
Journal of Alzheimer’s Disease 31 (2012) S189–S201
DOI 10.3233/JAD-2012-112111
IOS Press

S189

Research Report

Analysis of Regional Cerebral Blood Flow
Data to Discriminate among Alzheimer’s
Disease, Frontotemporal Dementia, and
Elderly Controls: A Multi-Block Barycentric
Discriminant Analysis (MUBADA)
Methodology
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Abstract. We present a generalization of mean-centered partial least squares correlation called multiblock barycentric discrim-
inant analysis (MUBADA) that integrates multiple regions of interest (ROIs) to analyze functional brain images of cerebral
blood flow or metabolism obtained with SPECT or PET. To illustrate MUBADA we analyzed data from 104 participants com-
prising Alzheimer’s disease (AD) patients, frontotemporal dementia (FTD) patients, and elderly normal controls. Brain images
were analyzed via 28 ROIs (59,845 voxels) selected for clinical relevance. This is a discriminant analysis (DA) question with
several blocks (one per ROI) and with more variables than observations, a configuration that precludes using DA. MUBADA
revealed two factors explaining 74% and 26% of the total variance: Factor 1 isolated FTD, and Factor 2 isolated AD. A random
effects model correctly classified 64% (chance = 33%) of “new” participants (p < 0.0001). MUBADA identified ROIs that best
discriminated groups: ROIs separating FTD were bilateral inferior, middle frontal, left inferior, and middle temporal gyri, while
ROIs separating AD were bilateral thalamus, inferior parietal gyrus, inferior temporal gyrus, left precuneus, middle frontal, and
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middle temporal gyri. MUBADA classified participants at levels comparable to standard methods (i.e., SVM, PCA-LDA, and
PLS-DA) but provided information (e.g., discriminative ROIs and voxels) not easily accessible to these methods.

Keywords: BADA, dementia, discriminant analysis, MUBADA, multiblock analysis, neuroimaging, partial least squares
correlation, PET, PLS methods, SPECT

Supplementary data available online: http://www.j-alz.com/issues/biomarkers.html#supplementarydata02

INTRODUCTION

Neuroimaging data are intrinsically multivariate,
and so would be natural domains of application for
multivariate data analysis [1]. Unfortunately, neu-
roimaging data often have far more variables than
participants, a configuration that violates the assump-
tions of most multivariate methods. Also, we often
test hypotheses that involve specific regions of inter-
est (ROIs). This leads to a problem of clinical and
theoretical importance for imaging, behavior, and neu-
roscience: How to predict group membership with
large data sets that are structured into coherent blocks
of variables?

To answer this question we extended mean-centered
partial least squares correlation (MC-PLSC)—a well-
known and well-used method in neuroimaging (see
[2, 3] for reviews). This new method called multi-
block barycentric discriminant analysis (MUBADA)
was used to analyze regional cerebral blood flow
(rCBF) data derived from single-photon emission com-
puterized tomography (SPECT) studies of participants
with neurodegenerative disorders and healthy controls.
MUBADA has been designed specifically for SPECT
and for positron emission tomography (PET) data,
where there are typically one or very few observations
per participant and where each voxel represents a para-
metric value such as rCBF or regional cerebral glucose
metabolism. MUBADA however can also be used for
any type of data suited for MC-PLSC when the goal is
to predict group membership from a large number of
variables structured into blocks.

Specifically, we wanted to predict the clinical group
of the participants based on their SPECT scans which,
themselves, are organized into “blocks” of variables or
“subtables” that represent specific ROIs. This is a DA
problem, but to integrate and evaluate the contribution
of these different blocks requires a more sophisticated
version of DA. Moreover, standard DA cannot handle
data sets with more variables than observations (see [4]
for potential palliatives). For MUBADA, the data are
organized such that one row is one observation (i.e.,
one participant) and one column is one variable (i.e.,
one voxel) and at the intersection of a row and a column

is the activity of this column or voxel for this row or
participant (see Fig. 1). In addition, voxels are grouped
into blocks of voxels and each block constitutes an ROI
(one voxel belongs to only one ROI).

Overview of the method

Barycentric discriminant analysis (BADA)—the
foundation of MUBADA—generalizes and integrates
MC-PLSC and DA. Like DA, BADA is performed
when measurements made on some observations are
combined to assign these or new observations to
a-priori defined groups. Like MC-PLSC, BADA is
performed when the goal of the analysis is to find the
variables responsible for group separation. Unlike DA,
BADA can be performed when the predictor variables
are multi-collinear (and in particular when the num-
ber of variables exceed the number of observations)
and does not rely on parametric assumptions (such
as normality or homoscedasticity). Unlike MC-PLSC,
BADA adds an explicit prediction component to the
analysis and evaluates the quality of the prediction with
cross-validation methods.

Actually, BADA refers to a class of methods, which
all rely on the same principle: each group of interest is
represented by the barycenter of its observations (i.e.,
the weighted average; also called the center of gravity
of the observations of a group), and a generalized prin-
cipal component analysis (GPCA) is performed on the
group-by-variable matrix. This analysis gives a set of
discriminant factor scores for the groups and a set of
loadings for the variables (voxels). The original obser-
vations are then projected onto the group factor space,
and this provides a set of factor scores for the obser-
vations. The distances of each observation to each of
the groups are computed from their factor scores and
each observation is assigned to the closest group. The
results of this analysis can be visualized by using the
factor scores to plot the group barycenters as points on
a map (see Figs. 1 and 2a). The original observations
can also be plotted on this map as points and the dis-
tances between points on the map best approximate the
distances computed from the factor scores (see Figs. 1
and 2b). A convenient representation of the dispersion
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Fig. 1. Schematic organization of MUBADA.

of the observations of a group around their barycenter
can be obtained by fitting an ellipsoid—called a tol-
erance ellipsoid—or a convex hull, that encompasses
a specific proportion of the observations closest to the
barycenter (typically 95%, see Figs. 1 and 3a). Toler-
ance ellipsoids and convex hulls are typically centered
on the barycenter of their groups.

