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a b s t r a c t 

Healthy aging is accompanied by reduced cognitive control and widespread alterations in the underlying 

brain networks; but the extent to which large-scale functional networks in older age show reduced speci- 

ficity across different domains of cognitive control is unclear. Here we use cov-STATIS (a multi-table mul- 

tivariate technique) to examine similarity of functional connectivity during different domains of cognitive 

control—inhibition, initiation, shifting, and working memory—across the adult lifespan. We report two 

major findings: (1) Functional connectivity patterns during initiation, inhibition, and shifting were more 

similar in older ages, particularly for control and default networks, a pattern consistent with dedifferen- 

tiation of the neural correlates associated with cognitive control; and (2) Networks exhibited age-related 

reconfiguration such that frontal, default, and dorsal attention networks were more integrated whereas 

sub-networks of somato-motor system were more segregated in older age. Together these findings of- 

fer new evidence for dedifferentiation and reconfiguration of functional connectivity underlying different 

aspects of cognitive control in normal aging. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Normal aging is characterized by reductions in cognitive con-

trol processes that coordinate and oversee the flexible allocation

of mental resources during goal-directed behavior ( Baltes and Lin-

denberger, 1997 ; Park et al., 2002 ; Salthouse et al., 2003 ). Cogni-

tive control is generally conceptualized as a superordinate process

comprised of correlated, yet distinct, sub-domains ( Miyake et al.,

20 0 0 ; Miyake and Friedman, 2012 ) including: inhibition, initia-

tion (or response selection), shifting (or flexibility), and working

memory (or updating; Lenartowicz et al., 2010 ; Sabb et al., 2008 ).

Functional neuroimaging studies confirm the behavioral evidence

for multiple sub-domains of cognitive control and reveal a ro-

bust fronto-parietal network that subserves many different tasks

of cognitive control ( Niendam et al., 2012 ). Further work examin-

ing the functional specificity of different cognitive control domains

within the same participant reports unique and separate func-

tional activity patterns associated with the different sub-domains

of inhibition, shifting, and working memory ( Derrfuss et al., 2004 ;
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Lemire-Rodger et al., 2019 ; McNab et al., 2008 ; Rieck et al., 2021 ;

Sylvester et al., 2003 ). Researchers have proposed that age-related

reductions in cognition might be accounted for by alterations in

underlying brain function including a loss of specialized cogni-

tive processing (termed dedifferentiation; Grady, 2012 ; Park and

Reuter-Lorenz, 2009 ). However, the extent to which dedifferenti-

ation extends to cognitive control and its individual sub-domains

is still unclear. 

Dedifferentiation in aging has been examined at both the

behavioral ( Baltes et al., 1980 ) and brain levels ( Koen and

Rugg, 2019 ). Behavioral dedifferentiation is characterized by

greater shared variance in task performance across different cog-

nitive domains, although a recent meta-analysis indicates that pre-

viously reported age effects of behavioral dedifferentiation may

not be reliable when examined in a cross-sectional framework

(termed "static dedifferentiation"; Tucker-Drob et al., 2019 ). In-

deed, prior work examining the factor structure of cognitive con-

trol sub-domains in older adults reveals mixed findings. For ex-

ample, Hedden and Yoon (2006) reported that the domains of

shifting and working memory were not distinct from one another,

whereas Hull and colleagues (2008) found robust shifting and

working memory factors but failed to find a separate inhibition

domain. Although Tucker-Drob and colleagues (2019) did not find

https://doi.org/10.1016/j.neurobiolaging.2021.03.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
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Table 1 

Sample demographics 

Age Range N (N Female) Mean Age Years Education MMSE 

20-31 39 (22) 25.74 (3.85) 16.85 (2.81) 29.13(0.98) 

32-48 34 (20) 40.00 (4.44) 17.12 (2.36) 29.32(0.84) 

49-65 38 (25) 58.03 (4.64) 17.24 (3.78) 28.87(0.91) 

66-86 33 (20) 74.03 (5.56) 16.11 (2.58) 28.67(0.99) 

Note . Mean (standard deviation);Data were analyzed with age as a continuous vari- 

able; however, participants were split into age groups (via a quartile split) for vi- 

sualization of some results; 

Key: MMSE, Mini Mental Status Exam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

meta-analytic support for “static dedifferentiation”, they did find

evidence for increased coupling of cognitive domains when exam-

ining longitudinal cognitive changes within an individual (i.e., “dy-

namic dedifferentiation”). Similarly, one longitudinal assessment

of cognitive control sub-domains found that cognitively-elite older

adults’ performance fit a multi-factor model (with inhibition, shift-

ing, and working memory having unique contributions) whereas

cognitively-impaired older adults’ performance fit a one-factor

general model of cognitive control, a pattern of results provid-

ing evidence that dynamic behavioral dedifferentiation of cognitive

control domains (i.e., shifting from multi- to uni-dimensional rep-

resentations) is linked to cognitive decline ( de Frias et al., 2009 ).

Given the evidence that behavioral dedifferentiation may be best

examined within a longitudinal framework, we therefore chose to

focus on brain dedifferentiation (which has considerable support;

Koen and Rugg, 2019 ) within our cross-sectional study. 

At the brain level, age-related dedifferentiation can manifest

as neural representations showing more similar patterns of ac-

tivation ( Carp et al., 2011 ) or connectivity ( Chan et al., 2014 ),

such that functional signals are less dissociable for different task

states (see Koen and Rugg, 2019 for a review). In particular,

large-scale brain networks show widespread alterations in nor-

mal aging ( Ferreira and Busatto, 2013 ; Sala-Llonch et al., 2015 ).

