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Abstract. When adults are asked to verify simple arithmetic problems (e.g., 8 + 4 =
12, True? False?), confusion problems (e.g., 8 + 4 = 32) produce slower rejection
times than other incorrect problems (e.g., 8 + 4 = 13). This confusion effect has been
interpreted as the result of memory associative confusions between addition and
multiplication problems. The present experiments aimed at determining whether the
confusion effect would remain with delay. Arithmetic problems with different answers
were presented to adults and children (9 and 10 year-old) either simultaneously or with
variable delay (i.e., 100, 300, and 500 ms). In adults, confusion problems produced
significantly slower reaction times than other incorrect problems both at 0 and 100 ms
delays, but not at 300 and 500 ms delays. For 10 year-old children, the confusion
effects disappeared at 300 and 500 ms delays. For 9 year-old children, the confusion
effects only disappeared at 500 ms delay. These results are congruent with Zbrodoff and
Longan's (1986) hypothesis that processes underlying simple arithmetic are partially
autonomous.
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When adults are asked to judge simple arithmetic problems (e.g., 8 + 4 =
12, True? False?), confusion problems (e.g., 8 + 4 = 32) produce slower reac-
tion times than other incorrect problems (e.g., 8 + 4 = 13). The main purpose
of the present paper was to investigate further the confusion effect observed in
previous works (Findlay, 1978; Stazyk, Ashcraft, & Hamann, 1982,
Winkelman & Schmidt, 1974; Zbrodoff, 1979; Zbrodoff & Logan, 1986). This
very important phenomenon supports models that emphasize associative learning
rather than computational learning. Although some theorists have argued that
adults' performance on basic arithmetic problems relies extensively on the use
of rule-based procedures (e.g., Baroody, 1985, 1987; Svenson, 1985), other
problems have claimed that the procedural methods used during initial acquisi-
tion are largely replaced by direct retrieval from semantic memory (Abdi, 1986;
Ashcraft, 1982, 1987; Campbell & Graham, 1985; Koshmider & Ashcraft,
1991; Siegler & Shrager, 1984; see Cornet, Seron, Deloche, & Lories, 1988;
Fayol, 1990; Lemaire & Bernoussi, in press; McCloskey, Harley, & Sokol,
1991, for recent syntheses).

The role of retrieval processes in elementary mathematics is clearly
demonstrated by evidence that performance on the basic combinations shows a
substantial influence of associative confusions (Campbell, 1987 a & b; Campbell
& Graham, 1985; Hamann & Ashcraft, 1985; Siegler, 1988; Siegler & Shrager,
1984; Stazyk, Ashcraft, & Hamann, 1982; Winkelman & Schmidt, 1974;
Zbrodoff & Logan, 1986). For example, Campbell and Graham (1985) found
that most errors in simple multiplications made by children and adults (89% for
adults) involved tabled answers that are correct products for other simple
multiplication problems, usually within the same multiplication tables as the
correct answer (€.g., 3 x 7 = 24 or 3 x 7 = 28). Campbell (1985) found a
comparable pattern in the errors made by adults on simple division problems.
These systematic patterns suggest that simple arithmetic errors often result fron
incorrect retrieval or associatively related answers. In Campbell and Graham's
(1985) model, the error patterns reflect an associative-network structure. In this
network, each problem is linked to a few candidate answers and each answer is
linked to many different problems.

An associative model is also proposed by Winkelman and Schmidt (1974)
to account for associative confusions between addition problems and multiplica-
tion problems. The authors assume that there exist associations between pairs of
digits and both their sums and products. For example, the digit pair (3,4) would
have associations with both 7 and 12. The obvious prediction is that stimuli of
the type 3 + 4 = 12 and 3 x 4 = 7 will produce an increase in reaction times.
To test this prediction, Winkelman and Schmidt asked their subjects to judge
addition and multiplication problems. The problems were presented either with
corrector incorrect responses. The incorrect responses were non-confusion re-
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sponses (e.g., 3 + 5 = 25) or correct responses to the other operation e.g., 3
+ 5 = 15). The authors reported that confusion problems produced slower
reaction times and more errors than non-confusion problems. This confusion
effect was observed when subjects were presented with arithmetic problems both
in a "mixed condition" (i.e., addition and multiplication problems are randomly
presented in the same test) and in a "pure condition" (in which subjects were
presented with either addition or multiplication problems in one test). These
results suggest that competing associations between additive and multiplicative
facts would exist in long-term memory and that these competing associations
would be activated. To state their response, subjects would have to inhibit the
inappropriate responses. Therefore, reaction times and the number of errors
would increase.

