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Principal Component Analysis

Hervé Abdi · Lynne J. Williams

Abstract Principal component analysis (pca) is a multivariate technique that analyzes
a data table in which observations are described by several inter-correlated quantitative
dependent variables. Its goal is to extract the important information from the table, to
represent it as a set of new orthogonal variables called principal components, and to
display the pattern of similarity of the observations and of the variables as points in
maps. The quality of the pca model can be evaluated using cross-validation techniques
such as the bootstrap and the jackknife. Pca can be generalized as correspondence
analysis (ca) in order to handle qualitative variables and as multiple factor analysis
(mfa) in order to handle heterogenous sets of variables. Mathematically, pca depends
upon the eigen-decomposition of positive semi-definite matrices and upon the singular
value decomposition (svd) of rectangular matrices.

Keywords:
Bilinear decomposition, correspondence analysis, cross-validation, eigen-decomposi-

tion, factor scores, jackknife, loadings, multicolinearity, multiple factor analysis, principal
component analysis, predicted residual sum of squares, press, residual sum of squares,
ress, singular value decomposition, small N large P problem.

1 Introduction

Principal component analysis (pca) is probably the most popular multivariate statistical
technique and it is used by almost all scientific disciplines. It is also likely to be the oldest
multivariate technique. In fact, its origin can be traced back to Pearson (1901) or even
Cauchy (1829, see Grattan-Guinness, 1997, p. 416), or Jordan (1874, and also Cayley,
Silverster, and Hamilton, see Stewart, 1993; Boyer and Merzbach, 1989, for more) but
its modern instantiation was formalized by Hotelling (1933) who also coined the term
principal component. Pca analyzes a data table representing observations described by
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several dependent variables, which are, in general, inter-correlated. Its goal is to extract
the important information from the data table and to express this information as a set of
new orthogonal variables called principal components. Pca also represents the pattern
of similarity of the observations and the variables by displaying them as points in maps
(see, for more details Jolliffe, 2002; Jackson, 1991; Saporta and Niang, 2009).

2 Prerequisite notions and notations

Matrices are denoted in upper case bold, vectors are denoted in lower case bold, and
elements are denoted in lower case italic. Matrices, vectors, and elements from the same
matrix all use the same letter (e.g., A, a, a). The transpose operation is denoted by the
superscript T. The identity matrix is denoted I.

The data table to be analyzed by pca comprises I observations described by J vari-
ables and it is represented by the I × J matrix X, whose generic element is xi,j . The
matrix X has rank L where L ≤ min {I, J}.

In general, the data table will be pre-processed before the analysis. Almost always,
the columns of X will be centered so that the mean of each column is equal to 0 (i.e.,
XT1 = 0, where 0 is a J by 1 vector of zeros and 1 is an I by 1 vector of ones). If in

addition, each element of X is divided by
√
I (or

√
I − 1), the analysis is referred to as a

covariance pca because, in this case, the matrix XTX is a covariance matrix. In addition
to centering, when the variables are measured with different units, it is customary to
standardize each variable to unit norm. This is obtained by dividing each variable by
its norm (i.e., the square root of the sum of all the squared elements of this variable).
In this case, the analysis is referred to as a correlation pca because, then, the matrix
XTX is a correlation matrix (most statistical packages use correlation preprocessing as
a default).

The matrixX has the following singular value decomposition (svd, see Abdi, 2007a,b;
Takane, 2002, and Appendix B for an introduction to the svd):

X = P∆QT (1)

where P is the I × L matrix of left singular vectors, Q is the J × L matrix of right
singular vectors, and ∆ is the diagonal matrix of singular values. Note that ∆2 is equal
to Λ which is the diagonal matrix of the (non-zero) eigenvalues of XTX and XXT.

The inertia of a column is defined as the sum of the squared elements of this column
and is computed as

γ2j =

I∑

i

x2i,j . (2)

The sum of all the γ2j is denoted I and it is called the inertia of the data table or the
total inertia. Note that the total inertia is also equal to the sum of the squared singular
values of the data table (see Appendix A).

The center of gravity of the rows (also called centroid or barycenter, see Abdi, 2009),
denoted g, is the vector of the means of each column of X. When X is centered, its
center of gravity is equal to the 1× J row vector 0T.

The (Euclidean) distance of the i-th observation to g is equal to

d2i,g =

J∑

j

(xi,j − gj)
2 . (3)
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When the data are centered, Equation 3 reduces to

d2i,g =

J∑

j

x2i,j . (4)

Note that the sum of all d2i,g is equal to I which is the inertia of the data table .

3 Goals of PCA

The goals of pca are to (a) extract the most important information from the data table,
(b) compress the size of the data set by keeping only this important information, (c)
simplify the description of the data set, and (d) analyze the structure of the observations
and the variables.

In order to achieve these goals, pca computes new variables called principal com-
ponents which are obtained as linear combinations of the original variables. The first
principal component is required to have the largest possible variance (i.e., inertia and
therefore this component will “explain” or “extract” the largest part of the inertia of the
data table). The second component is computed under the constraint of being orthogonal
to the first component and to have the largest possible inertia. The other components
are computed likewise (see Appendix A.3 for proof). The values of these new variables
for the observations are called factor scores, these factors scores can be interpreted geo-
metrically as the projections of the observations onto the principal components.

3.1 Finding the components

In pca, the components are obtained from the singular value decomposition of the data
table X. Specifically, with X = P∆QT (cf. Equation 1), the I × L matrix of factor
scores, denoted F is obtained as

F = P∆ . (5)

The matrixQ gives the coefficients of the linear combinations used to compute the factors
scores. This matrix can also be interpreted as a projection matrix because multiplying X
by Q gives the values of the projections of the observations on the principal components.
This can be shown by combining Equations 1 and 5 as:

F = P∆ = P∆QQT = XQ . (6)

The components can also be represented geometrically by the rotation of the original
axes. For example, if X represents 2 variables, the length of a word (Y ) and the number
of lines of its dictionary definition (W ), such as the data shown in Table 1, then pca
represents these data by two orthogonal factors. The geometric representation of pca
is shown in Figure 1. In this figure, we see that the factor scores give the length (i.e.,
distance to the origin) of the projections of the observations on the components. This
procedure is further illustrated in Figure 2. In this context, the matrix Q is interpreted
as a matrix of direction cosines (because Q is orthonormal). The matrix Q is also called
a loading matrix. In this context, the matrix X can be interpreted as the product of the
factors score matrix by the loading matrix as:

X = FQT with FTF = ∆2 and QTQ = I . (7)
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This decomposition is often called the bilinear decomposition of X (see, e.g., Kruskal,
1978).

3.1.1 Projecting new observations onto the components

Equation 6 shows that matrix Q is a projection matrix which transforms the original
data matrix into factor scores. This matrix can also be used to compute factor scores
for observations that were not included in the pca. These observations are called sup-
plementary or illustrative observations. By contrast, the observations actually used to
compute the pca are called active observations. The factor scores for supplementary
observations are obtained by first positioning these observations into the pca space and
then projecting them onto the principal components. Specifically a 1×J row vector xT

sup,
can be projected into the pca space using Equation 6. This gives the 1 × L vector of
factor scores denoted fTsup which is computed as:

fTsup = xT
supQ . (8)

If the data table has been preprocessed (e.g., centered or normalized) the same pre-
processing should be applied to the supplementary observations prior to the computation
of their factor scores.

As an illustration, suppose that—in addition to the data presented in Table 1—we
have the French word “sur” (it means “on”). It has Ysur = 3 letters, and our French
dictionary reports that its definition has Wsur = 12 lines. Because sur is not an English
word, we do not want to include it in the analysis, but we would like to know how it
relates to the English vocabulary. So, we decided to treat this word as a supplementary
observation.

The first step is to preprocess this supplementary observation in a identical manner
to the active observations. Because the data matrix was centered, the values of this
observation are transformed into deviations from the English center of gravity. We find
the following values:

ysur = Ysur −MY = 3− 6 = −3 and wsur = Wsur −MW = 12− 8 = 4 .

