example, the values of W and Y (reproduced here for convenience):
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Wi=1 Wo= 3 Wa= 4 Wy=4 Ws=5 Wg= 7
V=16 Yo=10 Y3=12 Y, =4 Y;=8 Yz=10

are ranked as:

w1 =10 wy=20 w3=35 wyg=35 ws=50 wg=06.0

Yy = 6.0 Yo — 3.5 Ys — 9.0 Yg — 1.0 Ys — 2.0 Y6 — 3.5
Note that ties are assigned their average rank (so that the sum of the ranks is the same whether
there are ties or not). Using Equation 4, the Spearman coefficient of correlation is obtained

from the ranked values as:

SCP,, 2 (wi—M)lyi=My,) 85

PWY = Twy = \/SSy x 88, - \/Z (w; — Mw)Q Z (i — My)2 V17T x 17

For this example, Pearson » and Spearman p give the same value; this is not in general the case,

but they often give similar values. Spearman is, however, much less sensitive to extreme values.

Inferences for Spearman Coefficient of Correlation

For large number of observations (i.e., more than 10), the significativity of p can be tested
using Equation 9; for number of observations smaller than 10, exact tables of critical values
can be found, for example, in Sidney Siegel’s 1956 book Nonparametric Statistics for the
Behavioral Sciences. For our example, these tables would indicate that, in order to reach
significance, the Spearman coefficient of correlation would need to have a magnitude larger
than .829. With a value of p =—.50, our correlation fails to reach significance—a conclusion
similar to the one obtained from the raw data.

Confidence intervals can be computed for Spearman using standard inferential procedures (i.e.,
Fisher Z-transform) or, better, combinatoric or bootstrapped based approaches (see Bishara &

Hittner, 2017, for a recent review).

Kendall Rank Correlation Coefficients

By contrast with the Spearman correlation coefficient—which is just a variation over Pearson’s
correlation coefficient—the Kendall rank correlation coefficient (denoted 7) is nonmetric,
based on combinatoric, and takes only into account the order between rankings. To do so, the
ranks are broken into a set of ordered pairs and a distance (called the symmetric difference
distance) is computed by counting the number of different pairs between the two rank orders.

This difference is then scaled to fit the [-1 1] range of a coefficient of correlation. Because,
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Kendall’s 7 reflects the differences between rank orders it is sometimes called a coefficient of
disagreement (see, e.g., Siegel, 1956).

So, the first step is to express each variable as a set of ordered pairs of the observations.
Here, if we keep the example used to illustrate Spearman correlation and name the observations

from a to f, as shown in the following:
Observation a b c d e f

w1 = 1.0 Wwo — 2.0 w3 — 3.5 Wy = 3.5 Wy — 5.0 We — 6.0 >
Y1 = 6.0 Yo = 3.5 Ys = 5.0 Yy = 1.0 Ys = 2.0 Y — 3.5

we find that variable w is equivalent to the following set of pairs where the first element of the
pair is strictly preferred to the second element (note that in a tie, the first element is nof strictly

preferred to the second one and so should not be listed):
{(CL, b)v <a7 C)7 <a7 d>7 (CL, 6)7 (Cl, f7 )7 (b7 C)7 (b7 d>7
(b,e), (bs f)i(c,e), (e, f), (dye), (d, f), (e, f)} -
The same procedure gives the following set of pairs for variable y:
{(b,a), (¢, a),(d,a), (e, a), (f,a), (b,c), (d,b),
(e,0),(d, c),(e,¢), (f.c), (d,e), (d, f), (e, f)} -
The next step is to identify the pairs that differ between the two variables. Here this set—

denoted 4— of mismatched pairs is equal to:
{(a,0), (a,0), (a,d), (a,€), (a, £), (b, d), (b,€), (b, £, (ese), (e, f)
(b,a), (c, ), (d, a), (€, @), (f,a), (d, b), (,b), (£,b), (e,¢), (fre)} .
The cardinal (i.e., number of elements here denoted d4) of this set is called the symmetric

difference distance between variables w and y: in this example it is equal to da = 20. Kendall’s

is then obtained by rescaling d to fit the [-1 +1] interval of a correlation as:
2da

=1— — 13
(where S is the number of observations). Here, we obtain
2da 2 x 20 4
=1l—-—=1- =1—-=-.3333.
’ S(S—1) 6 x5 3

Inferences for Kendall coefficient of correlation

For values of N smaller than 10, exact probabilities can be computed for 7 and tables can be
found (e.g., see Siegel, 1956, or Abdi, 2007). Such a table would indicate that for S = 6, 7

would need to be at least as large as .7333 to be significant at the a = .05 level. And so, with
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Kendall’s 7 (just like with the other coefficients), variables W and Y cannot be considered as
significantly correlated.

For values of S larger than 10, 7 is approximately distributed as a normal distribution

pr =0 and 07:1/9222(21—4__?). (14)

And, therefore, a Z-statistic can easily be computed to test Kendall’s 7 for S larger than 10.

with parameters

Cramer’s V2 and Phi

Test of independence for contingency tables are typically conducted by computing a 3* of
independence. Like most tests, y* can be rewritten as the product of two terms: The first term
reflecting the intensity of the effect and the second term reflecting the number of observations.
In the case of y?, this product can be expressed as

x*=¢® xS (15)
(¢ is also called the Inertia of the contingency table, especially in the context of multivariate

approaches tailored for the analysis of contingency tables such as correspondence analysis, see,

e.g., Abdi & Béra, 2018). Rewriting Equation 15 shows that:

Pt == (16)
For an I by J contingency table, the coefficient ¢? takes value between 0 and min(Z,J ) -1,
it is therefore a squared coefficient of correlation for a 2 x 2 contingency table (note that, in
this particular case, ¢ would be equal to the squared Pearson correlation computed between
two binary variables). In the general case, to obtain a squared correlation coefficient (i.e.,
taking values between 0 and 1), the coefficient ¢ needs to be rescaled; doing so gives a

squared correlation coefficient known as @2 or Cramer V> computed as:

2 2 > X2
7 min( — 1,7 —1) S xmin(I —1,J — 1) (17)

To illustrate the computation of these coefficients, consider the following 3 x 6 contingency
table collecting the answers of 260 participants who were asked to associate one (and only one)

color to the sound of a vowel:
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Yellow Green Orange Blue Red Violet

ce 46 17 2 11 42 5. (1s)
a 8 7 5 17 30
ou 1 2 15 14 16 16

The »? of independence for this table is equal to y* = 87.75 with 2 x 5 = 10 degrees of freedom
(with an associated p value smaller than .0001). The index ¢’ is then equal to 87.75 / 260 =

.337. The squared correlation coefficients derived from y? or ¢? are equal to

2
/2 2 X 87.75
4 v Sxmin(/ —1,J—1) 260 x 2 (17)

Inferences for these squared correlation coefficients are equivalent to inferences based on their

2 and so, in this example, these coefficients of correlation would be considered as significantly

different from 0.
Herve Abdi

See also Chi-Square Test; Contingency Table Analysis; Coefficient of Concordance;

Confidence Intervals; Correspondence Analysis.
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