Stazyk, Aschraft, and Hamann (1982) proposed an alternative explanation
of this confusion effect. Reaction times may have been elevated in the confusion
condition not because of competing memory associations but, instead, because
of perceptual or encoding confusions. That is, subjects may have simply
misperceived the arithmetic operator sign on these confusion problems, and thus
giving spurious longer reaction time. Therefore, the authors investigated the
confusion effect within multiplication only. In their experiments, confusion
products were answers that were multiples of one problem's multiplier. They
also reported a confusion effect, and interpreted this result as a dismissal of the
“perceptual confusion" hypothesis.

Additionally, Zbrodoff and Logan (1986) noted two important points in
Winkelman and Schmidt's (1974) investigation. First, a restricted series of stim-
uli was used (i.e.,3+3;4 +3;3+5;5 +35and3x3;4x3;3x5;5x5).
Second, a within-subject comparison was performed between pure and mixed
conditions. Zbrodoff and Logan hypothesized that the confusion effect might
have been due to the subjects being surprised upon seeing a confusion problem
and not due to the time needed to inhibit incorrectly activated answers. Zbrodoff
and Logan explored the possibility that arithmetic involved autonomous
processes. They defined a process as autonomous "... if it can (a) begin without
intention, triggered by the presence of a relevant stimulus in the task envi-
ronment, and (b) run on to completion ballistically once it begins, whether or
not it is intended" (Zbrodoff & Logan, 1986, p. 118). In a series of experiments
(Experiments 1 to 4), they tested the associative confusion effect. They used all
pairs of digits from 1 to 9 (excepted 2 and 2) as stimuli. To avoid encoding
perception bias, they also considered "mixed-pure presentation” as a between-
subjects factor. Additionally, they manipulated the salience of "confusion",
knowing that, in Stroop-like paradigms, such a factor has an important effect
(Logan, 1980; Logan & Zbrodoff, 1979). For half of the subjects, 80% of false
items contained a confusion answer. For the other group of subjects, only 20%
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of the false answers were confusion answers. These different manipulations
enabled them to observe two important phenomena. First, when subjects were
presented with problems in a mixed condition, the confusion effect was strong,
but when subjects were presented with problems in a pure condition, the confu-
sion effect was weaker. Second, the confusion effect was more important with
multiplication problems than with addition problems. Finally, on one third of
the trials in a simple arithmetic equation verification task, subjects were asked to
inhibit their response to the equation at an auditory stop signal (Experiments 5
and 6). On the average, subjects responded on 30.5% of the stop signal trials
and inhibited their responses on 69.5%. As subjects were able to inhibit their
overt responses to the arithmetic verification task on 69.5% of the stop signal
trials, the hypothesis that the underlying processes are completely autonomous
was disconfirmed. But the fact that subjects showed an associative confusion
effect ruled out the possibility that arithmetic processes are not at all autono-
mous. Therefore, Zbrodoff and Logan (1986) concluded that the processes
underlying simple arithmetic can be partially autonomous.

The partially autonomous perspective makes a number of predictions, some
of which are tested in the present paper. Specifically, the hypothesis that the
processes underlying simple arithmetic are partially autonomous predicts that, if
the presentation of arguments (e.g., 8 + 4 =) and the presentation of the
answer (e.g., 32) are sufficiently delayed), the confusion effect should
disappear. Indeed, subjects would have the time to select the correct answer and
not confuse it with a related answer. Therefore, it should be possible to show an
inhibition of the confusion effect.