Then we plot the supplementary word in the graph that we have already used for the
active analysis. Because the principal components and the original variables are in the
same space, the projections of the supplementary observation give its coordinates (i.e.,
factor scores) on the components. This is shown in Figure 3. Equivalently, the coordinates
of the projections on the components can be directly computed from Equation 8 (see
also Table 3 for the values of Q) as:

fTsup = xT
supQ = [−3 4]×

[−0.5369 0.8437
0.8437 0.5369

]
= [4.9853 −0.3835] . (9)

4 Interpreting PCA

4.1 Contribution of an observation to a component

Recall that the eigenvalue associated to a component is equal to the sum of the squared
factor scores for this component. Therefore, the importance of an observation for a
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component can be obtained by the ratio of the squared factor score of this observation
by the eigenvalue associated with that component. This ratio is called the contribution
of the observation to the component. Formally, the contribution of observation i to
component ` is denoted ctri,`, it is obtained as

ctri,` =
f2
i,`∑

i

f2
i,`

=
f2
i,`

λ`
(10)

where λ` is the eigenvalue of the `th component. The value of a contribution is between
0 and 1 and, for a given component, the sum of the contributions of all observations is
equal to 1. The larger the value of the contribution, the more the observation contributes
to the component. A useful heuristic is to base the interpretation of a component on the
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Table 2: Eigenvalues and percentage of explained inertia by each component.

Component λi Cumulated Percent of Cumulated
(eigenvalue) (eigenvalues) of inertia (percentage)

1 392 392 83.29 83.29
2 52 444 11.71 100.00

observations whose contribution is larger than the average contribution (i.e., observa-
tions whose contribution is larger than 1/I). The observations with high contributions
and different signs can then be opposed to help interpret the component because these
observations represent the two endpoints of this component.

The factor scores of the supplementary observations are not used to compute the
eigenvalues and therefore their contributions are generally not computed.

4.2 Squared Cosine of a component with an observation

The squared cosine shows the importance of a component for a given observation. The
squared cosine indicates the contribution of a component to the squared distance of the
observation to the origin. It corresponds to the square of the cosine of the angle from the
right triangle made with the origin, the observation, and its projection on the component
and is computed as

cos2i,` =
f2
i,`∑

`

f2
i,`

=
f2
i,`

d2i,g
(11)

where d2i,g is the squared distance of a given observation to the origin. The squared

distance, d2i,g, is computed (thanks to the Pythagorean theorem) as the sum of the

squared values of all the factor scores of this observation (cf. Equation 4). Components
with a large value of cos2i,` contribute a relatively large portion to the total distance and
therefore these components are important for that observation.

The distance to the center of gravity is defined for supplementary observations and
the squared cosine can be computed and is meaningful. Therefore, the value of cos2 can
help find the components that are important to interpret both active and supplementary
observations.

4.3 Loading: correlation of a component and a variable

The correlation between a component and a variable estimates the information they
share. In the pca framework, this correlation is called a loading. Note that the sum of the
squared coefficients of correlation between a variable and all the components is equal to 1.
As a consequence, the squared loadings are easier to interpret than the loadings (because
the squared loadings give the proportion of the variance of the variables explained by
the components). Table 3 gives the loadings as well as the squared loadings for the word
length and definition example.

It is worth noting that the term “loading” has several interpretations. For example, as
previously mentioned, the elements of matrixQ (cf. equation 58) are also called loadings.
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Table 3: Loadings (i.e., coefficients of correlation between variables and components) and squared loadings. The
elements of matrix Q are also provided.

Loadings Squared Loadings Q

Component Y W Y W Y W

1 −.9927 −.9810 .9855 .9624 −.5369 .8437
2 .1203 −.1939 .0145 .0376 .8437 .5369
∑

1.0000 1.0000

This polysemy is a potential source of confusion, and therefore it is worth checking what
specific meaning of the word “loadings” has been chosen when looking at the outputs of
a program or when reading papers on pca. In general, however, the different meanings of
“loadings” lead to equivalent interpretations of the components. This happens because
the different types of loadings differ mostly by their type of normalization. For example,
the correlations of the variables with the components are normalized such that the sum
of the squared correlations of a given variable is equal to one; By contrast, the elements
of Q are normalized such that the sum of the squared elements of a given component is
equal to one.

4.3.1 Plotting the correlations/loadings of the variables with the components

The variables can be plotted as points in the component space using their loadings as
coordinates. This representation differs from the plot of the observations: The obser-
vations are represented by their projections, but the variables are represented by their
correlations. Recall that the sum of the squared loadings for a variable is equal to one.
Remember, also, that a circle is defined as the set of points with the property that the
sum of their squared coordinates is equal to a constant. As a consequence, when the
data are perfectly represented by only two components, the sum of the squared loadings
is equal to one, and therefore, in this case, the loadings will be positioned on a circle
which is called the circle of correlations. When more than two components are needed to
represent the data perfectly, the variables will be positioned inside the circle of correla-
tions. The closer a variable is to the circle of correlations, the better we can reconstruct
this variable from the first two components (and the more important it is to interpret
these components); the closer to the center of the plot a variable is, the less important
it is for the first two components.

Figure 4 shows the plot of the loadings of the variables on the components. Each vari-
able is a point whose coordinates are given by the loadings on the principal components.

We can also use supplementary variables to enrich the interpretation. A supplemen-
tary variable should be measured for the same observations used for the analysis (for
all of them or part of them, because we only need to compute a coefficient of corre-
lation). After the analysis has been performed, the coefficients of correlation (i.e., the
loadings) between the supplementary variables and the components are computed. Then
the supplementary variables are displayed in the circle of correlations using the loadings
as coordinates.

For example, we can add two supplementary variables to the word length and defini-
tion example. These data are shown in Table 4. A table of loadings for the supplementary
variables can be computed from the coefficients of correlation between these variables and
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Figure 4: Circle of correlations and plot of the loadings of (a) the variables with principal components 1 and 2, and (b)
the variables and supplementary variables with principal components 1 and 2. Note that the supplementary variables
are not positioned on the unit circle.

Table 4: Supplementary variables for the example length of words and number of lines. “Frequency” is expressed as
number of occurrences per 100,000 words, “# Entries” is obtained by counting the number of entries for the word in
the dictionary.

Frequency # Entries

bag 8 6
across 230 3
on 700 12
insane 1 2
by 500 7
monastery 1 1
relief 9 1
slope 2 6
scoundrel 1 1
with 700 5
neither 7 2
pretentious 1 1
solid 4 5
this 500 9
for 900 7
therefore 3 1
generality 1 1
arise 10 4
blot 1 4
infectious 1 2

the components (see Table 5). Note that, contrary to the active variables, the squared
loadings of the supplementary variables do not add up to 1.
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Table 5: Loadings (i.e., coefficients of correlation) and squared loadings between supplementary variables and compo-
nents.

Loadings Squared Loadings

Component Frequency # Entries Frequency # Entries

1 −.3012 .6999 .0907 .4899
2 −.7218 −.4493 .5210 .2019
∑

.6117 .6918

5 Statistical inference: Evaluating the quality of the model

5.1 Fixed Effect Model

The results of pca so far correspond to a fixed effect model (i.e., the observations are
considered to be the population of interest, and conclusions are limited to these specific
observations). In this context, Pca is descriptive and the amount of the variance of X
explained by a component indicates its importance.

For a fixed effect model, the quality of the pca model using the first M components

is obtained by first computing the estimated matrix, denoted X̂[M ], which is matrix X
reconstituted with the first M components. The formula for this estimation is obtained
by combining Equations 1, 5, and 6 in order to obtain

X = FQT = XQQT . (12)

Then, the matrix X̂[M ] is built back using Equation 12 keeping only the first M compo-
nents:

X̂[M ] = P[M ]∆[M ]Q[M ]T

= F[M ]Q[M ]T

= XQ[M ]Q[M ]T , (13)

where P[M ], ∆[M ] and Q[M ] represent, respectively the matrices P, ∆, and Q with only
their first M components. Note, incidently, that Equation 7 can be rewritten in the
current context as:

X = X̂[M ] +E = F[M ]Q[M ]T +E (14)

(where E is the error matrix, which is equal to X− X̂[M ]).

To evaluate the quality of the reconstitution of X with M components, we evaluate

the similarity between X and X̂[M ]. Several coefficients can be used for this task (see,
e.g., Gower, 1971; Lingoes and Schönemann, 1974; Abdi, 2007c). The squared coeffi-
cient of correlation is sometimes used, as well as the RV coefficient (Dray, 2008; Abdi,
2007c). The most popular coefficient, however, is the residual sum of squares (ress). It
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is computed as:

ressM = ‖X− X̂[M ]‖2

= trace
{
ETE

}

= I −
M∑

`=1

λ` (15)

where ‖ ‖ is the norm of X (i.e., the square root of the sum of all the squared elements
of X), and where the trace of a matrix is the sum of its diagonal elements. The smaller
the value of ress, the better the pca model. For a fixed effect model, a larger M gives

a better estimation of X̂[M ]. For a fixed effect model, the matrix X is always perfectly
reconstituted with L components (recall that L is the rank of X).