One consistent finding is that older age is associated with re-

ductions in the specialization and specificity of network con-

nectivity (an effect reflecting a form of brain dedifferentiation;

Goh, 2011 ) that is characterized by decreased connectivity of re-

gions within the same network, often coupled with increased con-

nectivity between regions of different networks ( Betzel et al., 2014 ;

Chan et al., 2014 ; Grady et al., 2016 ). During rest, age-related de-

creases in network specificity are apparent for both default mode

networks that are typically engaged in resting state ( Andrews-

Hanna et al., 2007 ; Geerligs et al., 2015 ; Onoda et al., 2012 ;

Tomasi and Volkow, 2012 ; Zhang et al., 2014 ) and for association

systems involved in higher-order cognition, including the salience

network ( Onoda et al., 2012 ; Zhang et al., 2014 ), dorsal attention

network ( Tomasi and Volkow, 2012 ; Zhang et al., 2014 ), and fronto-

parietal executive (i.e., cognitive control) network ( Campbell et al.,

2012 ; Geerligs et al., 2015 ). 

Although the majority of studies examining functional connec-

tivity in normal aging have focused on functional network char-

acteristics during the resting state, more recent work has started

to explore how aging affects network connectivity when partici-

pants are engaged in effortful cognitive processing, including tasks

that encompass sub-domains of cognitive control. Researchers gen-

erally find that older adults exhibit weaker functional connectivity

within regions of the fronto-parietal control network during task

f MRI including: target detection with interference ( Geerligs et al.,

2014 ), inhibiting a prepotent response ( Tsvetanov et al., 2018 ), local

task switching ( Madden et al., 2010 ), and n-back working memory

tasks ( Burianová et al., 2015 ; Nagel et al., 2010 ; Sambataro et al.,

2010 ). Older adults also exhibit weaker connectivity within the de-

fault mode network during fixation trials of attentional and de-

layed match-to-sample working memory tasks ( Grady et al., 2010 ).

In addition to decreased connectivity within the fronto-parietal

and default networks, there is evidence for increased connectiv-

ity between prefrontal and default regions during working mem-

ory tasks ( Sambataro et al., 2010 ), between prefrontal and motor

regions during inhibitory processing ( Geerligs et al., 2014 ), and be-

tween dorsal attention and fronto-parietal control networks during

a working memory task with interference ( Grady et al., 2016 ). To-

gether these task-based connectivity findings of decreased within-

network connectivity and increased between-network connectivity

mirror resting state data ( Chan et al., 2014 ), an effect suggesting

that network connectivity, particularly for fronto-parietal and de-
fault networks, might become less specialized and dedifferentiated

during tasks of cognitive control. 

The goal of the current study was to extend prior work by

examining functional connectivity profiles associated with multi-

ple domains of cognitive control across the adult lifespan and to

specifically test if large-scale brain connectivity associated with

different sub-domains of cognitive control was less specialized in

older age. We utilized a new application of a multi-table multi-

variate technique called cov-STATIS ( Abdi et al., 2012 ) which can

quantify the similarity (and dissimilarity) of functional connectiv-

ity across multiple cognitive control task conditions for each par-

ticipant. In line with prior behavioral work ( Miyake et al., 20 0 0 ),

we anticipated that younger adults would show distinct functional

connectivity patterns associated with each domain of cognitive

control, particularly for the three core domains of inhibition, shift-

ing, and working memory. We hypothesized that increasing age

would be accompanied by a decrease in the multi-dimensional

representations of each domain, such that functional connectiv-

ity across different control conditions would become more similar

in older age, possibly due to differences in within- and between-

network connectivity for the primary networks involved in cogni-

tive control, such as the fronto-parietal, dorsal attention, salience,

and default networks. 

2. Methods 

2.1. Participants 

A total of 158 adults, ages 20 to 86, were recruited from the

greater Toronto area. Fourteen participants were excluded from all

analyses due to poor (i.e., below chance) performance on the f MRI

tasks, resulting in a final sample of 144 for the current study.

Specifically, the numbers excluded for each task were as follows: 4

go/no-go, 1 task switch, 8 n-back, 1 n-back and task switch. Partici-

pants were screened to be healthy (i.e., free from any major psychi-

atric, or neurological conditions; no history of head trauma), cogni-

tively normal (MMSE > 26), right-handed, fluent English speakers,

with normal or corrected-to-normal vision (at least 20/30) and if

necessary, vision was corrected using MRI-compatible lenses dur-

ing scanning. Sample demographics (broken down by a quartile

split) can be found in Table 1 . Participants’ informed consent was

obtained in accordance with protocol approved by the Research

Ethics Board at Baycrest Health Sciences Centre. 

2.2. Cognitive Session 

Participants completed two sessions (cognitive testing and MRI

testing) that were scheduled approximately one week apart. The

cognitive testing session (1.5–2 hours) included the Cognitive Bat-

tery of the NIH Toolbox ( Weintraub et al., 2013 ) in addition to

measures of physical activities and emotional state. For the cur-

rent study, the primary measures of interest were derived from

tasks tapping into cognitive control. In the NIH Toolbox Cogni-
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tive Battery, inhibition was measured with an arrow flanker task.

Shifting was measured with a card sorting task in which partic-

ipants matched images based on either color or shape. Working

memory was measured with a list sorting task in which partic-

ipants had to remember lists of animals and foods and re-order

the items by size. There was no equivalent NIH toolbox task avail-

able for the domain of initiation. For all tasks, we used unadjusted

scores that were normalized and scaled to a population sample

(see Weintraub et al., 2013 for more details on the NIH tasks and

how the normed scores were computed). 

2.3. MRI Session and Acquisition 

All participants were scanned on the same Siemens Trio 3T

magnet at Baycrest Health Sciences Centre. The MRI session (2

hours total) began with a 30-minute mock-scanning session in

which participants practiced each of the three f MRI tasks in a sim-

ulator (i.e., a demagnetized MRI gantry). Afterwards, participants

underwent a 1.5-hour MRI scan that included: (1) T2-weighted

FLAIR, (2) 10-minute blood-oxygen-level-dependent (BOLD) resting

state, (3) T1-weighted anatomical imaging, (4) three BOLD f MRI

tasks (details below), (5) diffusion weighted imaging, and (6) if

time permitted, arterial spin labeling. Each of the three BOLD f MRI

tasks measured a different domain of cognitive control and there-

fore were of primary interest for the current study. The order of

the three tasks was randomized across participants. 