The comparison between the a-priori and a-
posteriori group assignments is used to assess the
quality of the discriminant procedure. The model is
built with a subset of the observations (called the train-
ing set), and its predictive performance is evaluated
with a different set (called the testing set). A specific
case of this approach is the “leave-one-out” technique
in which each observation is used in turn as the test-
ing set, while the rest of the observations play the
role of the training set. This scheme has the advan-
tage of providing an approximately unbiased estimate
of the generalization performance of the model [5].
The distinction between training and testing sets mir-
rors the familiar distinction between fixed and random
effects in analysis of variance. In a manner analogous
to the tolerance ellipsoids or convex hulls, the results of
the leave-one-out can also be visualized by projecting
the predicted observations on the discriminant space
and then representing the dispersion of the predicted
observations by fitting an ellipsoid—called a predic-
tion ellipsoid—or a convex hull, that encompasses a
specific proportion of the predicted observations clos-
est to the barycenter (typically 95%, see Figs. 1 and 3b).

Prediction ellipsoids and convex hulls are not required
to be centered on the barycenters of their groups, but
tend to be for large samples (as is the case here, cf.
Fig. 3a and b).

The stability of the discriminant model can be
assessed by a resampling strategy such as the bootstrap
[5, 6]. In this procedure, multiple sets of observations
are generated by sampling with replacement from the
original set of observations, and new group barycen-
ters are computed, which are then projected onto the
discriminant factor space. For convenience, the con-
fidence interval of a barycenter can be represented
graphically as a confidence ellipsoid that encompasses
a given proportion (e.g., 95%) of the bootstrapped
barycenters (see Figs. 1 and 3c).

In summary, BADA is a GPCA performed on the
group barycenters. GPCA encompasses most multi-
variate techniques [7–10] and for each specific type of
GPCA, there is a corresponding version of BADA. For
example, when the GPCA is correspondence analysis,
this gives the most well known version of BADA: dis-
criminant correspondence analysis [8, 11–13]. When
BADA is used with quantitative data, it analyzes the
same matrix of group mean activation values as MC-
PLSC and therefore will generate the same results.
BADA will, however, also provide a predictive model
that can be evaluated by cross-validation methods.
Because BADA is based on GPCA, it can also han-
dle data tables comprised of blocks and analyze them
in a way comparable to multiple factor analysis or
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Fig. 2. (a) Projection of the barycenters on the GPCA space;
(b) Projection of the observations as supplementary elements.
EN = Elderly Normal, AD = Alzheimer’s Disease, FTD = Fronto-
Temporal Dementia.

STATIS [14–17]. This last step of projecting part of
the data onto the common factor space corresponds
to the multiblock extension of BADA and therefore
defines MUBADA. In addition, with MUBADA, the
specific contribution of each block (i.e., ROI) to the
overall discrimination can be evaluated and repre-
sented as a graph. Also, factor scores of the groups,
and observations for each ROI can be also computed
(and the average of all the ROI factor scores gives back
the BADA factor scores). Figure 1 shows a sketch
of the steps in MUBADA; a detailed pictorial and
formal presentations are given in the Supplementary
Data (available online: http://www.j-alz.com/issues/
biomarkers.html#supplementarydata02), and Figs. 5 to
12 illustrate the main steps of MUBADA.

4
(a)

(b)

(c)

× 10–4

× 10–4

× 10–4

× 10–4

3

2

1

–1
1

1

1

2

2

2

–2

–3

D
im

en
si

o
n

 2
D

im
en

si
o

n
 2

D
im

en
si

o
n

 2

Dimension 1

–4

–5

–6

0

4

3

2

1

–1

–2

–3

–4

–5

–6

0

4

3

2

1

–1

–2

–3

–4

–5

–4 –2 0 2 4 6

–6

–6

0

Fig. 3. (a) Tolerance intervals, (b) Prediction intervals, and (c) Con-
fidence intervals.

METHODS

We used MUBADA to assign SPECT neuroimaging
data from 104 participants to three a-priori groups:
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1) Alzheimer’s disease patients (AD, n = 37, 57%
female, 63.0 ± 11.5 years); 2) frontotemporal demen-
tia patients (FTD, n = 33, 39% female, 64.8 ± 7.3
years); and 3) elderly normal controls (EN, n = 34, 47%
female, 58.4 ± 12.0 years). The AD participants were
generally somewhat younger than typical AD patients
and were chosen so that there was no meaningful age
difference compared to the FTD group. As with the
AD participants, EN participants were chosen to best
match the age and gender of the FTD group. All partic-
ipants were recruited in accordance with the guidelines
set by the Institutional Review Board at the University
of Texas Southwestern Medical Center. Participants
with FTD and AD were recruited from the longitu-
dinal cohorts of the UT Southwestern Alzheimer’s
Disease Center (ADC). AD participants received a
diagnosis of possible or probable AD according to the
NINDS/ADRD criteria [18] with a Clinical Dementia
Rating summary score of 1.0. FTD participants were
all diagnosed with behavioral variant FTD in accor-
dance with the Neary criteria ([19]) and were required
to have a Mini-Mental Status Exam score of greater
than 15. EN participants were also recruited from the
ADC normal control cohort. Participants with FTD and
AD had cognitive impairment in the mild to moderate
range.