In addition, Equation 12 can be adapted to compute the estimation of the supple-
mentary observations as

x̂[M ]
sup = xsupQ

[M ]Q[M ]T . (16)

5.2 Random Effect Model

In most applications, the set of observations represents a sample from a larger population.
In this case, the goal is to estimate the value of new observations from this population.
This corresponds to a random effect model. In order to estimate the generalization
capacity of the pcamodel, we cannot use standard parametric procedures. Therefore, the
performance of the pca model is evaluated using computer-based resampling techniques
such as the bootstrap and cross-validation techniques where the data are separated
into a learning and a testing set. A popular cross-validation technique is the jackknife
(aka “leave one out” procedure). In the jackknife (Quenouille, 1956; Efron, 1982; Abdi
and Williams, in press-c), each observation is dropped from the set in turn and the
remaining observations constitute the learning set. The learning set is then used to
estimate (using Equation 16) the left-out observation which constitutes the testing set.
Using this procedure, each observation is estimated according to a random effect model.

The predicted observations are then stored in a matrix denoted X̃.
The overall quality of the pca random effect model using M components is evaluated

as the similarity between X and X̃[M ]. As with the fixed effect model, this can also be
done with a squared coefficient of correlation or (better) with the RV coefficient. Similar
to ress, one can use the predicted residual sum of squares (press). It is computed as:

pressM = ‖X− X̃[M ]‖2 . (17)

The smaller the press the better the quality of the estimation for a random model.
Contrary to what happens with the fixed effect model, the matrix X is not always

perfectly reconstituted with all L components. This is particularly the case when the
number of variables is larger than the number of observations (a configuration known as
the “small N large P” problem in the literature).
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5.3 How many components?

Often, only the important information needs to be extracted from a data matrix. In this
case, the problem is to figure out how many components need to be considered. This
problem is still open, but there are some guidelines (see, e.g., Jackson, 1991; Jolliffe,
2002; Peres-Neto, Jackson, and Somers, 2005). A first procedure is to plot the eigenvalues
according to their size (the so called “scree,” see Cattell, 1966; Jolliffe, 2002) and to
see if there is a point in this graph (often called an “elbow”) such that the slope of the
graph goes from “steep” to “flat” and to keep only the components which are before the
elbow. This procedure, somewhat subjective, is called the scree or elbow test.

Another standard tradition is to keep only the components whose eigenvalue is larger
than the average eigenvalue. Formally, this amount to keeping the `-th component if

λ` >
1

L

L∑

`

λ` =
1

L
I (18)

(where L is the rank of X). For a correlation pca, this rule boils down to the standard
advice to “keep only the eigenvalues larger than 1” (see, e.g., Kaiser, 1961). However, this
procedure can lead to ignoring important information (see O’Toole, Abdi, Deffenbacher,
and Valentin, 1993, for an example of this problem).

5.3.1 Random model

As mentioned earlier, when using a random model, the quality of the prediction does not
always increase with the number of components of the model. In fact, when the number
of variables exceeds the number of observations, quality typically increases and then
decreases. When the quality of the prediction decreases as the number of components
increases this is an indication that the model is overfitting the data (i.e., the information
in the learning set is not useful to fit the testing set). Therefore, it is important to
determine the optimal number of components to keep when the goal is to generalize the
conclusions of an analysis to new data.

A simple approach stops adding components when press decreases. A more elab-
orated approach (see e.g., Geisser, 1974; Tennenhaus, 1998; Stone, 1974; Wold, 1995;
Malinowski, 2002) begins by computing, for each component `, a quantity denoted Q2

`
which is defined as:

Q2
` = 1− press`

ress`−1
(19)

with press` (ress`) being the value of press (ress) for the `th component (where
ress0 is equal to the total inertia). Only the components with Q2

` greater or equal to an
arbitrary critical value (usually 1− .952 = .0975) are kept (an alternative set of critical
values sets the threshold to .05 when I ≤ 100 and to 0 when I > 100; see Tennenhaus,
1998).

Another approach—based on cross-validation—to decide upon the number of compo-
nents to keep uses the indexW` derived from Eastment and Krzanowski (1982) and Wold
(1978). In contrast to Q2

` , which depends on ress and press, the index W`, depends
only upon press. It is computed for the `-th component as

W` =
press`−1 − press`

press`
× dfresidual, `

df`
, (20)
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where press0 is the inertia of the data table, df` is the number of degrees of freedom
for the `-th component equal to

df` = I + J − 2`, (21)

and dfresidual, ` is the residual number of degrees of freedom which is equal to the total
number of degrees of freedom of the table [equal to J(I−1)] minus the number of degrees
of freedom used by the previous components. The value of dfresidual, ` is obtained as

dfresidual, ` = J(I − 1)−
∑̀

k=1

(I + J − 2k) = J(I − 1)− `(I + J − `− 1) . (22)

Most of the time, Q2
` and W` will agree on the number of components to keep, but W`

can give a more conservative estimate of the number of components to keep than Q2
` .

When J is smaller than I, the value of both Q2
L and WL is meaningless because they

both involve a division by zero.

5.4 Bootstraped confidence intervals

After the number of components to keep has been determined, we can compute confidence

intervals for the eigenvalues of X̃ using the bootstrap (Diaconis and Efron, 1983; Holmes,
1989; Efron and Tibshirani, 1993; Jackson, 1993, 1995; Mehlman, Sheperd, and Kelt,
1995). To use the bootstrap, we draw a large number of samples (e.g., 1,000 or 10,000)
with replacement from the learning set. Each sample produces a set of eigenvalues. The
whole set of eigenvalues can then be used to compute confidence intervals.

6 Rotation

After the number of components has been determined, and in order to facilitate the
interpretation, the analysis often involves a rotation of the components that were retained
(see, e.g., Abdi, 2003b, for more details). Two main types of rotation are used: orthogonal
when the new axes are also orthogonal to each other, and oblique when the new axes are
not required to be orthogonal. Because the rotations are always performed in a subspace,
the new axes will always explain less inertia than the original components (which are
computed to be optimal). However, the part of the inertia explained by the total subspace
after rotation is the same as it was before rotation (only the partition of the inertia
has changed). It is also important to note that because rotation always takes place in a
subspace (i.e., the space of the retained components), the choice of this subspace strongly
influences the result of the rotation. Therefore, it is strongly recommended to try several
sizes for the subspace of the retained components in order to assess the robustness of
the interpretation of the rotation. When performing a rotation, the term loadings almost
always refer to the elements of matrix Q. We will follow this tradition in this section.
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6.1 Orthogonal rotation

An orthogonal rotation is specified by a rotation matrix, denoted R, where the rows
stand for the original factors and the columns for the new (rotated) factors. At the
intersection of row m and column n we have the cosine of the angle between the original
axis and the new one: rm,n = cos θm,n. A rotation matrix has the important property of
being orthonormal because it corresponds to a matrix of direction cosines and therefore
RTR = I.

Varimax rotation, developed by Kaiser (1958), is the most popular rotation method.
For varimax a simple solution means that each component has a small number of large
loadings and a large number of zero (or small) loadings. This simplifies interpretation
because, after a varimax rotation, each original variable tends to be associated with one
(or a small number) of components, and each component represents only a small number
of variables. In addition, the components can often be interpreted from the opposition
of few variables with positive loadings to few variables with negative loadings. Formally
varimax searches for a linear combination of the original factors such that the variance
of the squared loadings is maximized, which amounts to maximizing

ν =
∑

(q2j,` − q2` )
2 (23)

with q2j,` being the squared loading of the jth variable of matrix Q on component ` and

q2` being the mean of the squared loadings.

6.2 Oblique Rotations

With oblique rotations, the new axes are free to take any position in the component
space, but the degree of correlation allowed among factors is small because two highly
correlated components are better interpreted as only one factor. Oblique rotations, there-
fore, relax the orthogonality constraint in order to gain simplicity in the interpretation.
They were strongly recommended by Thurstone (1947), but are used more rarely than
their orthogonal counterparts.