High resolution anatomical scans (used for co-registration with

functional images and warping to a standardized space) were ac-

quired with a T1-weighted MP-RAGE sequence in which 160 axial

slices were collected with the following parameters: TR = 20 0 0ms,

TE = 2.63ms, FOV = 256mm; 192 × 256 × 160 acquisition matrix;

1 mm 

3 isotropic voxel. BOLD f MRI data were collected using an

echo-planar imaging sequence with 40 axial slices acquired paral-

lel to the anterior-posterior commissure with the following param-

eters: TR = 2 0 0 0ms, TE = 27ms, Flip Angle = 70 °; FOV = 192mm,

64 × 64 × 40 acquisition matrix; 3mm 

3 isotropic voxels (with .5

mm gap). A total of 216 volumes were collected for the go/no-go

task; 223 volumes collected for task switching; and 266 volumes

collected for the n-back task. 

2.4. fMRI Cognitive Control Task Design 

In-scanner, participants completed one run each of three tasks

designed to look at different domains of cognitive control. For

all tasks, stimuli were letters presented in the middle of a dark

gray background, and participants made their responses on an MR-

compatible button box using the index and middle fingers of their

right hand (corresponding finger response was randomized and

counterbalanced across participants). 

2.4.1. Go/No-Go 

To measure inhibition, a go/no-go paradigm was used in which

participants were presented with a series of letters and told to re-

spond (i.e., “go”) when they saw the letter “X” and not respond

(i.e., “no-go”) for all other letters (Supplemental Figure 1A). Let-

ters were presented for 400 ms with a mean interstimulus interval

of 1200 ms (jittered between 900 and 1500 ms) during which a

fixation cross was presented. The task was separated into an “inhi-

bition” block in which there were more go trials than no-go trials

(120 go, 40 no-go) and a shorter “initiation” block in which there

were more no-go trials than go trials (20 go, 60 no-go). The order

of these two blocks was randomized across participants. In total,

the go/no-go task lasted 6 minutes 26 seconds. The primary be-

havioral measure from this task was a measure of speed-accuracy

trade-off (referred to as the “skill index;” see Seli, 2016 ) computed
as accuracy of no-go responses divided by the median response

time to go responses. 

2.4.2. Task Switch 

To measure shifting, a local-switching paradigm was used

in which participants saw a letter in the center of the screen

and one of two cues above the letter to categorize the letter

as either uppercase/lowercase or consonant/vowel (Supplemen-

tal Figure 1B). The cues and letters were also presented in two

different colors (e.g., blue and green) to differentiate between

the two kinds of judgments and facilitate performance. There

were 60 total trials (50% uppercase/lowercase judgments; 50%

vowel/consonant judgements) organized such that half the trials

involved switching between judgments (i.e., vowel/consonant then

uppercase/lowercase) and half of trials repeated the same judg-

ment (i.e., vowel/consonant then vowel/consonant). Letters were

presented for 20 0 0 ms with a mean interstimulus interval of 4500

ms (jittered between 150 0-750 0 ms) during which a fixation cross

was presented. In total, task switch lasted 7 minutes 26 seconds.

The primary behavioral measure from this task was the response

time switch cost, which was computed as the difference in re-

sponse time for trials that required switching versus trials that re-

peated the same letter judgement (with a smaller switch cost re-

flecting better task performance). 

2.4.3. N-Back 

To measure working memory, an n-back paradigm was utilized

with 0-, 1-, and 2-back loads in which participants saw a series

of letters and had to respond if the letter was a “target” or “non-

target” (Supplemental Figure 1C). For 0-back, the targets were “X,”

making the 0-back condition similar to the initiation task (except

in the 0-back, participants responded to every trial). For 1-back,

the targets were letters that matched the previously presented let-

ter. For 2-back, the targets were letters that matched the letter

presented two positions back. The task was organized into three

blocks (one for each load level), the order of which were random-

ized across participants, and each block had 90 total trials (30 tar-

get and 60 non-target). Letters were presented for 500ms with a

mean interstimulus interval of 1200ms (jittered between 900 and

1500ms) during which a fixation cross was presented. The total

time for the n-back task was 8 minutes 52 seconds. The primary

behavioral measure of interest on the n-back task was accuracy for

each working memory load level. 

2.5. fMRI Preprocessing 

Functional data for each task were preprocessed with a mix

of AFNI functions as well as Octave and MatLab scripts using

the Optimizing of Preprocessing Pipelines for NeuroImaging soft-

ware package (an overview and more details of the preprocess-

ing pipeline can be found in Churchill et al., 2017 ). For the cur-

rent study, the following steps were conducted: (1) rigid-body

alignment of the time series to correct for movement via 3dvol-

reg in AFNI; (2) removal and interpolation of outlier volumes us-

ing Octave scripts (see Campbell et al., 2013 ); (3) correction for

physiological noise via 3dretroicor in AFNI; (4) slice timing cor-

rection via 3dTshift in AFNI; (5) spatial smoothing with a 6mm

smoothing kernel via 3dmerge in AFNI; (6) temporal detrending

(see Churchill et al., 2017 ); (7) motion parameter regression (see

Churchill et al., 2017 ); (8) regression of signal in tissue of no inter-

est (white matter, vessels and cerebrospinal fluid); and finally (9)

warping to MNI space and resampling to 4mm 

3 isotropic voxel. 