Image acquisition and preprocessing

For each participant, we collected a resting state
(eyes open, ears unplugged, dimly lit room, quiet
background) 3-dimensional SPECT rCBF image. An
intravenous line was placed in an antecubital vein
and after 10 min 20 mCi of the SPECT rCBF tracer
99mTc HMPAO (GE Healthcare, Princeton, New Jer-
sey) was administered over 30 s and followed by
a 10 ml saline flush over 30 s. For tracer admin-
istration, participants sat in a dimly lit room with
eyes open and ears unoccluded (only background
noise from air conditioning and machine cooling
fans provided auditory stimuli). SPECT scans were
obtained 90 min following 99mTc HMPAO admin-
istration to allow time for tracer activity to clear
from blood and non-brain tissues. Images were
obtained on a PRISM 3000 S 3-headed SPECT
camera (Picker International, Cleveland, OH) using
ultra-high-resolution fan-beam collimators (recon-
structed resolution of 6.5 mm) in a 128 × 128 matrix
in three-degree increments. Reconstructed images
were smoothed with a 6th-order Butterworth three-
dimensional filter, and attenuation corrected using a
Chang first-order method with ellipse size adjusted

for each slice (voxels in reconstructed images are
1.9 mm3).

SPECT images were resliced to 2 mm3 voxels. After
acquisition, the scans were smoothed with an 8 mm
Gaussian kernel using SPM2 [20] and normalized to
whole brain counts (to correct for individual differ-
ences in global cerebral blood flow) as follows. Whole
brain counts were determined in the SPECT image by
simple thresholding, wherein “brain voxels” are iden-
tified as voxels with greater than 10% of the median
count density for all voxels. Counts for voxels, which
survive this threshold, are then averaged, and the orig-
inal count density in each voxel is then divided by
this average count density to obtain the normalized
value used for subsequent calculations. This process
ensures that the mean voxel value of each scan is equal
to one (and eliminates the “out of brain” voxels). These
SPECT images represent the brain as a set of voxels
whose numerical value gives relative rCBF (to global
CBF).

The SPECT images were then co-registered to the
Montréal Neurological Institute (MNI) space using the
MNI T1 magnetic resonance imaging (MRI) template
([21], we used the MNI T1 template because it allowed
us to subsequently extract the ROIs directly from the
MNI template). Each 3-dimensional image comprises
a total of 95×79×69 = 517,845 voxels. From each scan
we then extracted a subset of 59,845 voxels compris-
ing 14 ROIs per hemisphere (hence a total of 28 ROIs,
see Table 1), identified using the automatic labeling
atlas in MRIcro [22]. The ROIs were chosen a-priori
because of their clinical relevance and potential for
discriminating between the clinical groups. Each ROI
was considered as a block of voxels, and therefore,
the data analysis problem can be seen as a DA with
multiple blocks (one per ROI). The goal of the anal-
ysis was to assign observations to their clinical group
and to evaluate the specific contributions of the ROIs.
Prior to subsequent analysis, each scan (which now
consists of 59,845 voxels extracted from the original
set of 517,845 voxels) was normalized such that the
sum of squares of all its voxel values was equal to
one. This normalization ensured that the voxels of each
scan now have the same variance and that differences

Table 1
Regions of interest for the analyses

Frontal Temporal Parietal Other

Inferior Inferior Inferior Thalamus
Middle Middle Middle Parahippocampal
Gyrus rectus Superior Superior Hippocampus

Precuneus Amygdala
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between scans are not due to overall differences in acti-
vation. In addition [as is standard practice in principal
component analysis (PCA) methods], the mean scan
of all participants was subtracted from each scan prior
to the analysis.

RESULTS

Results are organized as in the methods sec-
tions, describing our findings based on each step in
MUBADA.

Factor scores and supplementary elements

Figure 2a shows the projections of the barycenters
on the GPCA space and Fig. 2b shows the projections
of the observations as supplementary elements in the
GPCA space. The analysis provides two dimensions
that explained, respectively, 74% and 26% of the total
variance (with associated eigenvalues equal to λ1 = 9.6
× 10−9 and λ2 = 3.4×10−9). Factor 1 separates FTD
from the other groups, while Factor 2 separates AD
from the other groups (in particular EN).

Training and testing sets

The confusion matrix for the whole set is shown
in Table 2A. The corresponding values for the sen-
sitivity and specificity of the discrimination between
pairs of categories are shown in Table 2B. The fixed
effects model (training set) showed good, but not per-
fect, performance and correctly classified 78 out of
104 participants (75%, chance = 33%, p < 0.0001 by
binomial test). As expected, the AD and EN groups
were well separated with 50 out of 66 participants
being correctly classified (76%). Of the 26 partici-
pants who were miss-classified, fewer EN participants
(n = 3) were assigned to the AD group than the inverse
(n = 13). The model exhibits good generalization as

the random effects model (testing set) correctly clas-
sified 67 out of 104 or 64% of “new” participants
(chance = 33%, p < 0.0001 by binomial test).

Quality of prediction and group separation

Explained inertia and confidence intervals
The quality of the assignment of the participants

to their groups is good (R2 = 0.38, p < 0.0001 by per-
mutation test). This interpretation is supported by the
tolerance interval (an ellipse that includes 95% of the
observations; see Fig. 3a) and the prediction interval
(an ellipse that includes 95% of the predicted obser-
vations; see Fig. 3b), and by the confusion matrices
for the fixed and random effects models (Table 2). In
addition, the confidence intervals revealed that group
separation was very reliable (see Fig. 3c), and that the
AD and FTD groups showed more variability than the
EN group.

Finding the important regions of interest
The ROIs that contribute to the discrimination

between groups are shown in Fig. 4 (separate plots for
right and left hemispheres). Referring to Fig. 2, the first
and second dimensions appear to isolate FTD. On the
first dimension, the FTD group is separated from the
other groups, and opposed to AD and EN. The ROIs
that contribute most to this separation (i.e., that have
the greatest weights on Dimension 1 in Fig. 4) are bilat-
eral inferior and middle frontal gyri, and left inferior
and middle temporal gyri.