EXPERIMENT 1

Experiment 1 was suggested by Zbrodoff and Logan's (1986) hypothesis
that the processes underlying simple arithmetic are partially autonomous. If this
is so, then it should be possible to show an inhibition of the confusion effect.
Specifically, if the presentation of the arguments (e.g., 8 + 4) and the presenta-
tion of the answer (e.g., 32) are sufficiently delayed, the confusion effect should
disappear because subjects would have the time to select the correct answer.

Method
Subjects. Thirty-six introductory psychology students (15 males and 21

females) received a class credit to participate in the experiment. Mean age of the
subjects was 21.2 years, ranging from 18.3 to 29.2.

4

l

7 M.

:

| W, .. st

Associative confusion i

Stimuli and ap
SAMSUNG PC-compati:
ing one key on the
key). The stimuli we
9. "Zero-time" and "
are probably solved |
Ashcraft, 1982; Bar
When operand order
considered as the sa
addition and multipli
was the sum of a an
multiplication probl
number of true answ
problems were form
lems (e.g.,3 + 5 =
8). Finally, seventy
neither the sum nor
Following Zbrodoff
problems, the ¢ term
or split between the
necessary because so
9 x9 = 18), and tl
equality judgments (]
responses in arithm
equating the mean sp
in the confusion prob

Procedure. Stim
= ¢) in the center of
complete the design
separately for each
requiring the same re
ms ready signal (a
screen. Then a prob
equation would be ¢
zontally. Each equati
X), an equal sign, an
a space, the operatiol
symbol, a space, a
character spaces on |
or two digits.




' Fayol, and Hervé Abdi

fferent manipulations
, when subjects were
on effect was strong,
condition, the confu-
more important with
ally, on one third of
subjects were asked to
signal (Experiments 5
‘the stop signal trials
> able to inhibit their
Y% of the stop signal
ympletely autonomous
associative confusion
are not at all autono-
d that the processes

r of predictions, some
ie hypothesis that the
ymous predicts that, if
e presentation of the
fusion effect should
he correct answer and
ye possible to show an

n's (1986) hypothesis
ly autonomous. If this
( the confusion effect.
+ 4) and the presenta-
onfusion effect should
l€ correct answer.

its (15 males and 21
ment. Mean age of the

Y G

A — (el

Associative confusion in cognitive arithmetic 591

Stimuli and apparatus. Stimuli were generated and presented using a
SAMSUNG Pc-compatible computer. Subjects' responses were recorded by assign-
ing one key on the keyboard as "true” (M’ key) and one key as false (*Q'
key). The stimuli were equations representing all operations from 2 + 3 t0 9 +
9. "Zero-time" and "one-time" problems were not tested because these problems
are probably solved by retrieval of rules, suchas Nx0 =0, Nx 1 = N (e.g.,
Ashcraft, 1982; Baroody, 1985) as opposed to direct retrieval of an answer.
When operand order is ignored (i.e., when for example, 3 x 4 and 4 x 3 are
considered as the same problem), there are 35 arithmetic problems. For both
addition and multiplication problems, 35 true problems were formed, such that ¢
was the sum of a and b (for addition problems) or the product of a and b (for
multiplication problems). True problems were presented twice so that the
number of true answers and false answers was the same. Thirty-five confusion
problems were formed such that ¢ was the product of a and b for addition prob-
lems (e.g., 3 + 5 = 15) and the sum for multiplication problems (e.g., 3 x 5 =
8). Finally, seventy non-confusion problems were formed, such that ¢ was
neither the sum nor the product of a and b (e.g., 3 + 4 = 8,3 x 4 = 11).
Following Zbrodoff and Logan (1986), in both addition and multiplication
problems, the ¢ term for the false problems was chosen to match the difference
or split between the left and right sides of the confusion problems. This was
necessary because some confusion problems had large splits (e.g., 9 + 9 = 81,
9 x 9 = 18), and the split is known to affect reaction times in arithmetic in-
equality judgments (Moyer & Landauer, 1967; Restle, 1970) as well as in false
responses in arithmetic verification tasks (Ashcraft & Battaglia, 1978). By
equating the mean split in the set of non-confusion problems with the mean split
in the confusion problems, a potential confound has been removed.