2.6. Functional Connectivity 

Functional connectivity was computed for each of the three

f MRI tasks using the CONN toolbox ( Whitfield-Gabrieli and Nieto-
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Fig. 1. Cov-STATIS steps . Step 1: Functional connectivity was computed for each task condition with the Schaefer 100 node, 17 network atlas. Step 2: The R V similarity 

coefficient was used to weight individual functional connectivity matrices to create the compromise matrix (Step 3) which represents an optimum weighted average of all 

the individual matrices. Step 4: The compromise matrix was submitted to the eigen decomposition to generate the multivariate connectivity space (Step 5) which illustrates 

the strength of connectivity of network nodes. Step 5: Individual participants (Participant 30 [purple] and Participant 44 [green]) were back-projected onto the multivariate 

space to compute estimates of how much a participant deviates from the mean. Step 6: For each individual participant (diamond), connectivity during each task was 

back-projected (filled squares and connecting dashed lines) to see how similar connectivity patterns were across tasks. The farther points were from the participant center 

(diamond), the more distinct patterns of connectivity were for each task. The area of the convex hull (solid line) around each point was used to compute “differentiation 

scores.” The convex hull illustration on the left is a 71-year-old participant with a low differentiation score (small area), whereas the right is a 28-year-old participant with 

a high differentiation score (large area). Step 7: Low rank functional connectivity matrices were rebuilt from the multivariate space to compute additional network metrics 

such as segregation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Castanon, 2012 ) and applying an atlas with 100 parcels belong-

ing to 17 networks ( Schaefer et al., 2018 ; Thomas Yeo et al., 2011 ;

Fig. 1 , step 1; see Supplemental Figure 2 for a full visualization

of this parcellation). Analyses were also repeated using two ad-

ditional atlases: (1) an iteration of the network coordinates pro-

vided by Power and colleagues (2011) that included 229 5mm

spherical nodes associated with 10 functional networks and (2)

the Schaefer et al., (2018) 200 parcel, 17 network atlas which is

roughly equivalent to the 100 parcel atlas, but with smaller and

more fine-grained parcels (see Rieck et al., submitted ). Findings

that did not replicate for the additional atlases have been indicated

in Results , and those findings that did not replicate for either addi-

tional atlas are not illustrated in the relevant Figure. 

In CONN, task design (i.e., trial information) was regressed out

of the time series, and the BOLD signal in each voxel was con-

verted to a percent signal change value by scaling the whole time

series to the average time series value of that voxel. Percent sig-

nal change values were averaged across voxels within each of the

100 nodes, and the time courses associated with each task con-

dition were correlated to create a 100 × 100 correlation matrix

for each of task condition. For go/no-go, time series correlations

were computed separately for the “inhibition” (i.e., more “go”) and

“initiation” (i.e., more “no-go”) blocks. For task switch, the entire

time series was used to compute the correlation. For n-back, the

connectivity correlations were computed separately for each work-

ing memory load block (0-, 1-, and 2-back). This resulted in six

100 × 100 correlation matrices for each participant representing

the functional connectivity during different aspects of cognitive

control (inhibition, initiation, switching, 0-, 1-, and 2-back work-

ing memory). 

2.7. Statistical Analyses 

In order to examine the similarity of the functional network

connectivity across task conditions (and how network connectiv-

ity differed by participant), we utilized a multivariate multi-table

method of Procrustean analysis ( Gower and Dijksterhuis, 2004 )

called cov-STATIS, a (French) acronym which loosely translates to
“structuring three-way statistical (in our case, correlation) tables”

( Abdi et al., 2012 , 20 09 , 20 07 ; St-Laurent et al., 2011 ; DistatisR

R package, see Beaton et al., 2019 ). Cov-STATIS comprises several

steps (see Fig. 1 ). After computing functional connectivity (step 1),

the similarity structure of all the data tables (i.e., our connectivity

matrices; 780 total matrices, 6 per participant) was analyzed using

the R V similarity coefficient ( Escoufier, 1973 ; step 2) in order to

integrate the data into an optimum weighted average (called the

“compromise” or “consensus;” step 3). R V similarity scores under-

went bootstrap resampling (10 0 0 iterations) in order to determine

differences in the overall similarity of functional connectivity by

age group and task condition. 

Next, the compromise connectivity map was submitted to prin-

cipal components analysis to reveal the components or latent vari-

ables describing the common functional network structure for all

our data (step 4). Points that are closer together represent regions

with relatively stronger connectivity and points further apart in-

dicate regions with weaker connectivity (step 5, colored circles).

From there we projected each of the original data sets (i.e., each

functional connectivity matrix per task condition per participant)

onto the compromise space to determine commonalities or dis-

crepancies in how individuals or task conditions were represented

in reference to the common “compromise” space (step 5 illustrates

two participants’ back projections to each network for one con-

dition). Participants that projected far from a compromise would

indicate a strong deviation from the overall group connectome,

whereas participants that projected closer to the compromise point

show connectivity patterns similar to the overall group structure. 

2.7.1. Task differentiation Scores 

The back-projections of the original connectivity matrices onto

the factor space also allowed us to compute a “task differentia-

tion score” for each functional network by taking into account the

distance of each of the partial factor scores for each task condi-

tion to the network center for a particular participant ( Fig. 1 , step

6). Specifically, for each network, an individual participant’s factor

score (across all task conditions) was computed for Components

1 and 2 which represented that participant’s average network con-
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Table 2 

f MRI task performance correlations 

Initiation (GNG) Shifting (TSW) Working Memory 

Speed-Acc Switch Cost (NBK) Mean Acc 

Inhibition (GNG) 0.80 -0.15 0.29 

Initiation (GNG) -0.16 0.24 

Shifting (TSW) -0.06 

key: GNG, Go/No-Go; NBK, N-Back; TSW, Task Switching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nectivity regardless of task condition (diamonds). Then, the six task

conditions were back-projected for that participant (around their

mean; filled squares), and a convex hull was generated to encom-

pass these six points (solid line). The area of this convex hull was

computed to represent the “task differentiation score” which de-

scribed how similar a participant’s connectivity for a particular

network was across all the six task-conditions—the greater the area

(i.e., the greater the spread of the individual task conditions around

the mean), the less similar or more differentiated the connectivity

patterns. Conversely, a smaller area would indicate that connec-

tivity patterns for a particular network did not differ across task

conditions for that participant (i.e., task de differentiation). Fig. 1 ,

step 6 illustrates the convex hulls for the default mode network

for two representative participants—the participant on the left is a

71-year-old with a low differentiation score (small area), whereas

the participant on the right is a 28-year-old with a high differenti-

ation score (large area). 