Again referring to Fig. 2, the second dimension iso-
lates the AD group. ROIs with large contributions in
this dimension (i.e., that have the greatest weights on
Dimension 2 in Fig. 4) include bilateral thalamus, infe-
rior parietal, inferior temporal gyri, and left precuneus,
middle frontal, and middle temporal gyri, as well as
right superior temporal, middle temporal, precuneus,
and middle frontal ROIs.

Table 2

A) Fixed and random effects confusion matrices for MUBADA. B) Specificity and Sensitivity for the fixed and
random effects confusion matrices for MUBADA

Fixed Effects Model Random Effects Model
Actual Class Actual Class

EN AD FTD EN AD FTD

A
EN (n = 34) 28 13 1 EN (n = 34) 24 14 5
AD (n = 37) 3 23 5 AD (n = 37) 5 20 5
FTD (n = 33) 3 1 27 FTD (n = 33) 5 3 23

B
EN (n = 34) – 64%/90% 96%90% EN (n = 34) – 59%/83% 82%/83%
AD (n = 37) 90%/64% – 84%/96% AD (n = 37) 83%/59% – 82%/87%
FTD (n = 33) 90%/96% 96%/84% – FTD (n = 33) 83%/82% 87%/82% –
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Fig. 4. ROI contribution to group discrimination: (a) right hemisphere and (b) left hemisphere. Partial contributions of the ROIs to the discriminant
factors. Axes represent increasing factor weight. Circle diameters are proportional to the ROIs contribution to the total variance.

Comparison with other pattern recognition
classification methods

MUBADA is part of the family of pattern classi-
fiers (also often called multivariate pattern analysis,
see [1]) that has become of increasing importance
in neuroimaging (see, e.g., [1] and [23] for reviews
of recent trends). As we have already mentioned,
MUBADA can be considered as a generalization of
MC-PLSC that adds prediction and multiblock com-
ponents. Among the current pattern classifiers used for

predicting group membership in neuroimaging, three
are used extensively: support vector machines (SVM)
[24], partial least squares regression discriminant anal-
ysis (PLS-DA, [25–28]), and principal component
analysis followed by linear discriminant analysis on
the subset of “generalizable” components (PCA-LDA,
see, e.g., [24] for an example with PET data). None of
these methods incorporates a multiblock component
and therefore we could only compare these techniques
and MUBADA on the basis of their classification per-
formance. Canonical STATIS ([15]) is the only method
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that could incorporate ROIs but requires that all ROIs
are full rank matrices, a requirement that precludes its
use for the present case (and in general for SPECT or
PET data sets). Just like for MUBADA (see Table 2),
we computed confusion matrices for fixed and random
effects. Recall that fixed effects reflect the perfor-
mance reached on the training set (equal to 75% for
MUBADA) but do not indicate the level of perfor-
mance that can be expected for new observations.
Random effects indicate the level of performance to
be expected for new observations (equal to 64% for
MUBADA).

SVM is a particularly popular tool in neuroimaging
([24, 29]); we implemented this technique with WEKA
([30]), which is a ubiquitous software that implements
SVMs (and many other data mining and statistical tech-
niques). For the SVM, we left all parameters as default
except that we changed the kernel type to linear learn-
ing and set normalization to true (which normalizes
values in each row to a min of 0 and max of 1). We
built the SVM model with no training and no cross-
validation to find the classification accuracy of the fixed
effects model (Table 3, left, which is 100%). For the
random effects model we used a k-fold cross-validation
scheme and set k = N. This procedure implements the
same leave-one-out scheme as MUBADA. The random
effects classification of the SVM model then drops to
67% (Table 3, right), a value comparable to MUBADA.

The second technique is an LDA computed on the
regularized factor space obtained from a PCA of the
participants-by-voxels matrix. We implemented PCA-
LDA with 1) our own PCA and PRESS code (available
online, see [31]) in Matlab® (R2009a, Mathworks,
Inc., Natick, MA) and 2) Matlab’s “classify” func-
tion (which performs LDA). PRESS revealed that four

Table 3
Fixed and random effects confusion matrices for linear support vector machine (SVM)

Fixed effects model Random effects model
Actual class Actual class

EN AD FTD EN AD FTD

EN (n = 34) 34 0 0 EN (n = 34) 24 8 5
AD (n = 37) 0 37 0 AD (n = 37) 6 25 7
FTD (n = 33) 0 0 33 FTD (n = 33) 4 4 21

Table 4
Fixed and random effect confusion matrices for PCA+LDA (4 factors)

Fixed effects model Random effects model
Actual class Actual class

EN AD FTD EN AD FTD

EN (n = 34) 26 12 5 EN (n = 34) 26 13 7
AD (n = 37) 6 20 5 AD (n = 37) 5 19 3
FTD (n = 33) 2 5 23 FTD (n = 33) 3 5 23

 

Fig. 5. The X matrix with participants nested in clinical groups and
voxels nested in ROIs.

factors should be used. The fixed effects model shows
only a 66% classification for fixed effects (Table 4,
left). To compute the random effects model, we wrote
an in-house Matlab script to execute a leave-one-out
by 1) performing PCA on N – 1 observations with
the left out observation projected as supplementary
and 2) using the “classify” function to predict the left
out observation. The random effects model maintains
nearly the same prediction level as the fixed effects
model at 65% (Table 4, right).

Finally, we performed a PLS-DA with a dummy
coded predictor matrix with our own code (available
online, see [25]). We also chose to use 4 factors, just
as in the PCA-LDA approach. The fixed effects model
shows an 89% correct classification (Table 5, left). For
the random effects model, the leave-one-out technique
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Table 5
Fixed and random effect confusion matrices for PLS-DA (4 factors)

Fixed Effects Model Random Effects Model
Actual Class Actual Class

EN AD FTD EN AD FTD

EN (n = 34) 33 1 4 EN (n = 34) 28 11 5
AD (n = 37) 1 34 3 AD (n = 37) 4 19 9
FTD (n = 33) 0 2 26 FTD (n = 33) 2 7 19

showed that the random effects classification reduced
to 63% (Table 5, right).

