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Conguence:

Congruence coefficient,

RV -coefficient,

and

Mantel coefficient

Hervé Abdi

1 Overview

The congruence between two configurations of points quantifies their
similarity. The configurations to be compared are, in general, pro-
duced by factor analytic methods which decompose an “observations
by variables” data matrix and produce one set of factor scores for
the observations and one set of factor scores (i.e., the “loadings”)
for the variables. The congruence between two sets of factor scores
collected on the same units (which can be observations or variables)
measures the similarity between these two sets of scores. If, for exam-
ple, two different types of factor analysis are performed on the same
data set, the congruence between the two solutions is evaluated by
the similarity of the configurations of the factor scores produced by
these two techniques.
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In this paper, we present three coefficients used to evaluate con-
gruence. The first coefficient is called the coefficient of congruence, it
measures the similarity of two configurations by computing a cosine
between matrices of factor scores. The second and third coefficients
are the RV coefficient and the Mantel coefficient. These coefficients
evaluate the similarity of the whole configuration of units. In order
to do so, the factor scores of the units are first transformed into
a units by units square matrix which reflects the configuration of
similarity between the units; and then the similarity between the
configurations is measured by a coefficient. For the RV coefficient,
the configuration between the units is obtained by computing a ma-
trix of scalar products between the units, and a cosine between two
scalar product matrices evaluates the similarity between two config-
urations. For the Mantel coefficient, the configuration between the
units is obtained by computing a matrix of distance between the
units and a coefficient of correlation between two distance matrices
evaluates the similarity between two configurations.

The congruence coefficient was first defined by Burt (1948) under
the name of unadjusted correlation as a measure of the similarity
of two factorial configurations. The name congruence coefficient was
later tailored by Tucker (1951; see also Harman, 1976). The congru-
ence coefficient is also sometimes called a monotonicity coefficient
(Borg & Groenen, 1997, p. 203).

The RV coefficient was introduced by Escoufier (1973, see also
Robert & Escoufier, 1976) as a measure of similarity between squared
symmetric matrices (specifically: positive semi-definite matrices) and
as a theoretical tool to analyze multivariate techniques. The RV

coefficient is used in several statistical techniques such as statis
and distatis (see Abdi, 2003; Abdi & Valentin 2007, Abdi et al.,
2007, 2009; Holmes, 1989, 2007). In order to compare rectangular
matrices with the RV or the Mantel coefficients, the first step is to
transform these rectangular matrices into square matrices.

The Mantel coefficient was originally introduced by Mantel (1967)
in epidemiology; but it is now widely used in ecology (Legendre &
Legendre, 1998; Manly, 1997).

The congruence and the Mantel coefficients are cosines (recall
that the coefficient of correlation is a centered cosine) and, as such,
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they take values between −1 and +1. The RV coefficient is also
a cosine, but because it is a cosine between two matrices of scalar
products (which, technically speaking, are positive semi-definite ma-
trices), it corresponds actually to a squared cosine and thereofre the
RV coefficient takes values between 0 and 1 (see Abdi, 2007a, for a
proof).

The computational formulas of these three coefficients are almost
identical but their usage and theoretical foundations differ because
these coefficients are applied to different types of matrices. Also,
their sampling distributions differ because of the types of matrices
on which they are applied.

2 Notations and computational formulas

Let X be an I by J matrix and Y be an I by K matrix. The
vec operation transforms a matrix into a vector whose entries are
the elements of the matrix. The trace operation applies to square
matrices and gives the sum of the diagonal elements.

2.1 Congruence coefficient

The congruence coefficient is defined when both matrices have the
same number of rows and columns (i.e., J = K). These matrices can
store factor scores (for observations) or factors loadings (for vari-
ables). The congruence coefficient is denoted φ or sometimes rc, and
it can be computed with three different equivalent formulas:

φ = rc =

∑
i,j

xi,jyi,j√√√√(∑
i,j

x2
i,j

)(∑
i,j

y2i,j

) (1)

=
vec {X}T vec {Y}√(

vec {X}T vec {X}
)(

vec {Y}T vec {Y}
) (2)
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=
trace

{
XYT

}√(
trace {XXT}

) (
trace {YYT}

) (3)

(where T denotes the transpose operation).