For oblique rotations, the promax rotation has the advantage of being fast and con-
ceptually simple. The first step in promax rotation defines the target matrix, almost
always obtained as the result of a varimax rotation whose entries are raised to some
power (typically between 2 and 4) in order to force the structure of the loadings to
become bipolar. The second step is obtained by computing a least square fit from the
varimax solution to the target matrix. Promax rotations are interpreted by looking at
the correlations—regarded as loadings—between the rotated axes and the original vari-
ables. An interesting recent development of the concept of oblique rotation corresponds
to the technique of independent component analysis (ica) where the axes are computed
in order to replace the notion of orthogonality by statistical independence (see Stone,
2004, for a tutorial).

6.3 When and why using rotations

The main reason for using rotation is to facilitate the interpretation. When the data
follow a model (such as the psychometric model) stipulating 1) that each variable load
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Table 6: An (artificial) example of pca using a centered and normalized matrix. Five wines are described by seven
variables (data from Abdi, in press).

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

Wine 1 14 7 8 7 7 13 7
Wine 2 10 7 6 4 3 14 7
Wine 3 8 5 5 10 5 12 5
Wine 4 2 4 7 16 7 11 3
Wine 5 6 2 4 13 3 10 3

Table 7: pca wine characteristics. Factor scores, contributions of the observations to the components, and squared

cosines of the observations on principal components 1 and 2. The positive important contributions are highlighted in

light pink , and the negative important contributions are highlighted in red . For convenience, squared cosines and

contributions have been multiplied by 100 and rounded.

F1 F2 ctr1 ctr2 cos21 cos22

Wine 1 −1.17 −0.55 29 17 77 17
Wine 2 −1.04 0.61 23 21 69 24
Wine 3 0.08 0.19 0 2 7 34
Wine 4 0.89 −0.86 17 41 50 46
Wine 5 1.23 0.61 32 20 78 19

on only one factor and 2) that there is a clear difference in intensity between the relevant
factors (whose eigenvalues are clearly larger than one) and the noise (represented by
factors with eigenvalues clearly smaller than one), then the rotation is likely to provide a
solution that is more reliable than the original solution. However if this model does not
accurately represent the data, then rotation will make the solution less replicable and
potentially harder to interpret because the mathematical properties of pca have been
lost.

7 Examples

7.1 Correlation PCA

Suppose that we have five wines described by the average ratings of a set of experts on
their hedonic dimension, how much the wine goes with dessert, and how much the wine
goes with meat. Each wine is also described by its price, its sugar and alcohol content,
and its acidity. The data (from Abdi, 2003b, in press) are given in Table 6.

A pca of this table extracts four factors (with eigenvalues of 4.76, 1.81, 0.35, and
0.07, respectively). Only two components have an eigenvalue larger than 1 and, together,
these two components account for 94% of the inertia. The factor scores for the first two
components are given in Table 7 and the corresponding map is displayed in Figure 5.

We can see from Figure 5 that the first component separates Wines 1 and 2 from
Wines 4 and 5, while the second component separates Wines 2 and 5 from Wines 1 and 4.
The examination of the values of the contributions and cosines, shown in Table 7, comple-
ments and refines this interpretation because the contributions suggest that Component
1 essentially contrasts Wines 1 and 2 with Wine 5 and that Component 2 essentially
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Figure 5: pca wine characteristics. Factor scores of the observations plotted on the first 2 components. λ1 = 4.76,
τ1 = 68%; λ2 = 1.81, τ2 = 26%.

Table 8: pca wine characteristics. Correlation of the variables with the first two components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

PC 1 −.87 −.97 −.58 .91 −.11 −.96 −.99
PC 2 .15 −.15 −.79 −.42 −.97 .07 .12

Table 9: pca wine characteristics. Loadings (i.e., Q matrix) of the variables on the first two components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

PC 1 −0.40 −0.45 −0.26 0.42 −0.05 −0.44 −0.45
PC 2 0.11 −0.11 −0.59 −0.31 −0.72 0.06 0.09

contrasts Wines 2 and 5 with Wine 4. The cosines show that Component 1 contributes
highly to Wines 1 and 5, while Component 2 contributes most to Wine 4.

To find the variables that account for these differences, we examine the loadings of
the variables on the first two components (see Table 9) and the circle of correlations
(see Figure 6 and Table 8). From these, we see that the first component contrasts price
with the wine’s hedonic qualities, its acidity, its amount of alcohol, and how well it goes
with meat (i.e., the wine tasters preferred inexpensive wines). The second component
contrasts the wine’s hedonic qualities, acidity and alcohol content with its sugar content
and how well it goes with dessert. From this, it appears that the first component rep-
resents characteristics that are inversely correlated with a wine’s price while the second
component represents the wine’s sweetness.

To strengthen the interpretation, we can apply a varimax rotation, which gives a
clockwise rotation of 15 degrees (corresponding to a cosine of .97). This gives the new set
of rotated loadings shown in Table 10. The rotation procedure is illustrated in Figure 7.
The improvement in the simplicity of the interpretation is marginal, maybe because the
component structure of such a small data set is already very simple. The first dimension
remains linked to price and the second dimension now appears more clearly as the
dimension of sweetness.
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Figure 6: pca wine characteristics. Correlation (and circle of correlations) of the variables with Components 1 and 2.
λ1 = 4.76, τ1 = 68%; λ2 = 1.81, τ2 = 26%

Table 10: pca wine characteristics: Loadings (i.e., Q matrix), after varimax rotation, of the variables on the first two
components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

PC 1 −0.41 −0.41 −0.11 0.48 0.13 −0.44 −0.46
PC 2 0.02 −0.21 −0.63 −0.20 −0.71 −0.05 −0.03
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Figure 7: pca wine characteristics: (a) Original loadings of the seven variables; (b) The loading of the seven variables
showing the original axes and the new (rotated) axes derived from varimax; (c) The loadings after varimax rotation
of the seven variables.
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Table 11: Average number of Francs spent (per month) on different types of food according to social class and number
of children (dataset from Lebart and Fénelon, 1975).

Type of Food

Bread Vegetables Fruit Meat Poultry Milk Wine

Blue Collar 2 Children 332 428 354 1437 526 247 427
White Collar 2 Children 293 559 388 1527 567 239 258
Upper Class 2 Children 372 767 562 1948 927 235 433
Blue Collar 3 Children 406 563 341 1507 544 324 407
White Collar 3 Children 386 608 396 1501 558 319 363
Upper Class 3 Children 438 843 689 2345 1148 243 341
Blue Collar 4 Children 534 660 367 1620 638 414 407
White Collar 4 Children 460 699 484 1856 762 400 416
Upper Class 4 Children 385 789 621 2366 1149 304 282
Blue Collar 5 Children 655 776 423 1848 759 495 486
White Collar 5 Children 584 995 548 2056 893 518 319
Upper Class 5 Children 515 1097 887 2630 1167 561 284

Mean 447 732 505 1887 803 358 369

Ŝ 107 189 165 396 250 117 72

7.2 Covariance PCA

Here we use data from a survey performed in the 1950’s in France (data from Lebart
and Fénelon, 1975). The data table gives the average number of Francs spent on several
categories of food products according to social class and the number of children per
family. Because a Franc spent on one item has the same value as a Franc spent on
another item, we want to keep the same unit of measurement for the complete space.
Therefore we will perform a covariance pca, rather than a correlation pca. The data
are shown in Table 11.

A pca of the data table extracts 7 components (with eigenvalues of 3,023,141.24,
290,575.84, 68,795.23, 25,298.95, 22,992.25, 3,722.32, and 723.92, respectively). The first
two components extract 96% of the inertia of the data table, and we will keep only
these two components for further consideration (see also Table 14 for the choice of the
number of components to keep). The factor scores for the first 2 components are given
in Table 12 and the corresponding map is displayed in Figure 8.

We can see from Figure 8 that the first component separates the different social
classes, while the second component reflects the number of children per family. This
shows that buying patterns differ both by social class and by number of children per
family. The contributions and cosines, given in Table 12, confirm this interpretation.
The values of the contributions of the observations to the components indicate that
Component 1 contrasts blue collar families with 3 children to upper class families with
3 or more children whereas Component 2 contrasts blue and white collar families with 5
children to upper class families with 3 and 4 children. In addition, the cosines between
the components and the variables show that Component 1 contributes to the pattern of
food spending seen by the blue collar and white collar families with 2 and 3 children
and to the upper class families with 3 or more children while Component 2 contributes
to the pattern of food spending by blue collar families with 5 children.

