Predictive Discriminant Analysis
Hervé Abdi*

Predictive discriminant analysis (DA, also called linear discriminant
analysis, LDA) predicts group membership of observations that are de-
scribed by several quantitative variables and when the group membership
of (at least some) the observations is known a priori. The variables describ-
ing the observations are also called predictors or independent variables. DA
is closely related to analysis of variance (ANOVA) and multivariate anal-
ysis of variance (MANOVA whose defining equations are formally equiv-
alent to DA). Specifically, ANOVA and MANOVA use a qualitative inde-
pendent variable (i.e., group membership) to predict one or more quanti-
tative variables, whereas DA uses one or more quantitative variables (i.e.,
the predictors) to predict a qualitative dependent variable (group member-
ship).

THE MAIN IDEA

With ] a priori groups, DA linearly combines the predictors to create a set of
(J—1) new orthogonal variables called discriminant variables that maximally
separate the groups. These discriminant variables best separate the a priori
groups because an ANOVA performed with the first of these variables will
give the largest possible F, whereas the second discriminant variable will
give the second largest F (while being orthogonal to the first variable) and
so on, up to the last (i.e., ] — 1) discriminant variable.

NOTATIONS

Essential notations are briefly defined here (but see the entry matrix algebra
for details, examples, and explanations). Scalars are denoted by italic let-
ters, with lower case letter referring to an item and with upper case letters
being used to denote the cardinal of a set (e.g., I is the number of observa-
tions and 1 refers to a specific observation). Vectors are denoted by lower
case bold letter (e.g., a) and are by default column vectors. Matrices are de-
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noted by upper case bold letter (e.g., A) and in some cases with their num-
ber of rows and columns indicated as subscripts (e.g., KX I). The transpose
X

operation is indicated by the superscript T (e.g. X' is the transpose of X).
The identity matrix is denoted I. The inverse of a matrix is indicated by
the superscript —1 (e.g. X! is the inverse of X).

GENERALIZED SINGULAR VALUE DECOMPOSITION

The generalized singular value-decomposition (GSVD) applies to an I by

] rectangular matrix of rank L denoted X. The GSVD decomposes X un-

der the constraints expressed by two symmetric positive definite matrices

(called constraint matrices or sometimes metric matrices) M (of dimen-

sions I by I) and W (of dimensions ] by J) into three matrices such that
X=UAV' withVIMV=U'WU= 1 1)

X
with A being a diagonal matrix of positive numbers called the singular val-

ues of X and with U and V being called the left and right singular vectors
of X.

ANOVA FOR DA

Recall that ANOVA evaluates if the means of a set of groups significantly
differ from each other. To make explicit the relationship between LDA
and ANOVA, we show below how ANOVA can be written with notations
similar to DA. Take, for example, two groups of five participants each, with
the following scores:

Groupe 1:[T 2 5 6 6] etGroupe2:[8 8 9 11 14]' . (2)
First, organize these scores into one vector denoted y:
-
y=[1 2566 8 8 9 11 14" . @3)

The group membership of the observations is stored in a group matrix
X. A group matrix has as many rows as there are observations and as many
columns as there are groups. In this matrix (containing only Os and 1s), the
element xy; is equal to 1 if the ith observation belongs to Group j and 0 if
not. Here we have:
000 0 o A
T 1 11 @

—_—

The number of groups is denoted ] (ici ] = 2), the number of observa-
tions per group is denoted N (here N = 5) and the total number of observa-
tions is denoted I (here I = 10 = 2 x 5).