2.2 RV coefficient

The RV coefficient was defined by Escoufier (1973) as a similar-
ity coefficient between positive semi-definite matrices. Escoufier and
Robert (1976) and Escoufier (1973) pointed out that the RV co-
efficient had important mathematical properties because it can be
shown that most multivariate analysis techniques amount to maxi-
mizing this coefficient with suitable constraints. Recall, at this point,
that a matrix S is called positive semi-definite when it can be ob-
tained as the product of a matrix by its transpose. Formally, we say
that S is positive semi-definite when there exists a matrix X such
that:

S = XXT . (4)

Note that as a consequence of the definition, positive semi-definite
matrices are square, symmetric, and that their diagonal elements are
always larger or equal to zero.

If we denote by S and T two positive semi-definite matrices of
same dimensions, the RV coefficient between them is defined as

RV =
trace

{
STT

}√(
trace {STS}

)
×
(
trace {TTT}

) . (5)

This formula is computationally equivalent to

RV =
vec {S}T vec {T}√(

vec {S}T vec {S}
)(

vec {T}T vec {T}
) (6)

=

I∑
i

I∑
j

si,jti,j√√√√( I∑
i

I∑
j

s2i,j

)(
I∑
i

I∑
j

t2i,j

) . (7)
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For rectangular matrices, the first step is to transform the matri-
ces into positive semi-definite matrices by multiplying each matrix
by its transpose. So, in order to compute the value of the RV coef-
ficient between the I by J matrix X and the I by K matrix Y, the
first step it to compute

S = XXT and T = YYT . (8)

If we combine Equation 5 and 8, we find that the RV coefficient
between these two rectangular matrices is equal to

RV =
trace

{
XXTYYT

}√(
trace {XXTXXT}

)
×
(
trace {YYTYYT}

) . (9)

The comparison of Equation 3 and 9 shows that the congruence and
the RV coefficients are equivalent only in the case of positive semi-
definite matrices.

From a linear algebra point of view, the numerator of the RV coef-
ficient corresponds to a scalar product between positive semi-definite
matrices, and therefore gives to this set of matrices the structure of a
vector space. Within this framework, the denominator of the RV co-
efficient is called the Frobenius, or Schur, or Hilbert-Schmidt matrix
scalar product (see e.g., Horn & Johnson, 1985, p. 291), and the RV

coefficient is a cosine between matrices. This vector space structure
is responsible of the mathematical properties of the RV coefficient.

2.3 Mantel coefficient

For the Mantel coefficient, if the data are not already in the form of
distances, then the first step is to transform these data into distances
(see Abdi 2007b, for a review of the major types of distances). These
distances can be Euclidean distances but any other type of distances
will work. If we denote by D and B the two I by I distance matrices
of interest, then the Mantel coefficient between these two matrices
is denoted rM and it is computed as the coefficient of correlation
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between their off-diagonal elements as:

rM =

I−1∑
i=1

I∑
j=i+1

(
di,j − d̄

) (
bi,j − b̄

)
√√√√[I−1∑

i=1

I∑
j=i+1

(
di,j − d̄

)2][I−1∑
i=1

I∑
j=i+1

(
bi,j − b̄

)2] (10)

(where d̄ and b̄ are the mean of the off-diagonal elements of, respec-
tively, matrices D and B).

3 Tests and sampling distributions

The congruence, the RV , and the Mantel coefficients quantify the
similarity between two matrices. An obvious practical problem is to
be able to perform statistical testing on the value of a given coef-
ficient. In particular it is often important to be able to decide if a
value of coefficient could have been obtained by chance alone. To
perform such statistical tests, we need to derive the sampling distri-
bution of these coefficients under the null hypothesis (i.e., in order
to test if the population coefficient is null). More sophisticated test-
ing requires to derive the sampling distribution for different values
of the population parameters. So far, analytical methods have failed
to completely characterize such distributions, but computational ap-
proaches have been used with some success. Because the congruence,
the RV , and the Mantel coefficients are used with different types of
matrices, their sampling distributions differ and so, work done with
each type of coefficient has been carried independently of the others.