To find the variables that account for these differences, we refer to the squared load-
ings of the variables on the 2 components (Table 13) and to the circle of correlations
(see Figure 9). From these, we see that the first component contrasts the amount spent
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Table 12: pca example. Amount of Francs spent (per month) by food type, social class, and number of children.
Factor scores, contributions of the observations to the components, and squared cosines of the observations on principal

components 1 and 2. The positive important contributions are highlighted in light pink , and the negative important

contributions are highlighted in red . For convenience, squared cosines and contributions have been multiplied by 100
and rounded.

F1 F2 ctr1 ctr2 cos21 cos22

Blue Collar 2 Children 635.05 −120.89 13 5 95 3
White Collar 2 Children 488.56 −142.33 8 7 86 7
Upper Class 2 Children −112.03 −139.75 0 7 26 40
Blue Collar 3 Children 520.01 12.05 9 0 100 0
White Collar 3 Children 485.94 1.17 8 0 98 0
Upper Class 3 Children −588.17 −188.44 11 12 89 9
Blue Collar 4 Children 333.95 144.54 4 7 83 15
White Collar 4 Children 57.51 42.86 0 1 40 22
Upper Class 4 Children −571.32 −206.76 11 15 86 11
Blue Collar 5 Children 39.38 264.47 0 24 2 79
White Collar 5 Children −296.04 235.92 3 19 57 36
Upper Class 5 Children −992.83 97.15 33 3 97 1
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Figure 8: pca example: Amount of Francs spent (per month) on food type by social class and number of children.
Factor scores for principal components 1 and 2. λ1 = 3,023,141.24, τ1 = 88%; λ2 = 290,575.84, τ2 = 8%. BC = blue
collar; WC = white collar; UC = upper class; 2 = 2 children; 3 = 3 children; 4 = 4 children; 5 = 5 children.

on wine with all other food purchases, while the second component contrasts the pur-
chase of milk and bread with meat, fruit, and poultry. This indicates that wealthier
families spend more money on meat, poultry and fruit when they have more children,
while white and blue collar families spend more money on bread and milk when they
have more children. In addition, the number of children in upper class families seems
inversely correlated with the consumption of wine (i.e., wealthy families with 4 or 5
children consume less wine than all other types of families). This curious effect is un-
derstandable when placed in the context of the French culture of the 1950s, in which
wealthier families with many children tended to be rather religious and therefore less
inclined to indulge in the consumption of wine.

Recall that the first two components account for 96% of the total inertia [i.e., (λ1 +
λ2)/I = (3,023,141.24 + 290,575.84)/3,435,249.75 = .96]. From Table 14 we find that

ress2 is equal to 4% and this value represents the error when X̂ is estimated from
Components 1 and 2 together. This means that for a fixed effect model, a 2-component
solution represents X well. Press2, the error of estimation using a random effect model

with two components, is equal to 8% and this value indicates that X̃ represents X
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Table 13: pca example: Amount of Francs spent (per month) on food type by social class and number of children.
Squared loadings of the variables on Components 1 and 2.

Bread Vegetables Fruit Meat Poultry Milk Wine

PC 1 0.01 0.33 0.16 0.01 0.03 0.45 0.00
PC 2 0.11 0.17 0.09 0.37 0.18 0.03 0.06

PC
2

PC
1

Meat

Fruit

Poultry

Vegetable

Milk

Bread

Wine

Figure 9: pca example: Amount of Francs spent (per month) on food type by social class and number of children.
Correlations (and circle of correlations) of the variables with components 1 and 2. λ1 = 3,023,141.24, τ1 = 88%;
λ2 = 290,575.84, τ2 = 8%.

adequately. Together, the values of ress and press suggest that only the first two
components should be kept.

To confirm the number of components to keep, we look at Q2 and W . The Q2 values
of .82 and .37 for Components 1 and 2 both exceed the critical value of .095, indicating
that both components should be kept. Note that a negative Q2 value suggests that a
component should not be kept. In contrast, the W values of 1.31 and .45 for the first
two components suggest that only the first component should be kept because only W1

is greater than 1.

8 Some extensions of PCA

8.1 Correspondence Analysis

Correspondence analysis (ca; see Benzécri, 1973; Greenacre, 1984, 2007; Abdi and
Valentin, 2007a; Hwang, Tomiuk, and Takane, in press; Abdi and Williams, in press-
b) is an adaptation of pca tailored to handle nominal variables. It can be interpreted
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as a particular case of generalized pca for which we take into account masses (for the
rows) and weights (for the columns). Ca analyzes a contingency table and provides fac-
tor scores for both the rows and the columns of the contingency table. In correspondence
analysis, the inertia of the contingency table is proportional to the χ2 which can be com-
puted to test the independence of the rows and the columns of this table. Therefore the
factor scores in ca decompose this independence χ2 into orthogonal components (in the
ca tradition, these components are often called factors rather than components, here,
for coherence, we keep the name component for both pca and ca).

8.1.1 Notations

The I × J contingency table to be analyzed is denoted X. Ca will provide two sets
of factor scores: one for the rows and one for the columns. These factor scores are, in
general, scaled such that their inertia is equal to their eigenvalue (some versions of ca
compute row or column factor scores normalized to unity). The grand total of the table
is noted N.

8.1.2 Computations

The first step of the analysis is to compute the probability matrix Z = N−1X. We
denote r the vector of the row totals of Z, (i.e., r = Z1, with 1 being a conformable
vector of 1’s), c the vector of the columns totals, and Dc = diag {c}, Dr = diag {r}. The
factor scores are obtained from the following generalized singular value decomposition
(see Appendix B):

(
Z− rcT

)
= P̃∆̃Q̃T with P̃TD−1

r P̃ = Q̃TD−1
c Q̃ = I . (24)

The row and (respectively) column factor scores are obtained as

F = D−1
r P̃∆̃ and G = D−1

c Q̃∆̃ . (25)

In ca, the rows and the columns of the table have a similar role and therefore we
have contributions and cosines for both sets. These are obtained in a similar way as for
standard pca, but the computations of the contributions need to integrate the values
of the masses (i.e., the elements of r) and weights (i.e., the elements of c). Specifically,
the contribution of row i to component ` and of column j to component ` are obtained
respectively as:

ctri,` =
rif

2
i,`

λ`
and ctrj,` =

cjg
2
j,`

λ`
(26)

(with ri begin the ith element of r and cj being the jth element of c). As for standard
pca, contributions help locating the observations or variables important for a given
component.

The vector of the squared (χ2) distance from the rows and columns to their respective
barycenter are obtained as

dr = diag
{
FFT

}
and dc = diag

{
GGT

}
. (27)

As for pca, the total inertia in ca is equal to the sum of the eigenvalues. By contrast
with pca, the total inertia can also be computed equivalently as the weighted sum of the
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squared distances of the rows or the columns to their respective barycenter. Formally,
the inertia can be computed as:

I =

L∑

l

λ` = rTdr = cTdc . (28)

The squared cosine between row i and component ` and column j and component `
are obtained respectively as:

cos2i,` =
f2
i,`

d2r,i
and cos2j,` =

g2j,`
d2c,j

. (29)

(with d2r,i, and d2c,j , being respectively the i-th element of dr and the j-th element of dc).
Just like for pca, squared cosines help locating the components important for a given
observation or variable.

And just like for pca, supplementary or illustrative elements can be projected onto
the components, but the ca formula needs to take into account masses and weights. The
projection formula, is called the transition formula and it is specific to correspondence
analysis. Specifically, let iTsup being an illustrative row and jsup being an illustrative
column to be projected (note that in ca, prior to projection, a illustrative row or column
is re-scaled such that its sum is equal to one). Their coordinates of the illustrative rows
(denoted fsup) and column (denoted gsup) are obtained as:

fsup =
(
iTsup1

)−1
iTsupG∆̃

−1
and gsup =

(
jTsup1

)−1
jTsupF∆̃

−1
. (30)

[note that the scalar terms
(
iTsup1

)−1
and

(
jTsup1

)−1
are used to ensure that the sum of

the elements of isup or jsup is equal to one, if this is already the case, these terms are
superfluous].

8.1.3 Example

For this example, we use a contingency table that gives the number of punctuation
marks used by the French writers Rousseau, Chateaubriand, Hugo, Zola, Proust, and
Giraudoux (data from Brunet, 1989). This table indicates how often each writer used
the period, the comma, and all other punctuation marks combined (i.e., interrogation
mark, exclamation mark, colon, and semi-colon). The data are shown in Table 15.