2.7.2. Segregation Scores 

Through cov-STATIS we also rebuilt low rank functional connec-

tivity matrices from the latent variables generated in the multi-

variate space ( Fig. 1 , step 7). From these rebuilt connectivity matri-

ces, we computed “segregation scores” for each network which de-

scribes the relative strength of connectivity within a network ver-

sus between networks as (within – between-network connectivity)

/ within-network connectivity (see Chan et al., 2014 ). Segregation

score calculations allowed us to examine network reconfiguration

by identifying those networks that became more integrated (i.e.,

more interconnected with other networks) versus more segregated

(i.e., less connected to other networks) during cognitive control. 

Finally, in-line with prior work examining age-independent ef-

fects of network segregation on cognitive performance ( Chan et al.,

2014 ), we explored how network segregation predicted cognitive

control behavioral measures from the NIH toolbox and f MRI in-

scanner tasks. Specifically, for those networks in which we found

significant age associations, we computed linear models with net-

work segregation, age, and their interaction as predictors to one

of the NIH toolbox or in-scanner task measures of cognitive con-

trol performance. If a significant interaction was found, it was

further decomposed using Johnson-Neyman simple slopes anal-

yses ( Johnson and Fay, 1950 ; Preacher et al., 2006 ) to examine

how age modulated the relationship between functional networks

segregation and cognitive performance. This allowed us to de-

termine when in the lifespan brain-behavior relationships were

most prominent. Due to the exploratory and post-hoc nature of

these brain-behavior analyses, we did not correct for multiple-

comparisons. 

3. Results 

3.1. fMRI Task Behavioral Results 

First, we computed the correlations among the performance

variables derived from each f MRI task across all participants

( Table 2 ) to examine whether performance from each domain was
relatively independent of that from the other domains, as prior

studies have reported ( Miyake et al., 20 0 0 ). In general, the correla-

tions across f MRI task performance were relatively low to moder-

ate (i.e., | r | ≤ 0.3), even after controlling for age or looking within

age group. Inhibition and initiation were the exception, likely be-

cause these two measures were computed in a similar manner (i.e.,

a speed-accuracy trade-off measure) from different blocks of the

go/no-go f MRI task. 

Next, we examined the relationship between performance on

the three f MRI tasks and age. For the go/no-go task, increasing age

was associated with worse speed-accuracy during inhibition ( r = –

0.34, p < 0.001; Supplemental Figure 3A) and initiation ( r = –0.18,

p = 0.033; Supplemental Figure 3B). For task switching, there was

no relationship between age and switch cost ( r = 0.03, p = 0.705),

however, the majority of participants showed a switch cost effect

(values > 0; Supplemental Figure 3C). Accuracy on n-back showed

a main effect of age ( F (1,128) = 6.88, p < 0.001), a main effect

of working memory load ( F (2, 256) = 106.35, p < 0.001), and an

interaction between age and load, such that there were greater

load-related declines in accuracy in older age ( F (2,256) = 4.97, p

< 0.001; Supplemental Figure 3D). 

3.2. R V Similarity Results 

As the first step in cov-STATIS, the R V coefficient was used

to assess similarity among all the functional connectivity matri-

ces (6 task conditions per participant). Bootstrapping these values

produced estimates of how similar overall functional connectiv-

ity patterns (regardless of network) were for each task condition

across age groups (using a quartile split on age). We found that

the youngest adults (ages 20 – 31) showed significantly distinct

connectivity patterns for inhibition, initiation, shifting, and work-

ing memory as evidenced by non-overlapping 95% confidence in-

tervals (CIs; Fig. 2 ). Initiation was also significantly different from

inhibition and shifting but did not differ from working memory, as

expected due to the similarity of the 0-back and initiation tasks.

However, adults over the age of 32 did not show different connec-

tivity patterns for inhibition and shifting (overlapping CIs) meaning

that connectivity for these domains becomes more similar in later

adulthood. Furthermore, initiation and inhibition no longer show

distinct connectivity profiles after age 66. Together these results

illustrate that functional connectivity associated with different do-

mains of cognitive control become more similar at different points

along the lifespan. 

3.3. Compromise Space Results 

The next step in cov-STATIS involves the eigen decomposition of

the compromise matrix (i.e., an optimum weighted average of all

the functional connectivity matrices) in order to identify the mul-

tivariate configuration of the functional networks. A broken-elbow

test of the resulting scree plot (Supplemental Figure 4), identified

the first seven components as contributing the most to the struc-

ture and together explained 38% of variance in the data. However,

for the current study we focus on describing results from the first

two components (9% and 8% variance explained respectively). 

Illustrating Components 1 and 2 on a factor map shows the

common network configuration across all participants and tasks

( Fig. 3 A). Component 1 was characterized by stronger connectivity

in Dorsal Attention, Somato-Motor, and Ventral Attention networks

(left side) compared to Limbic and Default networks (right side).

