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PURPOSE OF ADDITIVE-TREE REPRESENTATIONS

Additive-trees are used to represent objects as “leaves” on a tree,
so that the distance on the tree between two leaves reflects the sim-
ilarity between the objects. Formally, an observed similarity § is
represented by a tree-distance d. As such, additive-trees belong to
the descriptive multivariate statistic tradition. Additive-tree repre-
sentations useful in a wide variety of domains as illustrated by the
following three examples of (1) filliation of manuscripts, (2) psycho-
logical similarity between animal terms, and (3) phylogenetic trees.
These examples are briefly described in the next subsections.

Filiation of Manuscripts (Buneman, 1971)

This application was suggested (but not actually performed) by
Buneman (1971) in a seminal paper that laid the foundations for
additive-tree representations. Here, the objects to be represented
were manuscript copies of the same text (e.g., as in the medieval
tradition).

The problem is to infer from the set of texts the “family tree”
that generated the variants (i.e., which manuscript is copied from
which other one; are there lost copies? etc.). The similarity between
texts can be defined for example as the number of “common errors”,
or more simply as the number of common words.
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Sue Viscuso and Alice O’Toole for help and comments on previous drafts.
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Examples of filiation data are given in the volume edited by
Hodson, Kendall & Tartu (1971) in which the Buneman paper has
been published. Another example of this line of investigations can
be found in Abdi (1985, 1989b).

Psychological similarity between animal terms

Henley (1969) conducted several experiments on semantic memory
structure. She obtained from 21 subjects an estimation of the “sub-
jective distance” between 12 animal terms. Subjects were asked to
list from memory the animal names they knew.

For each animal pair the number of animals separating the pair
was divided by the list length. For example, suppose that the “cow-
mouse” pair was separated by 7 animals, and that the total number
of animals given was 20, then the value attached to the pair “cow-
mouse” will be 7/20=.35. This procedure was repeated for each
subject. Then, the value for each pair was collapsed across subjects
to obtain the average similarity. Abdi, Barthélemy & Luong (1984)
used a tree (percentage of explained variance: 73) to represent this
data matrix. The tree is displayed in Figure 1.

Phylogenetic trees

The literature concerning phylogenetic trees is very large; some in-
fluencial papers are Phipps (1971), Farris (1973), Waterman, Smith,
Singh & Beyer (1977).

Biologists have often tried to describe the relation between con-
temporary species. The similarity between species is defined, for
example, as the number of identical sequences for some protein or
for the DNA, etc. The leaves represent the actual species, and (as
in the filiation problem of Buneman) the interior vertices can be
interpreted as “missing links” or common ancestors.

In general, biologists focus their interest more on the shape of
the tree rather than on the distance between vertices of the tree,
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because it is more important in this context to assess the existence
of common ancestors for some species rather than to suggest when
the separation of the species did occur.

An example of phylogenetic tree is given in Figure 2 (cf. Dress
& Kriiger, 1987). Because different similarity measures can suggest
different patterns of evolution one problem faced by biologists is
to compare different trees obtained from a same set of objects. A
related problem is to define a tree that expresses the consensus among
different trees (cf. Bobisud & Bobisud; Robinson, 1971; Robinson &
Fould, 1981).

Mouse

F1G. 1: Additive-tree representation of Henley’s data (1969), from Abdi
et al (1984)
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F1G. 2: A phylogenetic tree from Dress & Kriiger (1987)

BASIC TREE-NOTIONS

Recall that distances between pairs is a function d that associates a
positive real value to each pair of a given set, satisfying the following
conditions:

di; >0
dii =0
dij =dj;

dij < dir + d; (triangle inequality).
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Four-points condition

A distance is a tree distance (i.e., derived from a tree), if and only

if the so called four points condition is satisfied. This condition
expresses that four points on a tree can always be labeled z,y, 2, t
such that:

dw,y + dz,t < (dw,z + dy,t) = (dw,t + dy,Z) .