A ca of the punctuation table extracts two components which together account for
100% of the inertia (with eigenvalues of .0178 and .0056, respectively). The factor scores
of the observations (rows) and variables (columns) are shown in Tables 16 and the
corresponding map is displayed in Figure 10.

We can see from Figure 10 that the first component separates Proust and Zola’s
pattern of punctuation from the pattern of punctuation of the other 4 authors, with
Chateaubriand, Proust and Zola contributing most to the component. The squared
cosines show that the first component accounts for all of Zola’s pattern of punctuation
(see Table 16).

The second component separates Giraudoux’s pattern of punctuation from that of the
other authors. Giraudoux also has the highest contribution indicating that Giraudoux’s
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Table 15: The punctuation marks of six French writers (from Brunet, 1989). The column labelled xi+ gives the total
number of punctuation marks used by each author. N is the grand total of the data table. The vector of mass for the
rows, r, is the proportion of punctuation marks used by each author (ri = xi+/N). The row labelled x+j gives the

total number of times each punctuation mark was used. The centroid row, cT, gives the proportion of each punctuation
mark in the sample (cj = x+j/N).

Author’s name Period Comma Other xi+ r

Rousseau 7,836 13,112 6,026 26,974 .0189
Chateaubriand 53,655 102,383 42,413 198,451 .1393
Hugo 115,615 184,541 59,226 359,382 .2522
Zola 161,926 340,479 62,754 565,159 .3966
Proust 38,177 105,101 12,670 155,948 .1094
Giraudoux 46,371 58,367 14,299 119,037 .0835

x+j 423,580 803,983 197,388 N = 142,4951 1.0000

cT .2973 .5642 .1385

Table 16: ca punctuation. Factor scores, contributions, mass, mass × squared factor scores, inertia to barycenter, and

squared cosines for the rows. The positive important contributions are highlighted in light pink , and the negative

important contributions are highlighted in red . For convenience, squared cosines and contributions have been multiplied
by 100 and rounded.

ri× ri× ri×
F1 F2 ctr1 ctr2 ri F 2

1 F 2
2 d2r,i cos21 cos22

Rousseau −0.24 −0.07 6 2 .0189 .0011 .0001 .0012 91 9

Chateaubriand −0.19 −0.11 28 29 .1393 .0050 .0016 .0066 76 24
Hugo −0.10 0.03 15 4 .2522 .0027 .0002 .0029 92 8

Zola 0.09 −0.00 19 0 .3966 .0033 .0000 .0033 100 0

Proust 0.22 −0.06 31 8 .1094 .0055 .0004 .0059 93 7

Giraudoux −0.05 0.20 1 58 .0835 .0002 .0032 .0034 6 94

∑
— — 100 100 — .0178 .0056 .0234

λ1 λ2 I
76% 24%
τ1 τ2

pattern of punctuation is important for the second component. In addition, for Girau-
doux the highest squared cosine (94%), is obtained for Component 2. This shows that
the second component is essential to understand Giraudoux’s pattern of punctuation
(see Table 16).

In contrast with pca, the variables (columns) in ca are interpreted identically to
the rows. The factor scores for the variables (columns) are shown in Table 17 and the
corresponding map is displayed in the same map as the observations shown in Figure 10.

From Figure 10 we can see that the first component also separates the comma from
the “others” punctuation marks. This is supported by the high contributions of “others”
and comma to the component. The cosines also support this interpretation because the
first component accounts for 88% of the use of the comma and 91% of the use of the
“others” punctuation marks (see Table 17).

The second component separates the period from both the comma and the “other”
punctuation marks. This is supported by the period’s high contribution to the second
component and the component’s contribution to the use of the period (see Table 17).
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Zola
PERIOD

Giraudoux

Rousseau

Chateaubriand

MARKS
OTHER

Hugo

COMMA
Proust

PC
1

PC
2

Figure 10: ca punctuation. The projections of the rows and the columns are displayed in the same map. λ1 = .0178,
τ1 = 76.16; λ2 = .0056, τ2 = 23.84

Table 17: ca punctuation. Factor scores, contributions, mass, mass × squared factor scores, inertia to barycenter,

and squared cosines for the columns. The positive important contributions are highlighted in light pink , and the

negative important contributions are highlighted in red . For convenience, squared cosines and contributions have

been multiplied by 100 and rounded.

cj× cj× cj×
F1 F2 ctr1 ctr2 cj F 2

1 F 2
2 d2c,j cos21 cos22

Period −0.05 0.11 4 66 .2973 .0007 .0037 .0044 16 84
Comma 0.10 −0.04 30 14 .5642 .0053 .0008 .0061 88 12

Other −0.29 −0.09 66 20 .1385 .0118 .0011 .0129 91 9

∑
— — 100 100 — .0178 .0056 .0234

λ1 λ2 I
76% 24%
τ1 τ2

Together, the pattern of distribution of the points representing the authors and the
punctuation marks suggests that some of the differences in the authors’ respective styles
can be attributed to differences in their use of punctuation. Specifically, Zola’s œuvre
is characterized by his larger than average use of the comma, while Chateaubriand’s is
characterized by his larger than average use of other types of punctuation marks than
the period and the comma. In addition, Giraudoux’s œuvre is characterized by a larger
than average use of the period.

8.2 Multiple factor analysis

Multiple factor analysis (mfa; see Escofier and Pagès, 1990, 1994; Abdi and Valentin,
2007b) is used to analyze a set of observations described by several groups of variables.
The number of variables in each group may differ and the nature of the variables (nominal
or quantitative) can vary from one group to the other but the variables should be of
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the same nature in a given group. The analysis derives an integrated picture of the
observations and of the relationships between the groups of variables.

8.2.1 Notations

The data consists of T data sets. Each data set is called a subtable. Each subtable is an
I ×[t]J rectangular data matrix denoted [t]Y, where I is the number of observations and

[t]J the number of variables of the t-th subtable. The total number of variables is equal
to J , with:

J =
∑
t

[t]J . (31)

Each subtable is preprocessed (e.g., centered and normalized) and the preprocessed
data matrices actually used in the analysis are denoted [t]X.

The `-th eigenvalue of the t-th subtable is denoted [t]%`. The `-th singular value of
the t-th subtable is denoted [t]ϕ`.

8.2.2 Computations

The goal of mfa is to integrate different groups of variables (i.e., different subtables)
describing the same observations. In order to do so, the first step is to make these sub-
tables comparable. Such a step is needed because the straightforward analysis obtained
by concatenating all variables would be dominated by the subtable with the strongest
structure (which would be the subtable with the largest first singular value). In order to
make the subtables comparable, we need to normalize them. To normalize a subtable,
we first compute a pca for this subtable. The first singular value (i.e., the square root
of the first eigenvalue) is the normalizing factor which is used to divide the elements of
this subtable. So, formally, The normalized subtables are computed as:

[t]Z =
1√
[t]%1

× [t]X =
1

[t]ϕ1
× [t]X . (32)

The normalized subtables are concatenated into an I×J matrix called the global data
matrix denoted Z. A pca is then run on Z to get a global solution. Note that because the
subtables have previously been centered and normalized with their first singular value,
Z is centered but it is not normalized (i.e., columns from different subtables have, in
general, different norms).

To find out how each subtable performs relative to the global solution, each subtable
(i.e., each [t]X) is projected into the global space as a supplementary element.

As in standard pca, variable loadings are correlations between original variables and
global factor scores. To find the relationship between the variables from each of the
subtables and the global solution we compute loadings (i.e., correlations) between the
components of each subtable and the components of the global analysis.

8.2.3 Example

Suppose that three experts were asked to rate 6 wines aged in two different kinds of oak
barrel from the same harvest of Pinot Noir (example from Abdi and Valentin, 2007b).
Wines 1, 5, and 6 were aged with a first type of oak, and Wines 2, 3, and 4 with a second
type of oak. Each expert was asked to choose from 2 to 5 variables to describe the wines.
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Figure 11: mfa wine ratings and oak type. (a) Plot of the global analysis of the wines on the first two principal
components. (b) Projection of the experts onto the global analysis. Experts are represented by their faces. A line
segment links the position of the wine for a given expert to its global position. λ1 = 2.83, τ1 = 84%; λ2 = 2.83,
τ2 = 11%.