The first step of the analysis computes the mean of all observations
called the grand mean (also called the grand barycenter) as

G 1MTy=7. (5)

_1
T I1x1

Next, we compute the vector of group means (also called group barycen-
ters) denoted g and computed as:

-1 1 1
g= (xTx) X"y = < 1 ) X'y = X"y

5 01" [20 N‘IX]O 20 4
B [0 5] g [50} - [(53 ;] . {50] - M : (6)

We then compute three I-dimensional vectors that store the distances
(also called deviations) at the core of the ANOVA procedure. The first
vector—called the total distance vector—stores the distance from each ob-
servation to the grand mean. Denoted t (for “total”), it is computed as:

11 (71 [ -6
2 7 _5
5 7 2
6 7 -1
6 7 1
t=y— 1 xG=1g /=171 =1] 1 |- )
8 7 1
9 7 2
1 7 4
4] |7l L 7.

The second vector—called the within distance vector— stores the dis-
tance from each observation to the mean of its group. Denoted w (for
“within” groups), this vector is computed as:

17 (47 [ =37
2 4 2
5 4 1
6 4 2
w=y—Xg= g - 140 - —5 : ®)
8 10 2
9 10 -1
1 10 1
4] o] | 4]

The third vector—called the between distance vector— stores for each
observation the distance from the mean of its group to the grand mean



Denoted b (for “between” groups), this vector is computed as:

KN (77 [ —3 7
4 7 -3
4 7 -3
4 7 -3
4 7 -3
b:Xg—Il]xG: 10| |7| ~ 3| ©)
10 7 3
10 7 3
10 7 3
110] 7] L 3]

These three vectors define the fundamental equation of the ANOVA
which indicates that the total distance vector is the sum of the between
distance vector and the within distance vector:

t=b+w (10)

(this equation is obtained by replacing b and w by their definition from
Equations 9 and 8).

These three distance vectors are then used to compute the correspond-
ing sum of squares. The distances within a group express the experimental
error (i.e., what is not predicted by the model), when squared and summed,
these distances give the sum of squares within groups (denoted SSyithin)
computed as

SSwithin = W'W =48, (11)

The distances between groups express the experimental effect (i.e., what
is predicted by the model), when squared and summed these distances give
the sum of squares between groups (denoted SSpetween) cOmputed as

SSbetween = b'Tb =90 . (12)

A simple algebraic manipulation shows that the vectors b et w are oth-
ogonal to each other (i.e., w'b = bTw = 0) and therefore that the total sum
of squares is equal to the sum of squares within plus the sum of squares be-
tween:

tTt=ww+bTb=90+48=138. (13)

To be comparable in magnitude, these sums of squares are transformed
into mean squares by dividing each sum of squares by its number of de-
grees of freedom. These degrees of freedom correspond to the number of
data points that can be chosen taken into account the constraints in the
data. So, for example, the sum of squares between is obtained from ] de-
viations (so here two) but, because, the grand mean is known before com-
puting the deviations. when the first (J] — 1) have been chosen, the value



o

of the Jth deviation is also automatically known. Therefore, the sum of
square between has only (] — 1) degrees of freedom and so, here, we have
Af petween = ] —1 = 1. A similar argument shows that the number of degrees
of freedom for SSyiin is equal to df .., = I — ] = 8. This way, we obtain
the following mean squares

SSwithi 48 SS 920
MSyithin = W0 — 22 6 et MSpetween = —oroween _ 7> 90

df within 8 df between 1 (14)

Finally, the ratio of the mean squares gives the standard F-ratio statistics

of the ANOVA: MS 90
between

F Y~ Z 15.00 . (15)
Under the usual statistical hypotheses (e.g., normality of the residuals and
homoscedasticity) the F ratio will—when the null hypothesis is true—fol-
low a Fisher distribution with vi = J—1 (ici vi = 1) et v; = N —J (ici
v, = 8) degrees of freedom. For this example, the p value associated to an
F = 15.00 (with vi = 1 and v, = 8) is equal to p = .0047—a value small
enough to reject the null hypothesis at the usual thresholds.