Component 2 was characterized by greater connectivity in visual

networks (bottom) versus mainly non-sensory networks such as

Default and Control networks (top). The multivariate connectivity

space can also be illustrated with a heatmap ( Fig. 3 B) of the com-
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Fig. 2. R V Similarity by Task Condition and Age Group. R V factor scores represent the degree of similarity between functional connectivity matrices for a particular domain 

and age group. Error bars represent bootstrapped 95% confidence intervals. The youngest age group shows significantly different R V coefficients for the domains of inhibition, 

shifting, and working memory. Inhibition and shifting were no longer significantly different in early middle age (ages 32 - 48), and initiation and inhibition were no longer 

different in late adulthood (ages 66-86) 

Fig. 3. Group-Level Multivariate Connectivity Space . (A) Individual ROIs (dots) projected in the compromise space (and colored by network) show the common network con- 

figuration across all participants. The diamonds illustrate the network averages. Component 1 (9% variance) was characterized by dorsal attention, somato-motor and ventral 

attention regions vs. default and limbic regions. Component 2 (8% variance) was characterized by visual versus non-sensory networks. (B) A heatmap of the compromise 

space rebuilt from components 1 & 2 illustrates the networks with the strongest connectivity (hot colors). (For interpretation of the references to color in this figure legend, 

the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

promise space rebuilt from Components 1 & 2. Complementary to

the factor map ( Fig. 3 A), the heatmap shows stronger connectivity

between Limbic and Default networks, between Somato-Motor and

Dorsal Attention B, and between Visual subnetworks ( Fig. 3 B). 

As illustrated in Step 5 of Fig. 1 , individual participants and task

conditions were projected onto this multivariate connectivity space

(i.e., the compromise) in order to see similarities or discrepancies

in how individuals or groups contributed to the space. First, we

examined how much each age group deviated from the network

mean in order to determine changes in how each age group uti-

lized different networks across the task conditions—the greater the

deviation from the network mean (i.e., distance in the component

space), the greater the unique contribution (see Supplemental Fig-

ure 5 for an illustration of all networks in each of the four age

groups). To note, because these distances are computed at group

level, it is not possible to compute inferential statistics of these

metrics; therefore, these findings serve as an additional descrip-

tive illustration of the multivariate connectivity space when bro-

ken down by age group and task condition. As an example, Fig. 4

illustrates Control A and Default A networks that showed an age
by task condition interaction in how they were engaged. Specifi-

cally, compared to younger age groups, older adults showed a shift

from utilizing prefrontal control to medial default regions during

working memory, and this scaled with working memory load. 

3.4. Network Task Differentiation Scores 

As described above in Statistical Analyses , the individual partic-

ipant by task back-projections into the compromise space allowed

us to compute “task differentiation scores” which were computed

as the area of a convex hull around the partial factor scores for

each task condition to the network center for that participant:

the greater the area of the convex hull, the more distinct (and

less similar) the connectivity profile of that network. When pre-

dicting task differentiation scores from age, we found that pat-

terns of connectivity across all the tasks became less differenti-

ated (i.e., de differentiated) in older age for Control ( β = -0.232,

t (142) = -2.82, p = 0.005), Default ( β = -0.274, t (142) = -3.40,

p < 0.001), Salience/Ventral Attention A (insula, pars opercularis

and medial frontal; β = -0.175, t (142) = - 2.12, p = 0.036), and
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Fig. 4. Control and Default Network Contributions for Age Group by Task Conditions. The mean connectivity for each age group and task condition was back projected onto 

the multivariate space ( Figure 2 , Step 5) to examine how much each task by age group deviated from the mean of the entire sample. A larger distance from the mean 

would indicate that a particular age group or condition exhibited more unique engagement of a particular network. For working memory n-back conditions (green bars), 

younger adults showed increased involvement of Control A, whereas older adults showed increased involvement of Default A. Other networks are visualized in a factor map 

in Supplemental Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temporo-Parietal ( β = -0.169, t (142) = -2.04, p = 0.043) networks 1

( Fig. 5 A). To note, age effects for each of the A, B, and C subnet-

works of Control and Default networks were evident, therefore the

differentiation scores were combined across subnetworks. Further-

more, a quadratic age-trajectory was evident for the Somato-Motor

network ( β = -1.59, t (141) = -3.16, p = 0.002; Fig. 5 B). To bet-

ter understand the shape of this quadratic age effect, we iden-

tified the age of the inflection point from the regression model

and then examined age-differentiation correlations for participants

above and below this age-inflection point. The age trajectory of

dedifferentiation in Somato-Motor networks was characterized by

increased differentiation until age 52 (for ages 20-52, r = 0.27) fol-

lowed by increased dedifferentiation in older ages (for ages 53-86,

r = –0.26). No other networks showed an effect of age on task

differentiation. 

3.5. Network Segregation Scores 

Finally, because cov-STATIS allowed us to build back individual

heatmaps from the multivariate space, we computed a metric of

segregation to assess differences in the strength of functional con-

nectivity within and between networks (see Chan et al., 2014 ). In-

dividual heatmaps were rebuilt from the multivariate space using

the first seven components (accounting for 38% variance, assessed

by the broken stick test)—in this way, the rebuilt matrices repre-

sent the most robust signal in the data, and eliminate potential

noise in components ( Fig. 1 , Step 6). 

With increasing age, several networks became less segregated

(in line with prior work) including: Control (all subnetworks;

β = -0.469, t (142) = -6.34, p < 0.001), Default (all subnet-

works; β = -0.488, t (142) = -6.66, p < 0.001), Somato-Motor

B ( β = -3.22, t (142) = -4.05, p < 0.001) and Salience/Ventral

Attention A ( β = -0.167, t (142) = -2.02, p = 0.046; Fig. 6 A) 2 .

Dorsal Attention Network (both subnetworks) was characterized
1 With the Power atlas, all findings were replicated except for the age effects on 

default and somato-motor networks. Using the 200 parcel Schaefer atlas replicated 

all findings except for the age effect on temporo-parietal network (see Rieck et al., 

submitted). 
2 The negative age effects on segregation were replicated with the Power atlas 

except for somato-motor B, which was reduced to a trend effect ( p < .1). Likewise, 

the negative age effects were replicated with the Schaefer 200 parcel atlas except 

for the salience/ventral attention A network (see Rieck et al., submitted). 