For each wine, the expert rated the intensity of his/her variables on a 9-point scale. The
data consist of T = 3 subtables, which are presented in Table 18.

The pca-s on each of the three subtables extracted eigenvalues of 1%1 = 2.86, 2%1 =
3.65, and 3%1 = 2.50 with singular values of 1ϕ1 = 1.69, 2ϕ1 = 1.91, and 3ϕ1 = 1.58,
respectively.

Following normalization and concatenation of the subtables, the global pca extracted
5 components (with eigenvalues of 2.83, 0.36, 0.11, 0.03, and 0.01). The first 2 components
explain 95% of the inertia. The factor scores for the first 2 components of the global
analysis are given in Table 20 and the corresponding map is displayed in Figure 11a.

We can see from Figure 11 that the first component separates the first type of oak
(wines 1, 5, and 6) from the second oak type (wines 2, 3, and 4).

In addition to examining the placement of the wines, we wanted to see how each
expert’s ratings fit into the global pca space. We achieved this by projecting the data
set of each expert as a supplementary element (see Abdi, 2007c, for details of the
procedure). The factor scores are shown in Table 20. The experts’ placement in the
global map is shown in Figure 11b. Note that the position of each wine in the global
analysis is the center of gravity of its position for the experts. The projection of the
experts shows that Expert 3’s ratings differ from those of the other two experts.

The variable loadings show the correlations between the original variables and the
global factor scores (Table 19). These loadings are plotted in Figure 12. This figure also
represents the loadings (Table 21) between the components of each subtable and the
components of the global analysis as the “circle of correlations” specific to each expert.
From this we see that Expert 3 differs from the other experts, and is mostly responsible
for the second component of the global pca.
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Table 20: mfa wine ratings and oak type. Factor scores for the global analysis, Expert 1, Expert 2, and Expert 3 for
the first 2 components.

Global Expert 1sup Expert 2sup Expert 3sup

F1 F2 [1]F1 [1]F2 [2]F1 [2]F2 [3]F1 [3]F2

Wine 1 2.18 −0.51 2.76 −1.10 2.21 −0.86 1.54 0.44
Wine 2 −0.56 −0.20 −0.77 0.30 −0.28 −0.13 −0.61 −0.76
Wine 3 −2.32 −0.83 −1.99 0.81 −2.11 0.50 −2.85 −3.80
Wine 4 −1.83 0.90 −1.98 0.93 −2.39 1.23 −1.12 0.56
Wine 5 1.40 0.05 1.29 −0.62 1.49 −0.49 1.43 1.27
Wine 6 1.13 0.58 0.69 −0.30 1.08 −0.24 1.62 2.28

sup = supplementary element

EXPERT 1 

Woody

1

1PC1

1PC2

PC
2

Fruity

Co!eePC

EXPERT 2 

11

2PC2

2PC
PC

PC
2

Vanillin

Roasted

Woody
Red Fruit

EXPERT 3 

Butter

1

3PC1

3PC2

PC
2

Fruity

WoodyPC

Figure 12: mfa wine ratings and oak type. Circles of correlations for the original variables. Each experts’ variables have
been separated for ease of interpretation.

Table 21: mfa wine ratings and oak type. Loadings (i.e., correlations) on the principal components of the global
analysis of the principal components of the subtable pca’s. Only the first three dimensions are kept.

Loadings with first 2 components from subtable pca’s

Expert 1 Expert 2 Expert 3

PC λ τ (%) [1]PC1 [1]PC2 [2]PC1 [2]PC2 [3]PC1 [3]PC2

1 2.83 85 .98 .08 .99 −.16 .94 −.35
2 .36 11 −.15 −.28 −.13 −.76 .35 .94
3 .12 3 −.14 .84 .09 .58 .05 −.01

9 Conclusion

Pca is very versatile, it is the oldest and remains the most popular technique in mul-
tivariate analysis. In addition to the basics presented here, pca can also be interpreted
as a neural network model (see, e.g., Diamantaras and Kung, 1996; Abdi, Valentin, and
Edelman, 1999). In addition to correspondence analysis, covered in this paper, general-
ized pca can also be shown to incorporate a very large set of multivariate techniques such
as canonical variate analysis, linear discriminant analysis (see, e.g., Greenacre, 1984),
and barycentric discriminant analysis techniques such as discriminant correspondence
analysis (see e.g., Nakache, Lorente, Benzécri, and Chastang, 1977; Saporta and Niang,
2006; Abdi, 2007d; Abdi and Williams, in press-a).
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A Eigenvectors, and eigenvalues

Eigenvectors and eigenvalues are numbers and vectors associated to square matrices. To-
gether they provide the eigen-decomposition of a matrix, which analyzes the structure of
this matrix. Even though the eigen-decomposition does not exist for all square matrices,
it has a particularly simple expression for matrices such as correlation, covariance, or
cross-product matrices. The eigen-decomposition of this type of matrices is important
because it is used to find the maximum (or minimum) of functions involving these ma-
trices. Specifically pca is obtained from the eigen-decomposition of a covariance or a
correlation matrix.

A.1 Notations and definition

There are several ways to define eigenvectors and eigenvalues, the most common approach
defines an eigenvector of the matrix A as a vector u that satisfies the following equation:

Au = λu . (33)

When rewritten, the equation becomes:

(A− λI)u = 0 , (34)

where λ is a scalar called the eigenvalue associated to the eigenvector.
In a similar manner, we can also say that a vector u is an eigenvector of a matrix A

if the length of the vector (but not its direction) is changed when it is multiplied by A.
For example, the matrix:

A =

[
2 3
2 1

]
(35)

has for eigenvectors:

u1 =

[
3
2

]
with eigenvalue λ1 = 4 (36)

and

u2 =

[−1
1

]
with eigenvalue λ2 = −1 (37)

For most applications we normalize the eigenvectors (i.e., transform them such that
their length is equal to one), therefore

uTu = 1 . (38)

Traditionally, we put the set of eigenvectors ofA in a matrix denotedU. Each column
of U is an eigenvector of A. The eigenvalues are stored in a diagonal matrix (denoted Λ),
where the diagonal elements gives the eigenvalues (and all the other values are zeros).
We can rewrite the Equation 33 as:

AU = ΛU ; (39)

or also as:
A = UΛU−1 . (40)
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For the previous example we obtain:

A = UΛU−1

=

[
3 −1
2 1

] [
4 0
0 −1

] [
2 2

−4 6

]

=

[
2 3
2 1

]
. (41)

Together, the eigenvectors and the eigenvalues of a matrix constitute the eigen-
decomposition of this matrix. It is important to note that not all matrices have an

eigen-decomposition. This is the case, for example, of the matrix

[
0 1
0 0

]
. Also some ma-

trices can have imaginary eigenvalues and eigenvectors.

A.2 Positive (semi-)definite matrices

A type of matrices used very often in statistics are called positive semi-definite. The
eigen-decomposition of these matrices always exists, and has a particularly convenient
form. A matrix is said to be positive semi-definite when it can be obtained as the product
of a matrix by its transpose. This implies that a positive semi-definite matrix is always
symmetric. So, formally, the matrix A is positive semi-definite if it can be obtained as:

A = XXT (42)

for a certain matrix X (containing real numbers). In particular, correlation matrices,
covariance, and cross-product matrices are all positive semi-definite matrices.

The important properties of a positive semi-definite matrix is that its eigenvalues
are always positive or null, and that its eigenvectors are pairwise orthogonal when their
eigenvalues are different. The eigenvectors are also composed of real values (these last two
properties are a consequence of the symmetry of the matrix, for proofs see, e.g., Strang,
2003; or Abdi and Valentin, 2006). Because eigenvectors corresponding to different eigen-
values are orthogonal, it is possible to store all the eigenvectors in an orthogonal matrix
(recall that a matrix is orthogonal when the product of this matrix by its transpose is a
diagonal matrix).

This implies the following equality:

U−1 = UT . (43)

We can, therefore, express the positive semi-definite matrix A as:

A = UΛUT with UTU = I (44)

where U is the matrix storing the normalized eigenvectors; if these are not normalized
then UTU is a diagonal matrix.