In short, these three, very common, linear classifiers
show no better performance for random effects classi-
fication than one another or—and more importantly—
than MUBADA. By contrast with these methods how-
ever, MUBADA provides more information because
1) it can handle multiblock data; 2) it directly provide
information (e.g., loadings, bootstrap ratios) on the
voxels; and 3) it is also computationally more efficient
(particularly for the cross-validation component).

DISCUSSION

In general, our approach performed well when chal-
lenged with a-priori groups not normally easy to

separate. AD and FTD were well separated from each
other and from EN. It is also encouraging that the ROIs
contributing to these separations are, mostly, those
expected to do so. For example, as expected (see, e.g.,
[32, 33]), FTD is separated from the other groups by a
difference in rCBF activation in bilateral inferior and
middle frontal gyri. Also contributing to this separa-
tion are left middle and inferior temporal gyri, which
support normal language function [34].

Similarly, the AD group is characterized by rCBF
abnormalities in the posterior cortical association areas
(i.e., left precuneus and bilateral inferior parietal and
inferior temporal gyri), which are known to be involved
in the onset of the disease [33] and whose metabolism is
in general abnormal when AD patients are compared to
normal elderly controls [32]. Involvement of the frontal

Fig. 6. Computing the R matrix of the group barycenters (i.e., means) of the groups of participants.

Fig. 7. Computing the PCA (i.e., singular value decomposition) of R provides factors scores for the participants (and loadings for the voxels).
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Fig. 8. The projections of a participant (as a supplementary element) in the group factor score space provides factor scores for this
participant.

Fig. 9. Fitting ellipsoid that comprises 95% of the participants’ fac-
tor scores provides tolerance ellipsoids.

areas is observed in well-established AD [35]. Though
thalamus is not commonly identified as functionally
impaired in AD, it is among key subcortical structures
engaged in cholinergic neurotransmission, and loss of
thalamic cholinergic neurons is observed in AD [36].
Further, recent structural imaging studies have focused
on degeneration of this critical deep gray matter region.
For example, de Jong et al. [37] performed morpho-
metric studies from high resolution T1-weighted MRI
in 69 probable AD subjects. In addition to finding
the typical association between hippocampal atro-
phy and cognitive decline in AD, thalamic volume

Fig. 10. Fitting ellipsoids that comprises 95% of the bootstrapped
means provides confidence ellipsoids.

was significantly reduced and the decrease in vol-
ume correlated linearly with impaired global cognitive
performance. Thus our finding of bilateral thalamus
abnormality separating AD from EN and FTD is not
unreasonable.

While it could be possible to simply restrict our
analyses to ROIs already known to be involved in
these neurodegenerative disorders, the purpose of this
effort was to explore methods for the analysis of com-
plex neuroimaging data sets. Thus the dataset from
these participants served as a test case. However, it
is important to note that without any a-priori assump-
tions about what regions would be relevant, MUBADA
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Fig. 11. Projecting an ROI onto the group factor space provides a partial factor score for this ROI (note the mean of the ROIs’ partial scores is
equal to the group factor scores).

Fig. 12. Summing all the contributions of the voxels of a given ROI
provides the inertia (i.e., variance) explained by this ROI. The inertia
explained by all the ROIs can be plotted as 2D maps.

correctly identified those ROIs most often associated
with AD and FTD. Further, as seen in Fig. 4, the rela-
tive contributions of various ROIs are a normal output
of this approach: An insight that typical analyses of
small sets of ROIs would not provide. Finally, it is
also noteworthy that new ROIs were identified that
bear further study (e.g., thalamus) in terms of their
role in discriminating groups (in particular, FTD from
AD).

There are certainly limitations to the generalizabil-
ity of our findings. For example, variations in data
acquisition techniques across sites are problematic for
functional neuroimaging data, and perhaps our single-
site data represent a “best-case scenario.” Similarly,
SPECT rCBF data do not have the same spatial resolu-
tion as PET FDG images, or the same signal-to-noise
ratio for lesion detection. Thus data derived from PET

studies might perform even better. In addition, mixed
pathologies plague all studies of neurodegenerative
disorders, and even in the context of cohorts evalu-
ated by an NIH-funded ADC diagnostic heterogeneity
is unavoidable short of autopsy-confirmed diagnoses.
Thus our finding should be considered carefully in the
context of the sample explored. In addition to these
limitations, the results we obtained depend also upon
preprocessing choices. For example, we did not explic-
itly report the effects of the type of smoothing used
(while we do not present these results here, we found
that changing the level of smoothing had little effect
on the results) or the effect of normalizing the scans
prior to the analysis (we found that normalization had
a small but real effect). We did not explore the effect of
the type of spatial normalization used (i.e., MNI ver-
sus other schemes), but we suspect that it is likely to
have an effect. To completely explore the effect of these
choices on classifier performance remains an important
question that should be addressed by further work.

Block normalization and relationship with other
approaches

Blocks (ROIs) in MUBADA are simply considered
as sets of variables. Therefore, the influence of a given
block (ROI) depends, in part, upon its number of vari-
ables (voxels) as well as its factorial structure because
a block with a large first eigenvalue will have a large
influence on the first factor of the whole table. By con-
trast, a block with a small first eigenvalue will have
a small effect on the first factor of the whole table.
In order to eliminate such discrepancies, the multiple
factor analysis approach [14, 16, 17, 38] normalizes
each block by dividing each element of a block by
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its first singular value, an alternate approach called
STATIS finds normalization weights that will opti-
mize the between block (ROI) similarity (see [17], for
a comprehensive review). Fortunately, for BADA, all
normalization schemes can be performed on the blocks
of the original data matrix, but their effects are easier
to analyze if they are performed on the barycentric
matrix. We plan to explore the effects of these normal-
izations schemes in further work, but for the sake of
simplicity, we have decided not to implement any of
these normalization schemes in the present work.