Some approximations for the sampling distributions have been
derived recently for the congruence coefficient and the RV coeffi-
cient, with particular attention given to the RV coefficient (e.g., Jose,
Pagès, & Husson, 2008). The sampling distribution for the Mantel
coefficient has not been satisfactorily approximated, and the statis-
tical tests provided for this coefficient rely mostly on permutation
tests.
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3.1 Congruence coefficient

Recognizing that analytical methods were unsuccessful, Korth and
Tucker (1976) decided to use Monte Carlo simulations to gain some
insights into the sampling distribution of the congruence coefficient.
Their work was completed by Broadbooks and Elmore (1987, see also
Bedeian, Armenakis & Randolph, 1988). From this work, it seems
that the sampling distribution of the congruence coefficient depends
upon several parameters including the original factorial structure
and the intensity of the population coefficient and therefore no simple
picture emerges, but some approximations can be used. In particu-
lar, for testing that a congruence coefficient is null in the population,
an approximate conservative test is to use Fisher Z-transform and
to treat the congruence coefficient like a coefficient of correlation.
Broadbooks and Elmore provide tables for population values differ-
ent from zero. With the availability of fast computers, these tables
can easily be extended to accommodate specific cases.

3.1.1 Congruence Coefficient: Example

Here we use an example from Abdi and Valentin (2007). Two wine
experts are rating 10 wines on three different scales, the results of
their ratings is provided in the two matrices below denoted X and
Y:

X =


1 6 7
5 3 2
6 1 1
7 1 2
2 5 4
3 4 4

 and Y =


3 6 7
4 4 3
7 1 1
2 2 2
2 6 6
1 7 5

 . (11)

For computing the congruence coefficient, these two matrices are
transformed into two vectors of 6×3 = 18 elements each and a cosine
(cf. Equation 1) is computed between these two vectors. This gives a
value of the coefficient of congruence of φ = .9210. In order to eval-
uate if this value is significantly different from zero, a permutation
test with 10,000 permutations was performed. In this test, the rows
of one of the matrices were randomly permuted and the coefficient
of congruence was computed for each of these 10,000 permutations.
The probability of obtaining a value of φ = .9210 under the null
hypothesis was evaluated as the proportion of the congruence coef-
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ficients larger than φ = .9210. This gives a value of p = .0259 which
is small enough to reject the null hypothesis at the .05 alpha level,
and we conclude that the agreement between the ratings of these
two experts cannot be attributed to chance.

3.2 RV Coefficient

Statistical approaches for the RV coefficient have focused on permu-
tation tests. In this framework, the permutations are performed on
the entries of each column of the rectangular matrices X and Y used
to create the matrices S and T or directly on the rows and columns
of S and T. Interestingly, work by Kazi-Aoual et al., (1995, see also
Schlich, 1996) has shown that the mean and the variance of the per-
mutation test distribution can be approximated directly from S and
T.

The first step is to derive an index of the dimensionality or rank
of the matrices. This index denoted βS (for matrix S = XXT) is
also known as ν in the brain imaging literature where it is called
a sphericity index and is used as an estimation of the number of
degrees of freedom for multivariate tests of the general linear model
(see e.g., Worsley and Friston, 1995). This index depends upon the
eigenvalues (see entry) of the S matrix denoted Sλℓ and it is defined
as:

βS =

(
L∑
ℓ

Sλℓ

)2

L∑
ℓ

Sλ
2
ℓ

=
trace {S}2

trace {SS}
. (12)

The mean of the set of permutated coefficients between matrices
S and T is then equal to

E (RV ) =

√
βSβT

I − 1
. (13)

The case of the variance is more complex and involves computing
three preliminary quantities for each matrix. The first quantity is
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denoted δS (for matrix S), it is equal to:

δS =

I∑
i

s2i,i

L∑
ℓ

Sλ
2
ℓ

. (14)

The second one is denoted αS for matrix S, and is defined as:

αS = I − 1− βS . (15)

The third one is denoted CS (for matrix S) and is defined as:

CS =
(I − 1) [I (I + 1) δS − (I − 1) (βS + 2)]

αS (I − 3)
. (16)

With these notations, the variance of the permuted coefficients is
obtained as

V (RV ) = αSαT × 2I (I − 1) + (I − 3)CSCT

I (I + 1) (I − 2) (I − 1)3
. (17)

For very large matrices, the sampling distribution of the permu-
tated coefficients is relatively similar to a normal distribution (even
though it is, in general, not normal) and therefore we can use a Z
criterion to perform null hypothesis testing or to compute confidence
intervals. For example, the criterion

ZRV
=

RV − E (RV )√
V (RV )

, (18)

can be used to test the null hypothesis that the observed value of
RV was due to chance.

The problem of the lack of normality of the permutation based
sampling distribution of the RV coefficient has been addressed by
Heo and Gabriel (1998) who suggest to “normalize” the sampling
distribution by using a log transformation. Recently Josse, Pagès,
and Husson (2008) have refined this approach and indicated that a
gamma distribution would give an even better approximation.
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3.2.1 RV Coefficient: Example

As an example, we use the two scalar product matrices obtained
from the matrices used to illustrate the congruence coefficient (cf.
Equation 11). For the present example, these original matrices are
centered (i.e., the mean of each column has been subtracted form
each elements of this column) prior to computing the scalar product
matrices. Specifically, if we denote by X and Y the centered matri-
ces derived from X and Y, we obtain the following scalar product
matrices:

S = XX
T
=


29.56 −8.78 −20.78 −20.11 12.89 7.22
−8.78 2.89 5.89 5.56 −3.44 −2.11
−20.78 5.89 14.89 14.56 −9.44 −5.11
−20.11 5.56 14.56 16.22 −10.78 −5.44
12.89 −3.44 −9.44 −10.78 7.22 3.56
7.22 −2.11 −5.11 −5.44 3.56 1.89

 (19)

and

T = YY
T
=


11.81 −3.69 −15.19 −9.69 8.97 7.81
−3.69 1.81 7.31 1.81 −3.53 −3.69
−15.19 7.31 34.81 9.31 −16.03 −20.19
−9.69 1.81 9.31 10.81 −6.53 −5.69
8.97 −3.53 −16.03 −6.53 8.14 8.97
7.81 −3.69 −20.19 −5.69 8.97 12.81

 .

(20)

We find the following value for the RV coefficient:

RV =

I∑
i

I∑
j

si,jti,j√√√√( I∑
i

I∑
j

s2i,j

)(
I∑
i

I∑
j

t2i,j

)

=
(29.56× 11.81) + (−8.78×−3.69) + · · ·+ (1.89× 12.81)√[

(29.56) + (−8.78)2 + · · ·+ (1.89)2
] [

(11.81)2 + (−3.69)2 + · · ·+ (12.81)2
]
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= .7936 . (21)

To test the significance of a value of RV = .7936, we first compute
the following quantities

βS = 1.0954 αS = 3.9046 δS = 0.2951 CS − 1.3162

βT = 1.3851 αT = 3.6149 δT = 0.3666 CT = −0.7045 (22)

Plugging these values into Equations 13, 17, and 18, we find

E (RV ) = 0.2464, V (RV ) = 0.0422 and ZRV
= 2.66 . (23)

Assuming a normal distribution for the ZRV
gives a p value of .0077,

which would allow for the rejection of the null hypothesis for the
observed value of the RV coefficient.

3.2.2 RV coefficient: Permutation test

As an alternative approach to evaluate if the value of RV = .7936
is significantly different from zero, a permutation test with 10,000
permutations was performed. In this test, the whole set of rows and
columns (i.e., the same permutation of I elements is used to per-
mute rows and columns) of one of the scalar product matrices were
randomly permuted and the RV coefficient was computed for each of
these 10,000 permutations. The probability of obtaining a value of
RV = .7936 under the null hypothesis was evaluated as the propor-
tion of the RV coefficients larger than RV = .7936. This gave a value
of p = .0281 which is small enough to reject the null hypothesis at
the .05 alpha level. It is worth noting that the normal approximation
gives a more liberal value (i.e., smaller) of p than the non-parametric
permutation test (which is more accurate in this case because the
sampling distribution of RV is not normal).