The formula for F can be rewritten in a way that makes the discrimi-
nant analysis optimization problem easier to state. Specifically, F can be
rewritten as

F— MSbetween _ Ssbetween « dfwithin _ WTW « If] . (16)

MSyithin SSwithin df between b™b I —1

This shows that for a specific problem (i.e., number of groups and number
T

of observations being fixed), the F ratio depends only upon the ratio %

BACK TO DA: MAXIMIZATION PROBLEM

Recall that DA optimally combines the original predictors to create the dis-
criminant variables which would give the largest F if used to compute an
ANOVA on the groups. This maximization problem—akind to principal
component analysis and canonical correlation analysis—can be expressed
from Equation 16 by first noting that the term % plays the role of a con-
stant and can therefore be ignored. So, we are looking for the coefficients of
one (or more) linear transformation (which can be stored in a vector v or in
a matrix V if there are several such linear transformations) of the predictors
that will maximize the F ratio from Equation 16. Specifically, if we denote
by Z the matrix of the centered predictors (which could also be normalized
or transformed into Z-scores), we are looking for a linear transformation of
the columns of Z that will give a new variable called h obtained as a lin-
ear combination of the columns of Z with coefficients stored in the vector
denoted z such that h = Zv with the condition that this new variable h
maximizes the F ratio.



There are several equivalent ways of solving the maximization problem
of DA, but they all involve the same matrices. Specifically, with K predic-
tors if we denoted (by analogy with the ANOVA) D the K x ] matrix of the
between group distances and C the ] x ] within group variance covariance
matrix, then the DA maximization problem can be solved in terms of the
generalized singular value decomposition as:

Dy =UAV"T with VT (C")V:ﬁT (1 I )ﬁ: I (17)
Tix1 LxL

where L < min (K —1)(] — 1) is the rank of Dg. The matrix Hg = ua gives
the optimum scores for separating the group means. This decomposition
shows that DA finds the best possible separation (i.e., create the largest
variance) between the groups means under the constraints imposed by the
matrix C~' (sometimes called the Mahalonobis distance matrix, from the
eponym Indian statistician). The first generalized singular vectors U et
V—which are associated to the largest singular value—give the largest F
ratios. The following pairs of singular vectors give the subsequent optimal
discriminant variables (with the constraint that discriminant variables are
pairwise orthogonal). To obtain the values of the discriminant variables for
the original observations the mean of each variable is subtracted from this
variable. Denote by Z this centered matrix, then the value of the discrim-
inant variables is obtained by multiplying Z by the matrix V = (C~') V.
The whole procedure is illustrated by the following example.

Figure 1: The four variables measured on the faces used in the example:
1) between eye distance, 2) length of the nose, 3) distance from eyes to
chin, and 4) width of the face.



Table 1
Four variables measured on the six participants (from the Figure in Abdi
& Valentin, 2009, p. 159). All these measurements are in millimeters and
were collected on pictures of size 8cm x 5cm.

ID Between-Eyes Nose Eye-to-Chin
Number Distance Length Distance Width
Females
Fy 30 26 55 75
F2 28 26 60 80
F3 28 26 60 85
Males

Gy 26 24 60 80
Gz 35 25 61 80
Gs 27 24 57 73

EXAMPLE: SEX IDENTIFICATION

This small example illustrate DA with a face processing example. Here the
task is to identify the sex of a person from measurements performed on a
picture of their face. The pictures of six persons (three females and three
males, obtained from Figure V.6 at page 159 of the 2009 book of Hervé
Abdi and Dominique Valentin) were used for the exercise. Four measure-
ments (in millimeters) were collected from these pictures: 1) between eye
distance, 2) length of the nose, 3) distance from eyes to chin, and 4) width
of the face. (see Figure 1 for details and Table 1 for the data).

The raw data are stored into the I (here I = 6) by K (here K = 4) data
matrix X:

30 26 55 75
28 26 60 80
28 26 60 85
X=136 24 60 80| (18)
35 25 61 80
27 24 57 73

The number of groups to identify is J (here ] = 2) as we have a balanced
design, the number of observations per group is denoted N (here N = 3).