Though not part of this work, it is noteworthy that
MUBADA can straightforwardly handle multi-modal
data in addition to ROIs. For example, if we had
collected biomarkers and behavioral data for all our
participants, we could have integrated these two data
sets in the analysis by treating them as two virtual
ROIs. Similarly, MUBADA could directly be used
for analyzing multimodal brain imaging data (e.g.,
SPECT/fMRI, or SPECT/PET)—an approach that has
recently been recommended as one of the next step to
follow in brain imaging applied to the study of AD [39].
In brief, MUBADA performs at the same level as other
pattern classifiers, but is superior to these classifiers in
its ability to handle large data sets, to preserve voxels
information, to compute statistical estimates by cross-
validation, and in its unique ability to handle multiple
ROIs and multi-modal information.

CONCLUSION

MUBADA seems well suited to analyze functional
neuroimaging data such as SPECT because it can han-
dle very large data sets (with more variables than
observations) that are structured in ROIs or in multi-
ple data tables. It is versatile enough to be used also in
cases where multiple scans are obtained on several par-
ticipants (e.g., as in fMRI [1, 40]). Also, because it can
incorporate inferential components, it complements
other popular approaches such as partial least squares
methods [2, 3], which are widely used to analyze neu-
roimaging data. In our data, MUBADA separated AD
and FTD groups from the EN group based on contribu-
tions from ROIs known to be involved in the relevant
neuropathology of the dementias.
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Notations

The original data matrix is an N observations by
J variables matrix denoted X. Prior to the analysis, the
matrix X can be pre-processed (1) by centering (i.e.,
subtracting the column mean from each column), (2)
by transforming each column into a Z-score, or (3) by
normalizing each row so that the sum of its elements or
the sum of its squared elements is equal to one (which is
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the normalization used here). The observations (rows)
in X are partitioned into I a-priori groups of interest
with Ni being the number of observations of the ith
group (and so

∑
Ni = N). The variables (columns) of

matrix X can be arranged in K a-priori blocks (or sub-
tables). The number of columns of the kth block are
denoted Jk (and therefore

∑
Jk = J). So, the matrix X

can be decomposed into I by K blocks as (see Fig. 5,
for an illustration):

X =

1
...

i

...

l

1 . . . K . . . K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1,1 . . . X1,k . . . X1,K

...
. . .

...
. . .

...

Xi,1 . . . Xi,k . . . Xi,K

...
. . .

...
. . .

...

Xl,1 . . . Xl,k . . . Xl,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(1)
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Notations for the groups (rows)

We denote by Y the N by I design (a.k.a., dummy)
matrix for the groups describing the rows of X: yn,i = 1
if row n belongs to group i, yn,i = 0 otherwise. We
denote by m the N by 1 vector of masses for the rows of
X and by M the N by N diagonal matrix whose diag-
onal elements are the elements of m (i.e., using the
diag operator which transforms a vector into a diagonal
matrix, we have M = diag{m}). Masses are positive
numbers and it is convenient (but not necessary) to have
the sum of the masses equal to one. The default value
for the mass of each observation is in general equal to
1/

N. We denote by b the I by 1 vector of masses for
the groups describing the rows of X and by B the I
by I diagonal matrix whose diagonal elements are the
elements of b.

Notations for the blocks (columns)

We denote by Z the J by K design matrix for the
blocks from the columns of X: zj,k = 1 if column j
belongs to block k; zj,k = 0 otherwise. We denote by
w the J by 1 vector of weights for the columns of X
and by W the J by J diagonal matrix whose diagonal
elements are the elements of w. We denote by c the K
by 1 vector of weights for the blocks of X and by C
the K by K diagonal matrix whose diagonal elements
are the elements of c. The default value for the weight
of each variable is 1/

J , a more general case requires
only W to be positive definite (i.e., in order to include
non-diagonal weight matrices).

BADA

The first step of BADA is to compute the barycen-
ter of each of the I groups comprising the rows. The
barycenter of a group is the weighted average of the
rows in which the weights are the masses re-scaled
such that the sum of the weights for one group is equal
to one. Specifically, the I by J matrix of barycenters,
denoted R, is computed as

R = (
diag

{
YTM1

})−1
YTMX (2)

where 1 is a N by 1 vector of 1 s and the diagonal

matrix
(
diag

{
YTM1

})−1
rescales the masses of the

rows such that their sum is equal to one for each group
(see Fig. 6 for an illustration).

Masses and weights

The type of preprocessing, the choice of the matrix
of masses for the groups (B), and the matrix of

weights for the variables (W) is crucial because these
choices determine the type of GPCA used. For exam-
ple, discriminant correspondence analysis is obtained
by transforming the rows of R into relative frequencies,
and by using the relative frequencies of the barycenters
as the masses of the rows and the inverse of the col-
umn frequencies as the weights of the variables. The
choice of weight matrix W is equivalent to defining a
generalized Euclidean distance between J-dimensional
vectors (see [1]). Specifically, if xn and xn’ are
two J-dimensional vectors, the generalized Euclidean
squared distance between these two vectors is

d2
w (xn,xn′ ) = (xn − xn′ )T W (xn − xn′ ) . (3)

For the data in this study, each voxel was given an
equal weight of 1/

J and each observation was given

an equal mass of 1/
N (and therefore each group was

given a mass of Ni
/
N).

GPCA of the barycenter matrix

The analysis is implemented by performing a gener-
alized singular value decomposition of matrix R [2–6],
which is expressed as:

R = P�QT with PTBP = QTWQ = I (4)

where � is the L by L diagonal matrix of the singular
values (with L being the number of non-zero singu-
lar values), and P (respectively Q) being the I by L
(respectively J by L) matrix of the left (respectively
right) generalized singular vectors of R.