 

 

 

 

by a quadratic decrease with age ( β = -1.56, t (141) = -3.20,

p = .002), such that segregation slightly increased until age 42

( r = 0.18) and showed steeper decreases from age 43 to 86

( r = –0.35; Fig. 6 B). As in the prior analyses, when all the indi-

vidual subnetworks (e.g., Control A, B, C) evidenced similar age-

trajectories, they were combined as one network. Examining the

age-correlations for within- versus between-network connectivity

estimates separately revealed that age-related decreases in segre-

gation for Control, Default, and Somato-Motor B networks were

largely driven by age-related reductions in within-network con-

nectivity, whereas Dorsal Attention was driven by age-related in-

creases in between-network connectivity (Supplemental Figure 6;

Supplemental Table 1A). Salience/Ventral Attention A showed no

age effect on within- or between-network connectivity estimates,

suggesting that age differences in segregation of this network was

not driven by a singular measure alone, rather the relationship

between the two measures (Supplemental Figure 6; Supplemental

Table 1A). 

Two networks showed age-related increases in network segre-

gation: Somato-Motor A (motor and precentral cortex; β = 0.583,

t (142) = 8.55, p < 0.001; Fig. 6 C) and Salience/Ventral Atten-

tion B 

3 (dorsal anterior cingulate and inferior parietal lobule;

β = 0.170, t (142) = 2.06, p = 0.042;), which was driven by stronger

age-related increases in within-network connectivity estimates, al-

though between-network estimates also showed slight increases

with age (Supplemental Figure 7; Supplemental Table 1B). 

3.6. Brain-cognition associations 

For those functional networks that showed significant differ-

ences in network segregation as a function of age, we also exam-

ined how network segregation and age interacted to predict be-

havioral performance on tasks of cognitive control both in and out

of the scanner. This resulted in 49 models (7 networks with sig-

nificant age effects with 7 behavioral measures), and given the

exploratory nature of these analyses we did not correct for mul-

tiple comparisons, so findings should be considered preliminary.

We found that greater Control network segregation predicted bet-
3 The effect of age on increased segregation of the salience/ventral attention B 

network was not replicated with either the Power or Schaefer 200 atlases (see 

Rieck et al., submitted). Because this effect did not replicate in either additional 

analysis, this plot was excluded from Fig. 6 in the main manuscript. 
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Fig. 5. Task Differentiation Scores and Age. Task differentiation quantifies the degree similarity of connectivity patterns across different domains of cognitive control for a 

particular network. (A) Control, Default, Salience/Ventral Attention A, and Temporo-Parietal networks all showed decreased task differentiation in older age (i.e., dedifferen- 

tiation). (B) The Somato-Motor network showed a quadratic difference across age that peaked around age 52. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ter performance on the NIH list sorting working memory task

( β = 0.183, t (141) = 2.06, p = 0.041; Fig. 7 A) after accounting for

the effect of age. On the other hand, greater Dorsal Attention net-

work integration predicted better performance on the NIH flanker

inhibitory control task ( β = -0.137, t (141) = -2.28, p = 0.024;

Fig. 7 B). 

There was also an interaction between Salience/Ventral Atten-

tion B and age on predicting switch cost (calculated as the dif-

ference in response time to switching vs. repeated trials on the

f MRI shifting task; β = -19.87, t (140) = -2.31, p = 0.022) that was

driven by the oldest adults in the sample. A simple slopes anal-

ysis that estimated the slope of the brain-behavior relationship

at each point in the lifespan revealed that there was no signifi-

cant association between brain and behavior in younger and mid-

dle ages, as illustrated by 95% confidence intervals that overlapped

with 0 on the Johnson-Neyman plot ( Fig. 7 C). But, after about age

58, greater segregation of Salience/Ventral Attention B was associ-

ated with lower switch cost (negative relationship), suggesting that

connectivity of dorsal anterior cingulate and inferior parietal lob-

ule supported performance on the in-scanner shifting task in these

older participants. 
4. Discussion 

The current study examined functional connectivity using a

new multivariate technique during three different f MRI tasks of

cognitive control in an adult lifespan sample. Our results offer new

evidence for unique age differences in network connectivity pro-

files during the cognitive control domains of inhibition, response

initiation, shifting, and working memory. We report two major

findings: (1) an age-related brain dedifferentiation that is charac-

terized by functional connectivity patterns during initiation, inhi-

bition, and shifting becoming more similar in older age, particu-

larly for control and default networks, and (2) multiple forms of

age-related functional network reconfiguration such that frontal,

default, and dorsal attention networks become more integrated

(as previously reported; see Chan et al., 2014 ; Grady et al., 2016 ),

whereas sub-networks of somato-motor and ventral attention net-

works are more segregated in older age. We also link measures of

network segregation to cognitive control performance both in and

out of the scanner and show that individual differences in network

connectivity may support cognition. Each of these major findings

are discussed in turn. 
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Fig. 6. Network Segregation and Age. Network segregation describes the degree of within network connectivity relative to between network connectivity for low-rank connec- 

tivity matrices rebuilt from the multivariate space. (A) Control, Default, Somato-Motor B (auditory) and Salience/Ventral Attention A (pars operculum and insula) networks 

showed linear decreases in network segregation with increasing age. (B) The Dorsal Attention network, exhibited a quadratic age trajectory, such that segregation increased 

until age 42 and decreased into late adulthood. (C) Somato-Motor A, which primarily includes motor regions, showed an increase in network segregation in older age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Functional dedifferentiation of cognitive control domains 