This condition has been discovered by several authors in different
contexts (Zarestkii, 1965; Buneman, 1971; Patrinos & Hakimi, 1972;
Dobson, 1974; etc.).

Note: the four-points condition clearly implies the triangle inequal-
ity. Intuitively, it seems clear that the four-points condition in turn
is implied by the ultrametric inequality (for a proof, see Dobson,
1974). The ultrametric inequality is expressed as:

dyy S max{dy,;,d.y} Vz,9,2.

Thus, ultrametric trees represent a particular case of additive trees.

Strict and weak score, split and H-relations

The four-points condition can be expressed as a relation between
pairs of vertices. An essential tool for understanding trees is the
notion of score of a pair of vertices. When d is a tree-distance, then
all 4-vertices can be labelled z,y, z, ¢ such that either (a) or (b) hold:

(a) (dw,y + dz,t) < (dw,t + dy,Z) = (dw,z + dy,t)
(b) (dz,y + dz,t) = (dw,t + dy,Z) = (dw,z + dy,t)

Following Colonius & Schulze (1981), condition (a) is denoted zyH*zt
and condition (a) or (b) is denoted zyH2t. An illustration of the con-
ditions (and of their names is given in Figure 3)
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(a) (b)

FI1G 3: the two configurations of 4 points on a tree,
the H* and the H relations

The H-relation can be expressed in different ways. When xyH*zt,
the pair (z,y) is said to be split from the pair (z,t) (Buneman, 1971).
In terms of tree structure, this means that by deleting one edge of the
tree, two non-connected sub-trees are created. One tree contains the
vertices z,y, the other one contains the vertices z,t. For example, if
in Figure 3.a the internal edge is deleted, two trees will be created,
the first one made of z,y, the second one made of z,t. These con-
ditions can also be expressed in terms of a quaternary relation (i.e.,
a binary relation between pairs). Following Buneman (1971) and
(Dobson, 1974), Colonius & Schulze (1981) developed this idea and
characterized tree-distances from the (non-numerical) properties of
the #* relation as follow: for all z,y, z,t

i. xyM*tz implies tzH*zy and yaH*tz .

6. xyH*tz implies neither zyH*ty nor tzH*yz hold .
#ii. zyM*tz implies either zyH*vz or vaH*tz or both .
iv. zyH*tz and zyH*tv implies zyH*vz .

Actually, iv is implied by 4, 44, and 7i7 (Bandelt & Dress, 1986; see
also Barthélemy & Luong, 1987).
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The strict score of the pair (x,y) is the number of pairs (¢, 2)
such that zyH*tz. The loose score of the pair (x,y) is the number
of pairs (¢, z) such that xyHtz.

When d is a tree-distance, the tree structure can be recovered
from the score matrix (cf. Buneman, 1971; Colonius & Schulze, 1981;
Bandelt & Dress, 1986). This fundamental relation can be expressed
in topological terms (i.e., in terms of “neighborness” or “neighborli-
ness”, cf. Bandelt & Dress, 1986; Barthélemy & Luong, 1987). In a
sense, tyH*tz expresses simultaneously that x and y are neighbors
and that x,y are separated from z,t. In other words, x and y are
farther from z and ¢ than they are from each other. This notion
is generalized by Barthélemy & Luong (1987) and by Barthélemy
& Guénoche (1987). From that notion, Eastbrook, McMorris &
Meacham (1985) and Day (1985) derive some indices used to com-
pare trees, although some problems may occur when this neighboring
relation is used within this framework (McMorris, 1985).

HISTORICAL SKETCH

Interest in additive-tree representations originated in several fields
such as operational research and computer sciences, biology and psy-
chology. The contribution of these fields is detailed in the following
sections.