Factor scores. The I by L matrix of factor scores for
the groups are obtained as:

F = P� = RWQ. (5)

The variance of the columns of F is given by the
square of the corresponding singular values (i.e., the
“eigenvalues” denoted λ) and is stored in the diagonal
matrix �. This can be shown by combining Equations
4 and 5 to give:

FTBF = �PTBP�=�2=�. (6)

These factor scores are the projections of the groups
on the GPCA space (see Fig. 7 for an illustration).

Supplementary elements. The N rows of matrix X can
be projected (as “supplementary” or “illustrative” ele-
ments) onto the space defined by the factor scores of the
barycenters. Note that the matrix WQ from Equation 5
is a projection matrix (see Fig. 8 for an illustration).
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Therefore, the N by L matrix H of the factor scores for
the rows of X can be computed as

H = XWQ. (7)

These projections are barycentric, because the
weighted average of the factor scores of the rows of
a group gives the factors scores of that group. This is
shown by first computing the barycenters of the row
factor scores as (cf. Equation 2) as:

H = (diag {YM1})−1 YMH. (8)

and then plugging in Equation 7 and developing. Tak-
ing this into account, Equation 8 gives

H = (diag {YM1})−1 YMXWQ

= RWQ = F. (9)

Loadings. The loadings describe the variables of
the barycentric data matrix and are used to identify
the variables important for the separation between the
groups. As for standard PCA, there are several ways
of defining the loadings. The loadings can be defined
as the correlation between the columns of matrix R
and the factor scores. They can also be defined as the
matrix Q or (as we do in our case) as:

G = Q�. (10)

Quality of the prediction

The performance, or quality, of the prediction of
a discriminant analysis is assessed by predicting the
group membership of the observations and by compar-
ing the predicted group membership with the actual
group membership. The pattern of correct and incorrect
classifications can be stored in a confusion matrix in
which the columns represent the actual groups and the
rows represent the predicted groups. At the intersection
of a row and a column is the number of observations
from the column group assigned to the row group.

The performance of the model can be assessed for
the observations used to compute the groups: these
observations constitute the training set. The true per-
formance of the model, however, needs to be evaluated
with observations not used to compute the model: these
observations constitute the testing set.

Training set

The observations in the training set are used to com-
pute the barycenters of the groups. In order to assign
an observation to a group, the first step is to compute

the distance between this observation and all I groups.
Then, the observation is assigned to the closest group.
Several possible distances can be chosen, but a natural
choice is the Euclidean distance computed in the factor
space. If we denote by hn the vector of factor scores
for the nth observation, and by fi the vector of factor
scores for the ith group, then the squared Euclidean
distance between the nth observation and the ith group
is computed as:

d2 (hn, fi) = (hn − fi)T (hn, fi) . (11)

Obviously, other distances are possible, but the
Euclidean distance has the advantage of being “directly
read” on the map.

Tolerance intervals

The quality of the group assignment of the actual
observations can be displayed using tolerance inter-
vals. A tolerance interval encompasses a given
proportion of a sample. When displayed in two dimen-
sions, these intervals have the shape of an ellipse and
are called tolerance ellipsoids.

For BADA, a group tolerance ellipsoid is plotted on
the group factor score map. This ellipsoid is obtained
by fitting an ellipse that includes a given percentage
(e.g., 95%) of the observations. Tolerance ellipsoids
are centered on their groups and the overlap of the tol-
erance ellipsoids of two groups reflects the proportion
of misclassifications between these two groups (see
Fig. 9 for an illustration).

Testing set. The observations of the testing set are
not used to compute the barycenters but are used only
to evaluate the quality of the assignment of new obser-
vations to groups. A variation of this process is the
“leave-one-out” approach: each observation is taken
out from the data set, in turn, and is then projected
onto the factor space of the remaining observations in
order to predict its group membership. For the estima-
tion to be unbiased, the left-out observation should not
be used in any way in the analysis. In particular, if the
data matrix is preprocessed, the left-out observation
should not be used in the preprocessing. So, for exam-
ple, if the columns of the data matrix are transformed
into Z-scores, the left-out observation should not be
used to compute the means and standard deviations of
the columns of the matrix to be analyzed. However,
these means and standard deviations will be used to
compute the Z-score for the left-out observation.

The assignment of a new observation to a group fol-
lows the same procedure as for an observation from
the training set: the observation is projected onto the
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group factor scores, and it is assigned to the clos-
est group. Specifically, we denote by X–n the data
matrix without the nth observation and by xn the 1
by J row vector representing the nth observation. If
X–n is preprocessed (e.g., centered and normalized),
the preprocessing parameters will be estimated with-
out xn (e.g., the mean and standard deviation of X–n

is computed without xn ) and xn will be pre-processed
with the parameters estimated for X–n (e.g., xn will be
centered and normalized using the means and standard
deviations of the columns of X–n ). Then the matrix
of barycenters R–n is computed and its generalized
eigendecomposition is obtained as (cf. Equation 4):

R−n = P−n�−nQ with

PT
−n

W−nP−n = QT
−n

B−nQ−n = I (12)

(with B–n and W–n being the mass and weight matrices
for R–n ). The matrix of factor scores denoted F–n is
obtained as (cf. Equation 5)

F-n = P-n�n = RnW-nQ-n. (13)

The projection of the nth observation, considered as the
“testing observation” is denoted hn and it is obtained
as (cf. Equation 7)

hn = xnW−nQ−n. (14)

Distances between this nth observation and the I groups
can be computed with the factor scores (cf. Equation
11). The observation is then assigned to the closest
group.