Procedure. Stimuli were presented in a line form (e.g.,axb =cora + b
= ¢) in the center of the computer screen. A total of 280 trials was required to
complete the design. The order of operations and answers was randomized
separately for each subject, with the restriction that no more than four trials

requiring the same response occurred consecutively. Each trial began with a 750

ms ready signal (a line of five “a' letters) that appeared in the center of the
screen. Then a problem and a solution appeared, arranged so that the entire
equation would be centered on the screen. The equation was displayed hori-
zontally. Each equation included the two arguments, the operation symbol (+ or
x), an equal sign, and the answer. The argument display included one argument,
a space, the operation symbol, a space, the second argument, a space, the equal
symbol, a space, and the answer. Each equation occupied seven or eight
character spaces on the screen, depending on whether the answer involved one
or two digits.
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We used four different delays between arguments and answer: 0, 100, 300,
and 500 ms. The 0 ms delay mimicked standard verification tasks in that
arguments and answer appeared simultaneously. The 500 ms delay was intended
to provide the subjects with enough time to retrieve the true answer before the
presentation of the putative answer. We chose two short delays (0 and 100 ms)
and two long delays (300 and 500 ms), because LeFevre, Bisanz, and Mrkonijc
(1988) reported that two digits facilitated the activation of their sum at short
delays (less than 180 ms).

Subjects were individually tested. The instructions began by describing the
events in a trial. In the 100, 300, and 500 ms delay condition groups, subjects
were told that the arguments would appear before the answer. Subjects were
instructed to respond “"true" or "false" as quickly and accurately as possible after
the answer appeared. Half the subjects pressed the "true" answer key with their
left hand and the "false" answer key with their right hand and the other half of
the subjects did the opposite. Subjects were told to rest the index fingers of their
right and left hands on the keys throughout the experiment in order to be able to
respond as quickly as possible. Each session lasted approximately twenty to
thirty minutes.

Before the experimental trials, subjects were given 20 practice problems to
familiarize them with the apparatus and procedure. Subjects were reminded of
the instructions after their practice trials.

Results and discussion

Trials on which the subjects made errors were dropped from analyses.
Median correct latencies for the no items were analyzed in a 4 (delay: 0, 100,
300, and 500 ms) x 2 (operation: addition and multiplication) x 2 (answer: non-
confusion, confusion)! analysis of variance (ANOVA) with repeated measures on
the last two factors. Error rates were too low (4.2%) to be analyzed statistically
but showed no evidence of speed-accuracy trade-off that would compromise the
interpretation of the results.

As can be seen in Figure 1, the major experimental manipulations were
successful. The mean median latencies for delays of 0, 100, 300, and 500 ms
were 1241, 1278, 720, and 573 ms, respectively, indicating a significant effect
[F(3,32) = 34.47, p<.01, MSe = 1890838]. Addition problems showed a sig-
nificant shorter latency (950 ms) than multiplication problems (976 ms) [F(1,32)

1. As expected, in each of the present experiments, latencies for the true conditions were faster
than for the false conditions. Because data from these control conditions do not bear on the
hypotheses in any other way, they are not discussed further.
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= 8.96, p<.01, MSe = 2682). Non-confusion problems were verified 77 ms
faster on the average than confusion problems [F(1,32) = 35.36, p<.01, MSe
= 6462], showing the standard confusion effect.

Figure 1. Mean median latencies (in ms) as a function of answer and delay, in adults.
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More importantly, several interactions among factors were significant. The
delay x operation interaction effect [F(3,32) = 7.68, p<.01, MSe = 2682],
and the delay x answer interaction effect [F(3,32) = 11.96, p<.01, MSe =
3132] were further explored in separate ANovAs performed for each delay,
involving a 2 (operation) x 2 (answer) design with repeated measures on each
factor.