Operational research and computer sciences

Perhaps the first proof of the four-points condition is to be attributed
to Zarestkii (1965). The condition is proved for a tree with a uni-
tary valuation (i.e., all the edges have the same length). Smolenski
(1963) proved the unicity of the tree associated with (unitary) tree-
distance. However, because these papers were published in eastern
journals, they were not widely known or accessible. Actually, the
paper by Zarestkii, written in Russian, was known wvia a review of
graph theory in the USSR (Turner & Kautz, 1970). Within this tra-
dition, Boesch (1968), Simdes-Pereira (1969) and later Patrinos &
Hakimi (1972) characterized the tree-distance and, in the latter ref-
erence, characterized the four-points condition for the general case
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(i.e., “non-unitary”). These authors, incidently, did not mention
Buneman (1971) but referred to Zarestkii (1965) and Simdes-Pereira
(1969), who in turn were not mentioned by Buneman (1971). In
the meantime, tree-metrics have made their way into mathematics
proper (cf. Dress, 1984; and the literature quoted there).

Biology

Buneman (1971) in his classic paper recalled that some authors
(biologists, although not mentionned explicitly as such) have previ-
ously dealt with problems similar to the manuscript filiation problem.
Specifically, he referred to work on phylogenetic trees and signaled
that Cavalli-Forza & Edwards (1967) and Ecks & Dayhoff (1966) had
described methods for finding an approximation of dissimilarity data
by a tree distance. Fruitful research is still conducted in this field
(cf. among others, Waterman, Smith, Singh & Beyer, 1978; Fitch,
1981; Meacham, 1987; Peacock, 1981).

As mentioned previously, a main problem in Biology is to in-
tegrate the results of different analyses. That is, to compare ei-
ther different tree distances, or different trees obtained for one set of
objects with different measures, methods or (dis)similarity indices.
This problem led Phipps (1971) and Farris (1973) to define the tree-
distance when the valuation of the edges is unitary (cf. previous
section on Zarestkii). The problem of consensus between different
trees, and the definition of a distance between trees is explicitly dealt
with by Bobisud & Bobisud (1972). This tradition has been carried
on by different authors (Robinson, 1971; Dobson, 1975; Robinson
& Foulds, 1981). Currently, the problem of defining a consensus be-
tween trees remains open as different approaches can be proposed (cf.
Day, 1985; Estbrook el al., 1985; McMorris, 1985; Dress & Kriiger,
1987).

The comparison of the approach taken in Biology with the ap-
proach taken in Psychology emphasizes the rdéle of the field of appli-
cation in the theoretical developments. That is, for biologists, the
shape of the tree is of prime importance, while for psychologists the
tree distance between leaves is the main concern (cf. the section
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on tree analysis as regression). As a consequence of this difference
of emphasis, the very idea of goodness of fit differs among pratic-
tioners. To caricature, for biologists a good tree recovers the shape
of a possible “original tree,” whereas for psychologists, a good tree
preserves the original dissimilarity. Thus biologists favor measure of
fit expressed in terms of quaternary relations (e.g., number of vio-
lations of the “natural” H-relation by the tree). Psychologists, on
the other hand, prefer measures like stress (due to the nonmetric
multidimensional scaling tradition), or more adequately, the part of
the variance of the original dissimilarity explained by the tree model
(i-e., the squared correlation coefficient between the original distance
and the tree-distance approximation). Hence, the notion of goodness
of fit is far from universal in the tree world!

The idea of emphasizing a topological point of view in inter-
preting a tree is clearly akin to the biological point of view. However
this idea was first proposed by mathematical psychologists Colonius
& Schultz (1981) who placed themselves in the measurement theory
tradition. This perspective has been expanded recently by Bandelt
& Dress (1986) and Barthélemy & Luong (1987).

Psychology

In the psychological tradition, besides Buneman (1971), two papers
(Carrol & Chang, 1973; Cunningham, 1974) have had a strong in-
fluence. As an oddity* these papers were actually “underground”
papers. Precisely, they were given as talks in scientific meetings and
never circulated (stricly speaking) as papers. However, these two pa-
pers aroused the interest of mathematical psychologists. Eventually,
one of these papers was published as part of a broad paper that also
explored “directed trees” (Cunningham, 1978).

Almost from the beginning of the interest for additive trees
within psychology, two traditions were created.