Prediction intervals

In order to display the quality of the prediction for
new observations we use prediction intervals. A “leave-
one-out” is used to predict each observation from the
other observation. To compute prediction intervals, we
first project the left-out observations onto the original
complete factor space, in our case using a two-step
procedure. First, the observation is projected onto its
training set space and is reconstructed from its projec-
tions. Then, the reconstituted observation, denoted x̃n ,
is projected onto the full factor score solution. A left-
out observation is reconstituted from its factor scores
as (cf. Equations 4 and 14):

x̃ = hnQT
−n. (15)

The projection of the left-one-out observation is
denoted and is obtained by projecting xn as a supple-
mentary element in the original solution. Specifically,
ĥn is computed as:

ĥn = x̃n WQ (cf. Equation 4)

= h̃n QT
−n WQ (cf. Equation 14) (16)

= xn W−n Q−n QT
−n WQ (cf. Equation 13).

Prediction ellipsoids are not necessarily centered
on their groups (the distance between the center of
the ellipse and the group represents the estimation
bias). The overlap of two predictions intervals directly
reflects the proportion of misclassifications for the
“new” observations.

Quality of the group separation

Explained inertia (R2) and permutation test
In order to evaluate the quality of the discriminant

model, we used a coefficient inspired by the coeffi-
cient of correlation. Because BADA is a barycentric
technique, the total inertia (i.e., the “variance”) of the
observations to the grand barycenter (the barycenter of
all groups) can be decomposed into two additive quan-
tities: (1) the inertia of the observations relative to the
barycenter of their own group, and (2) the inertia of the
group barycenters to the grand barycenter.

Specifically, if we denote by f̄ the vector of the coor-
dinates of the grand barycenter (i.e., each component
of this vector is the average of the corresponding com-
ponents of the barycenters), the total inertia, denoted
�Total, is computed as the sum of the squared distances
of the observations to the grand barycenter:

�Total =
N∑
n

mnd
2 (

hn, f̄
)

=
N∑
n

mnd
2 (

hn − f̄
)T (

hn − f̄
)
. (17)

The inertia of the observations relative to the barycen-
ter of their own group is abbreviated as the “inertia
within.” It is denoted �Within and computed as:

�Within =
I∑
i

∑
n in group i

mnd
2(hn, f )

=
I∑
i

∑
n in group

mnd
2(hn − f )T (hn − f ). (18)

The inertia of the barycenters to the grand barycenter
is abbreviated as the “inertia between.” It is denoted
�Between and computed as:
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�Between =
N∑
n

bn × d2(fn, f̄ )

=
N∑
n

bn × d2(fn − f̄ )T (fn − f̄ ). (19)

So the additive decomposition of the inertia can be
expressed as

�Total = �Within + �Between. (20)

This decomposition is similar to the familiar decompo-
sition of the sum of squares in the analysis of variance,
suggesting that the intensity of the discriminant model
can be tested by the ratio of between inertia and the total
inertia. This ratio is denoted R2 and it is computed as:

R2 = �Between

�Total
= �Between

�Within + �Between
. (21)

The R2 ratio takes values between 0 and 1, the closer to
one the better the model. The significance of R2 can be
assessed by permutation tests, and confidence intervals
can be computed using resampling techniques such as
the Bootstrap method (see [4]).

Confidence intervals

The stability of the position of the groups can be
displayed using confidence intervals, which reflect the
variability of a population parameter or its estimate.
In two dimensions, these intervals become confidence
ellipsoids. The problem of estimating the variabil-
ity of the position of the groups cannot, in general,
be solved analytically and cross-validation techniques
need to be used. Specifically, the variability of the
position of the groups is estimated by generating boot-
strapped samples from the sample of observations.
A bootstrapped sample is obtained by sampling with
replacement from the observations. The “bootstrapped
barycenters” obtained from these samples are then pro-
jected onto the discriminant factor space and, finally, an
ellipse is plotted such that it comprises a given percent-
age (e.g., 95%) of these bootstrapped barycenters (see
Fig. 10 for an illustration). When the confidence inter-
vals of two groups do not overlap, these two groups
are “significantly different” at the corresponding alpha
level (e.g., � = 0.05, see [7]).

MUBADA

In a multiblock analysis, the blocks can be analyzed
by projecting the groups and the observations for each

block. As was the case for the groups, these projections
are barycentric because the barycenter of the all the
blocks gives the coordinates of the whole table.

Partial projection

Each block can be projected in the common solu-
tion. The procedure starts by rewriting Equation 4 (see
Fig. 11 for an illustration):

R = P�QT = P� [Q1, . . . ,Qk, . . . ,QK]T , (22)

where Qk is the kth block (comprising the Jk columns
of Q corresponding to the Jk columns of the kth block).
Then, to get the projection for the kth block, Equation 5
is rewritten as:

Fk = KXkWkQk (23)

(where Wk is the weight matrix for the Jk columns of
the kth block).

Equation 19 can also be used to project sup-
plementary rows corresponding to a specific block.
Specifically, if xT

sup,k is a 1 by Jk row vector of a sup-
plementary element to be projected according to the
kth block, its factor scores are computed as:

fsup,k = Kxsup,kWkQk (24)

(Note that xsup,k is to have been pre-processed as Xk ;
for example if Xk has been transformed into Z-scores,
xsup,k will be transformed into a Z-score using the mean
and standard deviation computed from Xk ).

Inertia of a block

Recall from Equation 6 that, for a given dimension,
the variance of the factor scores of all the J columns of
matrix R is equal to the eigenvalue of this dimension.
Because each block comprises a set of columns, the
contribution of a block to a dimension can be expressed
as the sum of this dimension squared factor scores of
the columns of this block (see Fig. 12 for an illustra-
tion). The inertia for the kth table and the ith dimension
is computed as:

��,k =
∑
j∈Jk

wjf
2
�,j. (25)

Note that the sum of the inertia of the blocks for a given
dimension gives back the eigenvalue (i.e., the inertia)
of this dimension:

λ� =
∑

k

��,k. (26)
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Also the sum of the all the partial inertias gives back
the total inertia.

Finding the important ROIs

The structures that contribute to the discrimination
between the classes are identified from their partial
contributions to the inertia (see Equation 25).
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