For 0 ms delay, adults showed a significant difference in mean median
latencies between addition problems (1214 ms) and multiplication problems
(1267 ms) [F(1,8) = 11.20, p<.02, MSe = 2233], as well as a significant
difference between non-confusion problems (1149 ms) and confusion problems
(1332 ms) [F(1,8) = 31.82, p<.01, MSe = 3336]. For 100 ms delay, the
operation effect [F(1,8) = 15.83, p<.0l, and the confusion effect [F(1,8) =
9.91, p<.02] proved to be significant. For 300 ms delay, no operation or
answer effect proved to be significant.

Consistent with our hypothesis, the present results showed a confusion
effect with both addition and multiplication problems for 0 ms and 100 ms
delays. The confusion effect was not observed with 300 or 500 ms delays. The
fact that latencies decreased with delay suggests that, at longer delays, subjects
had the time to retrieve the answer of the problems. When the putative answer
appeared, they only had to compare the retrieved answer with the presented
answer, and to press the appropriate key on the keyboard. However, latencies at
0 ms delay are shorter than latencies at 100 ms delay, although the difference is
not significant (F<1). These shorter latencies may be due to the fact that sub-
jects waited to see the answer before retrieving the solution, instead of trying to
retrieve the solution as soon as they were presented with the arguments, yielding
a spurious long latency. '

These results are consistent with LeFevre, Bisanz, and Mrkonijc's (1988)
results that showed a largest confusion effect at stimulus onset asynchronies of
less than 180 ms between the pair of number and the probe, in a single matching
task. In a verification task, it is important that the confusion effect disappeared
at longer delays. Indeed, when presented with arguments with a sufficient long
delay before the answer, subjects could inhibit incorrect activated candidates,
select the correct answer, and did not show any confusion effect. The pattern of
results in our experiment is congruent with Zbrodoff and Logan's (1986)
hypothesis that processes underlying simple arithmetic are partially autonomous.
However, Zbrodoff and Logan also concluded that autonomy should be con-
strued as a continuous dimension rather than a dichotomous one. Because
studies on children's addition and multiplication reported different rates of the
retrieval of arithmetic facts across ages (Ashcraft & Fierman, 1982; Hamann &
Ashcraft, 1985; Koshmider & Ashcraft, 1991), testing children should bring
further evidence to the "continuous dimension hypothesis". Indeed, do children
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show inhibition of the confusion effect? If they do, with which delay? This issue
is addressed in Experiment 2.

EXPERIMENT 2

Experiment 2 tested the hypothesis that autonomy is a continuous dimen-
sion. This hypothesis predicts a different inhibition of the confusion effect in
children of different ages and at different delays. Indeed, as children of different
ages have a different mastery of arithmetic facts (Ashcraft, 1987; Ashcraft &
Fierman, 1982; Cooney, Swanson, & Ladd, 1988; Svenson & Sjoberg, 1982,
1983), a different inhibition of the confusion effect should be observed at
different delays.

To test this prediction, fifth and fourth grade children were presented with
simple arithmetic problems to verify as in Experiment 1. Fourth- and fifth-
graders served as subjects in our experiment, because third-graders did not show
any confusion effect in Experiment 1. Each subject was randomly presented
with simple arithmetic problems with three delay conditions (0, 300, and 500
ms). The hypothesis that autonomy is a continuous dimension predicts a larger
inhibition of the confusion effect with older children. Indeed, as children of
different ages have a different mastery of arithmetic facts (Ashcraft, 1987;
Ashcraft & Fierman, 1982; Cooney, Ladd, & Swanson, 1988; Svenson &
Sjoberg, 1982, 1983), a different inhibition of the confusion effect should be
observed at different delays.

Method

Subjects. Forty-two elementary school students, 21 each from grades 4 and
5, were randomly selected in a French upper-class urban public school (respec-
tive mean ages: 10.2 and 9.3 years old). All children attended a regular-class.