The first tradition, following Carrol & Chang, 1973, comes from
the “scaling” or psychometric tradition and considers a tree as a

*that would probably please people at the institute for scientific information.



10 HERVE ABDI

more or less pratical graphical representation of (dis)similarity data.
Consequently, the additive tree representations are contrasted with
the more usual maps derived by nonmetric multidimensional scaling
(cf. the review of Shepard, 1974, 1980; Carrol & Arabie, 1980). Here,
the main problem is to decide when to favor tree representations over
euclidean maps. Different criteria have been proposed, but stress or
percentage of explained variance (i.e., square correlation between the
original dissimilarity and the tree distance) are generally prefered.
Pruzansky, Tversky & Carroll (1982) offer some guidelines that can
help to decide, based on data properties (i.e., dispersion, skweness,
proportion of elongated triangles, etc.), which representation is more
appropriate for a given set of data. The main result of these investi-
gations is that, on the whole, euclidean distance data show positive
skewness, and tree distance data show negative skewness.

The second tradition is linked to cognitive psychology, specifi-
cally to work in semantic memory organization. Precisely, the empir-
ical work of Rosch initiated this work (for reviews, see, for example,
Rosch, 1975, 1983; Abdi, 1986a). Tversky (1977, Tversky & Gati,
1977) proposed a formalization of the notion of “psychological simi-
larity” in parallel with his work on additive tree fitting with Sattah
(Sattah & Tversky, 1977).

The theory was designed to give an account of several empirical
observations, including the typicality effect. This term is used by
psychologists to express that some members of a natural category
are more representative of that category than are some of the other
members. The classic example is that for the category “bird”, canary
is a better representative of the category than is penguin. As such,
class elements are not equivalent and are often more or less repre-
sentative of their category. Clearly, the standard ultrametric tree
representation forces objects to be equivalent (i.e., in an ultrametric
tree, all the elements of a class are at the same distance from the
center of the class). As such these trees do not adequately represent
data that have a gradient of representativity. The additive tree, with
its different edges of varying lengths, seems more appropriate. Tver-
sky (1977) went further than simply advocating tree representations
as a tool. He showed that the additive tree distance is a particular
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case of a more general model of similarity named the contrast model.
This theme is expanded further in this paper in the section on tree
interpretation.

In fact, semantic memory has been a fruitful source of inspira-
tion for psychologists. For example, Schulze & Colonius (1979) and
Colonius & Schulze (1981) were originally interested in the explo-
ration of the semantic meaning of verbs. To do so, they used directly
the quaternary H-relation and asked subjects to group quadruplets
of verbs in pairs (cf. the IVb quadrant of Coombs’s theory of data,
1964). This task gave the impetus for their later characterization of
the tree distance in terms of the H-relation.

ALGORITHMS FOR ADDITIVE TREE APPROXIMA-
TION

The algorithms for tree approximation can be roughly divided in
two large families.

Algorithms of the first family proceed by estimating the tree
structure, and then adjusting for the length of the edges in order to
fit the “original distance”. The structure of the tree is determined, in
general, using the score matrix (e.g., Sattah & Tversky, 1977). The
score matrix can be recomputed after each iteration (as in Sattah
& Tversky), or approximated (for example by using a “quasi single
link” method on the score matrix as in Abdi et al, 1984; Barthélemy
& Luong, 1985; Abdi, Guénoche & Luong, 1988; Abdi, 1989). The
edge length can be evaluated either by the least squares method or
by diverse geometrical means.