3.3 Mantel Coefficient

The exact sampling distribution of the Mantel coefficient is not
known. Numerical simulations suggest that, when the distance ma-
trices originate from different independent populations, the sampling
distribution of the Mantel coefficient is symmetric (though not nor-
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mal) with a zero mean. In fact, Mantel, in his original paper, pre-
sented some approximations for the variance of the sampling distri-
butions of rM (derived from the permutation test), and suggested
that a normal approximation could be used, but the problem is still
open. In practice, though, the probability associated to a specific
value of rM is derived from permutation tests.

3.3.1 Mantel coefficient: Example

As an example, we use two distance matrices derived from the con-
gruence coefficient example (cf. Equation 11). These distance matri-
ces can be computed directly from the scalar product matrices used
to illustrate the computation of the RV coefficient (cf. Equations 19
and 20). Specifically, if S is a scalar product matrix and if we denote
by s the vector containing the diagonal elements of S, and by 1 an
I by 1 vector of ones, then the matrix D of the squared Euclidean
distances between the elements of S is obtained as (cf. Abdi 2007c,
Equation 4):

D = 1sT + s1T − 2S . (24)

Using Equation 24, we transform the scalar-product matrices
from Equations 19 and 20 into the following distances matrices:

D =


0 50 86 86 11 17
50 0 6 8 17 9
86 6 0 2 41 27
86 8 2 0 45 29
11 17 41 45 0 2
17 9 27 29 2 0

 (25)

and

T =


0 21 77 42 2 9
21 0 22 9 17 22
77 22 0 27 75 88
42 9 27 0 32 35
2 17 75 32 0 3
9 22 88 35 3 0

 . (26)

For computing the Mantel coefficient, the upper diagonal ele-
ments of each of these two matrices are stored into a vector of
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1
2
I × (I − 1) = 15 elements and the standard coefficient of corre-

lation is computed between these two vectors. This gave a value of
the Mantel coefficient of rM = .5769. In order to evaluate if this value
is significantly different from zero, a permutation test with 10,000
permutations was performed. In this test, the whole sets of rows and
columns (i.e., the same permutation of I elements is used to permute
rows and columns) of one of the matrices were randomly permuted
and the Mantel coefficient was computed for each of these 10,000
permutations. The probability of obtaining a value of rM = .5769
under the null hypothesis was evaluated as the proportion of the
Mantel coefficients larger than rM = .5769. This gave a value of
p = .0265 which is small enough to reject the null hypothesis at the
.05 alpha level.

4 Conclusion

The congruence, RV , and Mantel coefficients all measure slightly
different aspects of the notion of congruence. The congruence coef-
ficient is sensitive to the pattern of similarity of the columns of the
matrices and therefore will not detect similar configurations when
one of the configurations is rotated or dilated. By contrast, both the
RV coefficient and the Mantel coefficients are sensitive to the whole
configuration and are insensitive to changes in configuration that in-
volve rotation or dilatation. The RV coefficient has the additional
merit of being theoretically linked to most multivariate methods and
to be the base of procrustes methods such as statis or distatis

Related entries

Coefficient of correlation and determination, Fischer Z-transform,
factor analysis, principal component analysis, R2, sampling distri-
butions,
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HERVÉ ABDI 15

26. Schlich, P. (1996). Defining and validating assossor compromises about product distances

and attribute correlations. In T, Næs, & E. Risvik (Eds.), Multivariate analysis of data

in sensory sciences. New York: Elsevier.

27. Smouse, P.E., Long, J.C., & Sokal, R.R. (1986). Multiple regression and correlatio n exten-

sions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.

28. Tucker L.R. (1951). A method for the synthesis of factor analysis studies (Personnel Research

Section Report No. 984). Washington: Department of the Army.

29. Worsley K.J., & Friston, K.J (1995). Analysis of fMRI Time-series revisited—Again. Neu-

roImage, 2, 173–181.