For example, the matrix:

A =

[
3 1
1 3

]
(45)
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can be decomposed as:

A = UΛUT

=



√

1
2

√
1
2√

1
2 −

√
1
2



[
4 0
0 2

]

√

1
2

√
1
2√

1
2 −

√
1
2




=

[
3 1
1 3

]
, (46)

with 

√

1
2

√
1
2√

1
2 −

√
1
2





√

1
2

√
1
2√

1
2 −

√
1
2


 =

[
1 0
0 1

]
. (47)

A.3 Statistical properties of the eigen-decomposition

The eigen-decomposition is important because it is involved in problems of optimization.
Specifically, in principal component analysis, we want to find row factor scores, obtained
as linear combinations of the columns of X such that these factor scores “explain” as
much of the variance of X as possible and such that the sets of factor scores are pairwise
orthogonal. We impose as a constraint that the coefficients of the linear combinations are
finite and this constraint is, in general, expressed as imposing to the sum of squares of
the coefficients of each linear combination to be equal to unity. This amounts to defining
the factor score matrix as

F = XQ , (48)

(with the matrix Q being the matrix of coefficients of the “to-be-found” linear combi-
nations) under the constraints that

FTF = QTXTXQ (49)

is a diagonal matrix (i.e., F is an orthogonal matrix) and that

QTQ = I (50)

(i.e., Q is an orthonormal matrix). The solution of this problem can be obtained with
the technique of the Lagrangian multipliers where the constraint from Equation 50 is
expressed as the multiplication with a diagonal matrix of Lagrangian multipliers denoted
Λ in order to give the following expression

Λ
(
QTQ− I

)
(51)

(see Harris, 2001; and Abdi and Valentin, 2006; for details). This amount to defining the
following equation

L = trace
{
FTF−Λ

(
QTQ− I

)}
= trace

{
QTXTXQ−Λ

(
QTQ− I

)}
(52)
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(where the trace {} operator gives the sum of the diagonal elements of a square matrix).
In order to find the values of Q which give the maximum values of L, we first compute
the derivative of L relative to Q:

∂L
∂Q

= 2XTXQ− 2QΛ, (53)

and then set this derivative to zero:

XTXQ−QΛ = 0 ⇐⇒ XTXQ = QΛ . (54)

This implies also that

XTX = QΛQT . (55)

Because Λ is diagonal, this is clearly an eigen-decomposition problem, and this indicates
thatΛ is the matrix of eigenvalues of the positive semi-definite matrixXTX ordered from
the largest to the smallest and that Q is the matrix of eigenvectors of XTX associated
to Λ. Finally, we find that the factor matrix has the form

F = XQ . (56)

The variance of the factors scores is equal to the eigenvalues because:

FTF = QTXTXQ = QTQΛQTQ = Λ . (57)

Taking into account that the sum of the eigenvalues is equal to the trace of XTX,
this shows that the first factor scores “extract” as much of the variance of the original
data as possible, and that the second factor scores extract as much of the variance
left unexplained by the first factor, and so on for the remaining factors. Incidently, the

diagonal elements of the matrix Λ
1

2 which are the standard deviations of the factor scores
are called the singular values of matrix X (see section on singular value decomposition).

B Singular Value Decomposition

The singular value decomposition (svd) is a generalization of the eigen-decomposition.
The svd decomposes a rectangular matrix into three simple matrices: two orthogonal
matrices and one diagonal matrix. If A is a rectangular matrix, its svd gives

A = P∆QT , (58)

with

– P: the (normalized) eigenvectors of the matrix AAT (i.e., PTP = I). The columns
of P are called the left singular vectors of A.

– Q: the (normalized) eigenvectors of the matrix ATA (i.e., QTQ = I). The columns
of Q are called the right singular vectors of A.

– ∆: the diagonal matrix of the singular values, ∆ = Λ
1

2 with Λ being the diagonal
matrix of the eigenvalues of matrix AAT and of the matrix ATA (as they are the
same).
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The singular value decomposition is a straightforward consequence of the eigende-
composition of positive semi-definite matrices (see, e.g., Abdi, 2007a; Greenacre, 1984;
Good, 1969; Stewart, 1993).

Note that Equation 58 can also be rewritten as

A = P∆QT =

L∑

`=1

δ`p`q
T
` , (59)

with L being the rank of X and δ`, p`, and q` being (respectively) the `th singular value,
left and right singular vectors of X. This shows that X can be reconstituted as a sum of
L rank one matrices (i.e., the δ`p`q

T
` terms). The first of these matrices gives the best

reconstitution of X by a rank one matrix, the sum of the first two matrices gives the
best reconstitution of X with a rank two matrix, and so on, and, in general, the sum of
the first M matrices gives the best reconstitution of X with a matrix of rank M .

B.1 Generalized singular value decomposition

The generalized svd (gsvd) decomposes a rectangular matrix and takes into account
constraints imposed on the rows and the columns of the matrix. The gsvd gives a
weighted generalized least square estimate of a given matrix by a lower rank matrix For
a given I×J matrix A, generalizing the singular value decomposition, involves using two
positive definite square matrices with size I × I and J × J . These two matrices express
constraints imposed on the rows and the columns of A, respectively. Formally, if M is
the I × I matrix expressing the constraints for the rows of A and W the J × J matrix
of the constraints for the columns of A. The matrix A is now decomposed into:

A = P̃∆̃Q̃T with: P̃TMP̃ = Q̃TWQ̃ = I . (60)

In other words, the generalized singular vectors are orthogonal under the constraints
imposed by M and W.

This decomposition is obtained as a result of the standard singular value decomposi-

tion. We begin by defining the matrix Ã as:

Ã = M
1

2AW
1

2 ⇐⇒ A = M− 1

2 ÃW− 1

2 . (61)

We then compute the standard singular value decomposition as Ã as:

Ã = P∆QT with: PTP = QTQ = I . (62)

The matrices of the generalized eigenvectors are obtained as:

P̃ = M− 1

2P and Q̃ = W− 1

2Q . (63)

The diagonal matrix of singular values is simply equal to the matrix of singular values

of Ã:
∆̃ = ∆ . (64)

We verify that:

A = P̃∆̃Q̃T
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by substitution:

A = M− 1

2 ÃW− 1

2

= M− 1

2P∆QTW− 1

2

= P̃∆Q̃T (from Equation 63) . (65)

To show that Condition 60 holds, suffice it to show that:

P̃TMP̃ = PTM− 1

2MM− 1

2P = PTP = I (66)

and
Q̃TWQ̃ = QTW− 1

2WW− 1

2Q = QTQ = I . (67)

B.2 Mathematical properties of the singular value decomposition

It can be shown that the svd has the important property of giving an optimal approx-
imation of a matrix by another matrix of smaller rank (see, e.g., Good, 1969; Strang,
2003; Abdi and Valentin, 2006). In particular, the svd gives the best approximation, in
a least square sense, of any rectangular matrix by another rectangular matrix of same
dimensions, but smaller rank.

Precisely, if A is an I × J matrix of rank L (i.e., A contains L singular values that

are not zero), we denote by P[M ] (respectively Q[M ], ∆[M ]) the matrix made of the first
M columns of P (respectively Q, ∆):

P[M ] = [p1, . . . ,pm, . . . ,pM ] (68)

Q[M ] = [q1, . . . ,qm, . . . ,qM ] (69)

∆[M ] = diag {δ1, . . . , δm, . . . , δM} . (70)

The matrix A reconstructed from the first M eigenvectors is denoted A[M ]. It is
obtained as:

A[M ] = P[M ]∆[M ]Q[M ]T =

M∑
m

δmpmqT
m , (71)

(with δm being the m-th singular value).

The reconstructed matrix A[M ] is said to be optimal (in a least squares sense) for
matrices of rank M because it satisfies the following condition:

∥∥∥A−A[M ]
∥∥∥
2
= trace

{(
A−A[M ]

)(
A−A[M ]

)T
}

= min
X

‖A−X‖2 (72)

for the set of matricesX of rank smaller or equal toM (see, e.g., Eckart and Young, 1936;
Good, 1969). The quality of the reconstruction is given by the ratio of the first M eigen-
values (i.e., the squared singular values) to the sum of all the eigenvalues. This quantity
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is interpreted as the reconstructed proportion or the explained variance, it corresponds
to the inverse of the quantity minimized by Equation 73. The quality of reconstruction
can also be interpreted as the squared coefficient of correlation (precisely as the Rv

coefficient, Abdi, 2007c) between the original matrix and its approximation.
The gsvd minimizes an expression similar to Equation 73, namely

A[M ] = min
X

[
trace

{
M (A−X)W (A−X)T

}]
, (73)

for the set of matrices X of rank smaller or equal to M .