The algorithms of the second family (Cunningham, 1978; Car-
rol & Pruzansky, 1980; De Soete, 1980; Roux, 1986; Brossier, 1987)
proceed by trying to find a best tree distance (in some pre-defined
sense) approximating the original distance or dissimilarity and then
by constructing the tree associated with the tree distance. This sec-
ond step is indeed straightforward, but the first is strongly dependent
on the criterion choosen to evaluate “best approximation”. Cun-
nigham (1978) and De Soete (1980) use a least squares criterion. Al-
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ternatively, Roux (1986) minimizes the number of quadruplets that
disagree with condition (a) of section II. Following suggestions from
Carroll (1976), several authors [Carroll & Pruzansky (1980), Carroll,
Clark & DeSarbo (1985), Brossier (1986), Brossier & Calvé, 1986)]
use the property that an additive tree distance is decomposable into
the sum of an ultrametric distance and a distance to center (i.e., a
“star distance”). These authors estimate separately the two com-
ponents, and reconstitute the tree distance by the sum of its two
components.

A detailed description of tree approximation algorithms can be
found in Luong (1987), along with comparisons relative to complex-
ity, accuracy, etc. Some comparisons on small data sets (n = 7) can
be found in Guénoche (1987). Finally, a general framework is given
in Barthélemy & Guénoche (1988).

HOW TO ANALYZE A TREE THE “TVERSKY WAY*”

Tversky (1977) developed a general approach to similarity called the
contrast model. Each stimulus (say, a,b,...) is associated with a set
of features (denoted A, B,...). The similarity from a to b is defined
as a function of the three sets: AN B, A/B and B/A.

In sum:
s(a,b) = F(ANB, A/B, B/A).

If some additional conditions are imposed (namely: monotonicity,
independence, along with the two “technical conditions” of solvabil-
ity and invariance!), then the similarity between a and b can be
expressed as:

S(a,b) = af(ANB) = f(A/B) —~f(B/A)

where f is an isotonic function (or an interval scale function, cf.
Krantz et al., 1971) and «, 83, v are positive constants.

* This section and the following are adapted from Abdi, 1986b.

JrActua,lly, it is possible to derive the contrast model from a slightly different set
of axioms, as shown by Osherson (1987).
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Moreover, when 3 =+, and f is additive [i.e., f(AUB = f(4)+
f(B)—f(ANB)], then there exists a measure g such that (cf. Sattath,
1976):

S(a,b) = A —g(A/B) —g(B/A) = A — g(AAB)

with A a positive constant, and AAB being the set symmetric dif-
ference between A and B (i.e., the number of features that belong
to either a or b but not to both). Now, if the features follow a tree
model (that is if three stimuli can always be named a, b, ¢ with
ANB = AnNC c BnC(), this property allows a very convenient
tree representation of the similarities. If the stimuli are leaves on the
tree, and the edges are appropriatly valued, then the tree distance
from a to b will be

d(a,b) = g(A/B) + g(B/A) = g(AAB).

This is equivalent to defining the distance in terms of distinctive
features.

This expression of the distance on the tree in terms of distinctive
features can be used to estimate the features composing the stimuli.
To see how this is done, it is convenient to introduce three notions:

e the median of a tree.

e the eccentricity of a vertex (eccentricity is to be taken here as
“distance from a center” according to its etymology).

o the intersection vertex of two vertices.

The median of a tree is the vertex that minimizes the sum of
the distances to the set of the vertices. The eccentricity of vertex a,
denoted e(a) is defined as the distance from a to the median of the
tree. The intersection vertex of vertices a and b is the vertex with
minimal eccentricity situated on the path from a to b. The reason for
this naming will become obvious later on. Call a, b two vertices and
z their intersection vertex, then the set components of the contrast
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model are obtained by:

9(A/B)
(B/A)=db,z (b) e()
g(AN B) = e(x)

) =9(

Note, incidentally, that e(a
overall saliency of stimlus a

A) can be seen as a measure of the

Thus, the additive tree representation can be used as a tool to
recover a posteriori the features (and their weights) composing a
set of stimuli from a distance matrix. In particular, a tree can give
the number of distinctive features common to every pair of stimuli,
and decompose each stimulus into (weighted) features so that the
distance on the tree between stimuli is computed simply as a distance
between (weighted) features. To do so, it is sufficient to use the “city-
block distance”, which can be interpreted as a generalization of the
symmetric difference distance (for more details see Abdi, 1985). In
this sense, a tree can be seen as a regression model, or a factorial
method. All these notions, hopefully will be made clear by a example.