Stimuli and apparatus. The apparatus was the same as used in Experiment
1. However, as subjects were presented with the three delay conditions (0, 300,
and 500 ms), the session would have been too long for children if all combina-
tions of digits 1 through 9 would have been presented. Therefore, problems
were chosen within tables from 1 to 9. These problems were also chosen to
control a possible confounding size effect consistent of an increase in latency
with the size of problems (Ashcraft & Stazyk, 1981; Campbell, 1987 a & b;
Campbell & Graham, 1985; Geary, Widaman, & Little, 1986; Groen &
Parkman, 1972; Miller, Perlmutter, & Keating, 1984; Zbrodoff & Logan,
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1986). Following Zbrodoff and Logan (1986), argument magnitude was con-
trolled by choosing problems into three different levels: four problems in which
both arguments were S or smaller, four problems in which both arguments were
6 or larger, and four problems in which one argument was 5 or smaller and the
other was 6 or larger. Problems in which the arguments are identical (e.g., 2 +
2, 3 x 3) were excluded, because they often show no any problem size effect
(Ashcraft & Battaglia, 1978; Groen & Parkman, 1972).

We chose three delay conditions (0, 300, and 500 ms). The delay factor
was a within-factor. Each subject was randomly presented with the three delay
conditions. In a verification task, it is typically assumed that upon presentation
of the arguments, a candidate set of nodes is activated that includes the two
numbers from the arguments and related correct or incorrect nodes, such as the
sum or the product (Ashcraft, 1982, 1983, 1987; LeFevre et al., 1988). More-
over, Experiment 1 did not show any difference in the confusion effects with 0
and 100 ms delays. Therefore, a 0 ms delay was chosen for the control
condition in children, thus mimicking standard verification task.

Procedure. As with adults, the stimuli were presented in a line form (i.e.,
ax b =cora+ b = c). Each subject was presented with two operations
(addi-tion, multiplication), true and false problems, and three delays (0, 300,
and 500 ms), giving a total of 278 equations to verify. Stimuli were randomly
ordered with the restriction that no more than four trials requiring the same
response occurred consecutively. True problems were presented twice for the
number of true answers and that of false answers to be the same.

Results and discussion

Trials on which the subjects made errors were dropped from analyses.
Median correct latencies for the false items were analyzed in a 2 (grade: fifth,
fourth) x 3 (delay: 0, 300, and 500 ms) x 2 (operation: addition, multiplication)
x 2 (answer: non-confusion, confusion) ANOVA with repeated measures on the
last three factors. Error rates were too low (5.8%) to be analyzed statistically
but showed no evidence of a speed-accuracy trade-off that would compromise
the interpretation of the results.

Several significant main and interaction effects were apparent in the anal-
ysis. Specifically, fifth graders (1617 ms) were faster to reject false equations
than fourth graders (1881 ms) [F(1,40) = 28.75, p<.01, MSe = 1890838].
This grade effect reflects the fact that older children encode problems and
retrieve answers in memory more quickly than younger children. Like in adults,
latencies decreased with delays [F(2,80) = 196.71, p<.01, MSe = 420880].
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Probably like in adults, children performed some part of the processing between
the presentation of the argument and the presentation of the answer. When the
putative answer was presented, they only had to compare the retrieved answer
with the presented answer. Non-confusion problems (1679 ms) were more
quickly rejected than confusion problems (1749 ms) [F(1,40) = 18.85, p<.0l,
MSe = 41587]. Moreover, interaction effects were observed with grade x delay
[F(2,80) = 44.93, p<.01, MSe = 420880], with delay x answer [F(2,80) =
10.47, p<.01, MSe = 52728], with grade x delay x answer [F(2,80) = 5.94,
p<.01, MSe = 52728], and finally with grade x delay x operation x answer
[F(2,80) = 3.21, p<.05, MSe = 59747]. These interaction effects are further
analyzed in separate ANOVAs performed in each grade. For both fourth graders
and fifth graders, median correct latencies for the false items were analyzed
with a 3 (delay) x 2 (operation) x 2 (answer) ANOVA with repeated measures on
each factor.