The next step is to create the dependent variable group matrix. This I
by ] matrix, denoted Y, contains only 0s and 1s with a value of 1 indicating
group membership:

(19)

(Note, incidentally that, in DA, the roles of X and Y are flipped compared
to the ANOVA, ¢f. Equation 4).



The K by 1 vector of the grand means for all K = 4 variables is denoted
g and computed as

g=X"x GI 1 1) —[29.00 25.17 5883 78.83]" . (20)
X

To eliminate size effects the matrix is centered to give matrix Z (note
that in most applications, Z would also be normalized or transformed into
Z scores):

100 083 —3.83 —3.83

—1.00 083 117 1.7

B N\ | =100 083 117 617
Z_X_(Il#’)_ 2300 —1a7 17 otz |- @

600 —0.17 217 117

~200 —117 —1.83 —5.83

The means of the groups are collected in the K x ] matrix denoted O

-1 28.67 26.00 58.33 80.00
_ T Ty
0= (Y Y) YIX= {29.33 24.33 59.33 77.67} ) (22)

In Matrix O, the intersection of row k and column j stores the value of the
mean of the kth group for the jth variable.

The distances of the group means to the grand means of the variables
are stored in the K x ] matrix denoted Dy computed as:

_ A\ [ 033 083 —050 1.7
Dg_o_<K11g>_[ 033 —08 050 —117 |

The value of the distances of the observations to their group means are
collected in the I by ] matrix Dy computed as:

133 0.00 —3.33 -5.00
—-0.67 0.00 1.67  0.00
—0.67 0.00 1.67 5.00

-33 —-033 0.67 233

5.67 067 167 233

—2.33 —0.33 —2.33 —4.67

Dw=X—(YxO)= (24)

Matrix Dyy is then used to compute the within groups variance/covariance
matrix denoted C:

12.83 142 150 1.58
B - | 142 017 042 058
C_IfK(DWDW)_ 150 042 633 1033 |° (25)
1.58 0.58 10.33 20.67



whose inverse is:

304.00 —2880.00 124.00 —4.00
—2880.00 2729152 —1175.52 38.08
124.00 —1175.52 51.52 -2.08
—4.00 38.08 —2.08  0.32

c'= (26)

These matrices can now be used to compute the generalized SVD Dy :
D, — GAVT

—-1.73
= [ 173 } x 85.05
e — A
U with: UT (‘TI)G:I

x [ 0.0023 —0.0057 0.0034 —0.0079 | . (27)

VT with: \~/T(C_1 ]\7=I

From this GSVD, the values of the discriminant function for the group
means are obtained as:

Hy = UA

=Dy (C)V=DgxV

(28)

| —147.3094
B 147.3094 | °

(withV =C~! \7, note also that matrix Hg is column centered). Finally the
values of the discriminant function for the original observations are stored
in matrix H computed as (cf. Equation 28):

H:Z(C*1>\7:Z><V (29)

= [ —146.64 —147.06 —148.23 14847 147.29 146.17]T.

These factor scores can be used to compute the I by ] Euclidean distance
matrix between observations and group which is denoted D and equal to
D (30)

| 0.67 0.25 0.92 29578 294.60 293.48]"
-~ 293.95 294.37 29554 1.16 0.02 1.14

Using the distance matrix, the observations are then assigned to the
closest group

GD)
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Comparing Y with the group matrix Y (from Equation 19) shows that
prediction is perfect all 6 observations are assigned to their groups.

Note, incidentally that the computing a Fisher F using the scores from
Equation 29 will a maximum value of (see Equation 15):

130200.32
Fe m — 130200.3265 . (32)

A value larger than any of the original Fs.