GOOD GUYS AND BAD GUYS: A TREE ANALYSIS

In a recent paper, Goldstein, Chance & Gilbert (1984) made a new
contribution to the topic of “implicit physiognomy”. Implicit phys-
iognomy means that observers agree among themselves and find it
meaningful to attribute personality traits, intentions, occupations,
etc. merely by looking at a face or a photograph of a face. In the
Goldstein et al study, subjects were presented with five arrays each
composed of 20 photographs of white middle-aged men taken from a
casting directory, and asked to find among the 20 portraits of each ar-
ray three bad guys (mass murderer, armed robber, rapist) and three
good guys (medical doctor, clergyman, engineer). The data were an-
alyzed via 30 chi-square tests (one for each of the six “occupations”
of the 5 arrays). Because 27 of these 30 tests were statistically sig-
nificant at the .05 level, it was concluded that there was indeed a
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clear consensual agreement among the subjects. As an illustration,
Goldstein et al gave a contingency table corresponding to the results
obtained from 58 subjects with the third array they used (i.e., they
gave the number of subjects that assigned a given occupation to each
portrait from array #3). These results are summarized below. Only
the analysis on the occupations is reported here. The analysis pro-
ceeds in two steps. First a distance matrix between occupations will
be computed. Second, a tree will be computed to fit these data.

portraits

>
5]
Q
v
=
!
Q
o
~
<
=
&
S
2
Q
N
Q
)

Mass Murderer 1
Armed Robber
Rapist

Medical Doctor
Clergyman
Engineer

—

cooutw—
=N O
—GCio— O W
coo~NAN
— R OO
W RO Ao
=
conc oo
cCOo W
—NO KON
=
coocxmo ™
N = !
Ul = 00 O = =
WO~
BON— RO
comhocoO
TN N 00 W
oS uioc o
N =N =GO

TABLE 1: Association between 20 faces and 6 “occupations”. At the in-
tersection between one row and one column, the number of subjects that selected
the occupation for the face is given (data from Goldstein et al., 1984).

Distance matrix between occupations

The strong connection between the tree distance and the city block
metric justifies using the city block metric to compute distance be-
tween occupations. Precisely, if k; ; denotes the number of subjects
that assigned face ¢ to occupation j, then the distance between two
occupations j and j' is computed by:

djjo = |kij — kil
i

Doctor FEngineer Clergyman Murderer Robber Rapist

Doctor 0 34 46 90 84 96
Engineer 0 44 98 80 86
Clergyman 0 86 88 98
Murderer 0 44 70
Robber 0 58
Rapist 0

TABLE 2: City block distance computed from Table 1

o)
N

BwhoNO

OO =
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Doctor Engineer Clergyman Murderer Robber Rapist

Doctor 0 34.00
Engineer 0
Clergyman

Murderer

Robber

Rapist

91.25 82.75 94.00
89.25 80.75 92.00
93.25 84.75 96.00

0 44.00 68.00
0 59.75
0

TABLE 3: Tree distance approximation of distance of Table 2

Table 2 gives the city block distance matrix, Table 3 gives the
tree distance matrix, and Figure 4 displays the tree. The squared
correlation coefficient between the original matrix and the tree dis-
tance matrix is .972. It is denoted by the letter 7, and is taken as an
index of goodness of fit. Its value indicates a fairly good fit between

the data and a tree-model.

Name of the features

Occupations

Doctor Engineer Clergyman Murderer Robber Rapist

Doctor 18.00
Engineer

Clergyman

Murderer

Robber

Rapist

Engi. & Doct. 4.00
Engi. € Doct. & Cler. 18.25
Murd. € Robb.

Murd. € Robb. € Rapi.

Sum=eccentricity 40.25

24.00
26.25
17.75
35.50

18.25
6.50 6.50
18.25 18.25 18.25

42.25 51.00 42.50 53.75

TABLE 4: Tree reconstitution of the specific and common features
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F1G. 4: Additive tree of the occupation distance matrix from Table 2.