For fifth grade children, results for non-confusion and confusion answers
are displayed in Figure 2. Mean median latencies decreased linearly2 with
delays [F(1,40) = 8.16, p<.01, MSe = 441849, percentage of variance
explained by the linear trend = .91], and confusion answers (1642 ms) were
slower to be rejected than non-confusion answers (1593) [F(1,20) = 4.04,
p<.05, MSe = 40537]. However, this confusion effect interacted with the
delay factor [F(2,40) = 16.88, p<.01, MSe = 39121]. A second-order inter-
action effect was portrayed in a significant confusion effect only with addition
problems at 0 ms delay [F(1,40) = 51.16, p<.01, MSe = 36032], and a non-
significant confusion effect both with 300 ms and 500 ms delays. At 300 ms and
500 ms delays, no confusion effect was observed for either addition or multipli-
cation problems.

Fof fourth grade children, Figure 3 depicts the results for non-confusion
and confusion answers. Mean median latencies decreased linearly with delay
[F(1,40) = 18.14, p<.01, MSe = 361152, percentage of variance explained by
the linear trend = 83%], and confusion answers (1856) were slower to be
rejected than non-confusion answers (1765 ms). However, this confusion effect
interacted with the delay factor [F(2,40) = 4.47, p = .01, MSe = 66614]. Spe-
cifically, this confusion effect was significant only with multiplication problems
[F(2,40) = 4.99, p<.05, MSe = 79262], with 0 ms delay and with 300 ms
delay [F(1,40) = 4.83, p<.05, MSe = 79262], but not with 500 ms delay.

2. Trend analyses in each of the present experiments have been assessed by polynomial trend
analyses (Abdi, 1987, chap. 9).
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Figure 2. Mean median latencies (in ms) as a function of answer and delay in fifth-

grade children.
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er and delay in fifth- ) Figure 3. Mean median latencies (in ms) as a function of answer and delay in fourth-
grade children.
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Consistent with our hypothesis, the largest inhibition of the confusion effect
was observed with fifth grade as opposed to fourth grade children. The latter
showed a confusion effect with one operation or the other with 0 and 300 ms
delays. The former showed a confusion effect only with addition problems and
only with O ms delay.

This inhibition of the confusion effect can be viewed in children exactly in
the same fashion as in adults. Indeed, when presented with arguments with a
sufficiently long delay before the answer, children could select the correct
answer before the presentation of the putative answer, yielding an inhibition of
the confusion effect.

A final result remains difficult to interpret. For fourth graders, the confu-
sion effect proved to be significant only with addition multiplication problems
with 0 ms delay and with addition problems with 300 ms delay. The fact that no
confusion effect was significant with addition problems with 0 ms delay could
be due either to an early inhibitory process that would have occurred on these
basic facts or to a slower activation of the product. For fourth graders, the
activation phase for multiplication facts could be longer than that of addition
facts. Consequently, 500 ms delay would be required for these incorrect multi-
plication facts to be inhibited. Following this reasoning, addition facts would be
retrieved at 0 ms delay for fourth graders and inhibited at both 300 and 500 ms.
The fact that older children, with a degree of mastery of arithmetic knowledge,
showed a confusion effect with multiplication facts at 0 ms delay is an argument
for this interpretation.

GENERAL DISCUSSION

The experiments were designed to test the hypothesis that the processes
underlying simple arithmetic are partially autonomous with a confusion effect.
That hypothesis predicts an inhibition of the confusion effect when a delay is
imposed between the arguments and answers. The delay should enable subjects
to inhibit incorrectly activated answers and select the correct answer. The exper-
iments provided evidence for that hypothesis. In Experiment 1, adults showed
an inhibition of the confusion effect at 300 and 500 ms delays. Experiment 2
was designed to test the hypothesis that autonomy is a continuous dimension.
That hypothesis predicts a different inhibition of the confusion effect in children
of different age and at different delays. The patterns of results in Experiment 2
bring some support for this hypothesis. In fifth graders, an inhibition of the
confusion effect with 300 and 500 ms was observed, whereas such an inhibition
was observed only with 500 ms delay, in fourth graders.