Evaluating the model performance with new observations

The perfect performance of the discriminant model evaluated previously is
a positively biased estimation because the data used to evaluate the model
were also the data used to build the model. There are several ways to
obtain a less biased (ideally an unbiased) estimate of the performance of
the discriminant model. Some parametric approaches exist, but they often
rely on assumptions such as multivariate normality that make these ap-
proaches undesirable. Contemporary practice therefore prefers to rely on
computational cross-validation procedures. Probably the most straightfor-
ward of these procedures is to evaluate the model with new data (i.e. data
that were, therefore, not used to compute the discriminant function). These
new data can be obtained, for example, by sequestering part of the data
(i.e., keeping some observations hidden) prior to the analysis and evalu-
ating these observations only after the analysis has been performed. Here,
for example, we sequestered 4 observations (2 females and 2 males), stored
in a matrix denoted Xgyp:

F, 29 26 58 77
lF 30 23 60 83
Xeup = |\, 28 25 60 80| ° (33)

M, 25 25 50 80

To predict the sex of these observations, we use the parameters esti-
mated from the DA to compute the discriminant function which will be
used, in turn, to assign these observations to the groups. The first step is to
pre-process the data matrix in way identical to the original data. Here the
data were only centered so we will only center the new data by subtracting
the grand mean vector g from each observation (likewise, if we had nor-
malized the original data we would normalize the new observations using
the normalization parameters used in the original analysis). This gives

0.00 083 —0.83 —1.80
T)_ 100 —217 117 447

-1.00 —-0.17 117 117 (34)

Zsup = Xsup - ( 1
—4.00 —-0.17 -=8.83 1.17

Isup x 1
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The matrix of discriminant scores for these new observations is ob-
tained by replacing Z by Z,;, in Equation 29

Hop = Zoup (CT') V=2 x V (35)

= [ 143.17025 —382.69389 —18.13598 105.38093 }T .

The new observations are now correctly classified only half of the time: a
performance much less impressive that with the original DA prediction.
When there is no available external datum, a substitute approach could be
to predict each observation (or subset of observations) by a model built
from all the other observations. This approach called the “leave one out
(LOO)” procedure is often favored for small samples.

CONCLUSION

In addition of being mathematically straightforward and easily implemen-
ted, DA remains a very popular method for predicting group membership
observations described by multiple quantitative variables. It has, how-
ever some limitations that current research is trying to alleviate. A first
limitation of DA is to necessitate quantitative predictors; this limitation is
addressed by discriminant correspondence analysis that adapts correspon-
dence analysis to handle qualitative variables.

Another problem with DA originates from its assigment rule: An ob-
servation is assigned to the closest group and this gives a 0 or a 1 proba-
bility for an observation to belong to a group. This assigment rule seems
too strict, as can be illustrated by the example of the prediction of the new
faces: a male face with a discriminant score of —18.14 was misclassified
as female and a female face was misclassified as male with a discriminant
score of —143.17: The first prediction error feels weaker than the second,
but DA gives the same score to both incorrect prediction.s. Logistic regres-
sion generalizes DA by providing probabilities of assignment to a class and
would preserve the difference between the predictions by assigning differ-
ent probabilities to them. Note that logistic regression is, however, even
more sensitive than DA to the inversion problem discussed below.

Another problem of DA originates from the inversion step of matrix C,
because this inversion requires well conditioned data, it de facto precludes
using DA with large data sets for which the variables outnumber th ob-
servations (a configuration often called the P >> N problem). Modern
techniques such as ridge can minimize this problem as long as the vari-
ables do not wastly outnumber the observations. A lot of recent work in
artificial intelligence, pattern recognition, and statistics (e.g., deep learn-
ing, neural networks, statistical learning, and support vector machines, to
cite but a few) is dedicated to develop the next generation of discriminant
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methods that would overcome the limits of DA while preserving its pre-
dictive power.

SEE ALSO

Barycentric discriminant analysis, Correspondence analysis, Matrix alge-
bra, Principal component analysis, Analysis of variance (ANOVA), Multi-
variate analysis of variance (MANOVA)
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