The number near each vertex is the eccentricity of the vertex.

Doctor FEngineer Clergyman Murderer Robber Rapist

Doctor - 22.25 18.25 0 0 0
Engineer 22.25 - 18.25 0 0 0
Clergyman 18.25 18.25 - 0 0 0
Murderer 0 0 0 - 2475 18.25
Robber 0 0 0 24.75 - 18.25
Rapist 0 0 0 18.25 18.25 -

TABLE 5: Tree reconstitution of the common features

Sum
40.50
40.50
86.50
43.00
43.00
86.50

The tree shows that the subjects clearly separated the “bad
guys” from the “good guys”. Moreover, the stereotypes of the good
guys are less differentiated than the stereotypes of the bad guys. In
particular, the rapist is the most stereotyped occupation, while the
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engineer is the least stereotyped. These conclusions are supported by
table 5 where the eccentricity of the occupations is decomposed into
specific and common weighted features. Thus, the tree analysis can
be seen as a variety of the classical factorial analysis. As pointed out
previously, this “canonical weighted features matrix” is equivalent
to the tree-distance matrix when the computed distance is the city
block. Note that the features are labelled in agreement with the
contrast model interpretation of the tree.

WHEN TO USE A TREE? DIRECTIONS FOR USE....

Perhaps due to some halo effect, it is sometimes thought that the
prescriptions for additive tree representation parallel those for non-
metric multidimensional scaling. It should be emphasized that ad-
ditive tree are meaningful only for data that are invariant by lin-
ear transformation (i.e., interval scale measurement, cf. Suppes &
Zinnes, 1963; Roberts, 1979). By contrast, nonmetric dimensional
scaling deals with data matrices that are supposed to be invariant
by monotonic transformation. An equivalent way of expressing this
condition with the measurement theory vocabulary is that the data
are supposed to be measured on an ordinal scale.

An example from De Soete (1983) clearly confirms that additive
trees are non meaningful for data measured on a ordinal scale. The
two dissimilarity matrices a and b from Table 6 are equivalent for
the set of monotonic transformations (b is obtained by changing in
a, 3 to 6, and 9 to 10):

T Yy z t T y z t
z 0 3 7 8 z 0 6 7 8
y 08 9 y 0 8 10
z 0 11 z 0 11

(a) (b)

TABLE 6: two dissimilarity matrices obtained by a monotonic transformation.
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F1G. 5: Additive tree representation of matrix (a) and (b) from Table 6.

Unfortunately, as shown in Figure 5, the trees obtained from
these two matrices are topologically different, which means that tree
representations are not invariant for monotonic transformations. As
a consequence, the application domain of additive trees is much more
restricted than the domain of multidimensional scaling. Actually, it
can be shown that additive tree representations are meaningful only
for an interval scale measurement (i.e., additive-tree representations
are invariant for the set of linear transformations, see Brossier, 1985;
or Barthélemy & Guénoche, 1985).

CONCLUSION

Although this introduction to additive tree representations is an in-
complete one, hopefully the presentation of examples were sufficient
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to enable the reader see the forest for the tree. The reference section
serves as a guide for readers interesting in learning more about the
topic. Some recent developments should also be alluded to here. In
particular, the trees described in this paper were built from complete
2-way square matrices. But trees can also be computed from rect-
angular matrices (Furnas, 1980; Brossier, 1986), three ways matrices
(Carrol, Clark, DeSarbo, 1984) or incomplete matrices (De Soete,
1984). An other line of research has been pioneered by Corter &
Tversky (1987), who tried to relax the tree constraint in order to
represent proximity data by an extended tree. These extended trees
generalize traditional trees by including marked segments that cor-
respond to overlapping clusters. Closely related to this approach is
the notion of weak hiereachies recently proposed by Bandelt & Dress
(1988).

Hence trees are still growing and bearing diverse fruits.
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