The results reported in this paper are consistent with the view that arithme-
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tic knowledge is a highly connected network of associations (Ashcraft, 1983,
1987; Campbell, 1987 a & b; Campbell & Graham, 1985). According to asso-
ciative models of cognitive arithmetic, arithmetic facts are accessed upon
presentation of arguments (Ashcraft, 1983, 1987). Activation spreads from the
presented numbers to related nodes such as the sum. This retrieval process is
known to be the most important in adults and from fourth grade in children.
Younger children mainly resort to a counting strategy to solve simple arithmetic
problems. The finding that, from fourth graders, children showed a confusion
effect with one or both operations is consistent with this view. One consequence
of the present results is that they enable us to define the conditions for a confu-
sion effect to appear. These conditions involve at least that (a) the access of
memory network is sufficiently automatic; (b) the memory network is sufficient-
ly organized to enable an automatic access of the solution. The present results
suggest that fourth grade is a minimum grade for these constraints to be satis-
fied. Indeed, third grade is a transitional grade with respect to memory structure
and memory access (Ashcraft & Fierman, 1982; Cooney et al., 1988; Svenson
& Sjoberg, 1982, 1983). Fourth and fifth grades seem to be appropriate grades
for arithmetic facts to be sufficiently mastered, and so that a confusion effect to
be observed.

The results reported in this paper are also consistent with the view that
arithmetic processes are not completely autonomous (Zbrodoff & Logan, 1986)
by showing that the confusion effect could be inhibited. Arithmetic processes
could be concluded to be partially autonomous. The present results showed that
the confusion effect was inhibited at shorter delay in older children. This differ-
ent inhibition of the confusion effect with respect to grade could be assumed to
reflect differences in strength of problem-answer associations in memory, due to
differential mastery of basic arithmetic combinations. Children with strong
problem-answer associations can select quickly the appropriate answer, and con-
sequently can reject more quickly confusion problems. More generally, it raises
the question of interaction of strategies and mental representations (Siegler,
1986, 1987).

Identification of the confusion effect and the time course of its inhibition
may prove to be useful for gaining a more complete understanding of how arith-
metic knowledge is stored and used. A measure of the confusion effect and of
its inhibition may serve to evaluate the strength of association between argu-
ments and candidate answers which in turn are critical for determining selection
of strategies on arithmetic tasks (Siegler, 1986, 1988; Siegler & Shrager, 1984).
The extent of the confusion effect and its inhibition might prove to be a useful
source of individual differences and developmental changes. This means that the
measurement of the confusion effect and its inhibition is potentially valuable for
determining how arithmetic is used.

3
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RESUME

Lorsqu'on demande a des adultes de vérifier des problémes arithmétiques simples
(e.g., 8 + 4 = 12. Vrai ? Faux ?), les problémes interférents (e.g., 8 + 4 = 32)
entrainent un temps de réaction plus long que des problémes faux comparables (e.g., 8
+ 4 = 13). Cet effet de confusion a été interprété comme le résultat de confusions
associatives en mémoire entre les produits et les sommes. L'objectif des expériences
rapportées dans cet article était de déterminer si, en introduisant un délai entre
I'opération et la réponse, 1'effet de confusion était toujours présent. On a donc présenté
des opérations associées & plusieurs solutions a des adultes et a des enfants (9 et 10
ans). Les sujets voyaient les opérations et les solutions soit en méme temps, soit
séparées par un bref délai (0, 100, 300 et 500 ms). Aux délais de 0 et 100 ms, l'effet de
confusion était présent chez les adultes, mais non a 300 et 500 ms. L'effet de confusion
disparait @ 300 ms chez les enfants de 10 ans et @ 500 ms chez les enfants de 9 ans. Ces
résultats sont en accord avec I'hypothése de Zbrodoff et Logan (1986) selon laquelle les
processus impliqués dans le calcul mental simple seraient partiellement autonomes.
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