Normal aging is characterized by the loss of specialization at

both the cognitive and brain level, a phenomenon described as

dedifferentiation ( Grady, 2012 ; Park and Reuter-Lorenz, 2009 ). Cog-

nitive dedifferentiation describes a behavioral shift from multi- to

uni-dimensional representations such that different cognitive pro-

cesses within an individual become more correlated as they age

( Baltes et al., 1980 ; Tucker-Drob et al., 2019 ). Similarly, at the brain

level, age-related dedifferentiation can manifest as neural repre-

sentations showing more similar patterns of activation ( Carp et al.,

2011 ) or connectivity ( Chan et al., 2014 ) such that functional sig-

nals are less dissociable for different task states (see Koen and

Rugg, 2019 for a review). In the current study, we examined dedif-

ferentiation of functional connectivity across large-scale brain net-

works for different sub-domains of cognitive control by utilizing

a new application of cov-STATIS—a multivariate statistical method

designed to examine similarity (and dissimilarity) of covariance

matrices (in this case, functional connectivity correlation matrices

for different task conditions). This approach allowed us to examine

both domain-specific and network-specific age differences in the

similarity of functional connectivity patterns. 
4.1.1. Domain-specific dedifferentiation 

On a behavioral level, we found that the inter-subject correla-

tions of performance across the domains were low to moderate

(with the exception of inhibition and initiation), indicating that the

tasks were relatively differentiated in terms of cognitive process-

ing. This was the case even in the older adults, consistent with pre-

vious evidence that healthy older adults show the same separation

of cognitive control components as seen in younger adults ( de Frias

et al., 2009 ). To assess differentiation of brain networks we used

Cov-STATIS, which uses the R V coefficient (a metric of similarity

between correlation or covariance matrices) to quantify the degree

of global similarity across our six task conditions (initiation, inhibi-

tion, shifting, 0-, 1- and 2-back working memory loads). From this,

we report that whole-brain patterns of connectivity (that were

not specific to any network) were significantly different for in-

hibition, shifting, and working memory in our youngest partici-

pants, a pattern of effects suggesting that on a global level, the

functional representations of these cognitive control sub-domains

are distinct in younger adults (a conclusion in line with prior be-

havioral evidence, Miyake et al., 20 0 0 ). Functional neuroimaging

studies in younger adults examining the amplitude of neural re-

sponse across different domains of cognitive control generally find
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Fig. 7. Brain-Behavior Associations. (A) After controlling for the effect of age, greater segregation of the control network predicted better working memory performance on a 

list sorting task. (B) Conversely, decreased segregation of the dorsal attention network (DAN) predicts better performance on a flanker inhibitory processing task. (C) There 

was a salience/ventral attention B (SalVAN B) segregation by age interaction that was driven by a negative relationship between switch cost and segregation for adults ages 

58 and older, such that greater switch cost (i.e., worse performance) was associated with decreased segregation. The Johnson-Neyman plot illustrates the brain-behavior slope 

at each point of the lifespan with 95% confidence intervals (dashed lines). The vertical dotted line delineates significant slope values (dark cyan) from non-significant values 

(red). Note. points are color coded by age group based on a quartile split: green = ages 20-31; yellow = ages 32-52; blue = ages 53-65; purple = ages 66-86. (For interpretation 

of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that all sub-domains activate a common fronto-parietal control

network with some additional evidence for domain-specific activ-

ity both within and outside fronto-parietal regions ( Collette et al.,

2005 ; Derrfuss et al., 2004 ; Lemire-Rodger et al., 2019 ; Rieck et al.,

2021 ), suggesting that specialized and distinct patterns of brain

function may subserve different control domains. However, these

previous studies did not explicitly test the specificity of func-

tional response, making it difficult to interpret their findings as

additional support for functionally distinct cognitive control rep-

resentations. Likewise, studies examining functional connectivity

for different sub-domains of cognitive control in younger adults

report domain-specific networks of connectivity during task f MRI

for inhibition ( Tsvetanov et al., 2018 ; Zheng et al., 2008 ), initiation

( Hoffstaedter et al., 2014 ), shifting ( Madden et al., 2010 ), and work-

ing memory ( Burianová et al., 2015 ; Sambataro et al., 2010 ); how-

ever the regions identified in these domain-specific networks gen-

erally overlap with the canonical fronto-parietal control network.

Because no other studies to our knowledge have directly compared

connectivity patterns across domains, the current study is an im-

portant contribution to this literature on the functional represen-

tations underlying cognitive control sub-domains. 

In addition to finding evidence for separable domains of cogni-

tive control in younger adults, we report that after the early thir-

ties, functional connectivity patterns during inhibition and shifting

were no longer dissociable. This is in line with prior work find-

ing that even within healthy, younger age ranges (i.e., ages 22–

36), there are dissociable developmental trajectories, such that in-

dividual differences in inhibitory processing can predict differences

in network connectivity ( Petrican and Grady, 2017 ). Furthermore,

we report that response initiation (which is recognized as a sub-

domain of cognitive control [ Lenartowicz et al., 2010 ; Sabb et al.,

2008 ], but may not represent a completely independent cognitive

process; Miyake et al., 20 0 0 ) was no longer dissociable from in-
hibition after about age 66. Together, these results show neural

evidence for multi-dimensional cognitive control representations

in young adulthood that become more integrated at two differ-

ent points in the lifespan, and emphasize the importance of in-

cluding a full lifespan sample when studying normal aging. This

complements behavioral findings showing that separate domains

may merge into one factor in older age ( Hedden and Yoon, 2006 ;

Hull et al., 2008 ) and additional behavioral work that shows a shift

to a uni-dimensional cognitive control domain which was associ-

ated with greater cognitive decline in aging ( de Frias et al., 2009 ).

However, it is important to note that these prior studies examined

only older adult samples, thus the degree to which cognitive con-

trol domains become more integrated across the full adult lifes-

pan in terms of behavioral measures, particularly in a longitudinal

framework as suggested by Tucker-Drob and colleagues (2019) , is

still unclear. 

To date, there are few functional neuroimaging studies exam-

ining multiple cognitive control domains in the context of nor-

mal aging. A recent meta-analysis of age-related differences in

functional activity associated with inhibition, shifting, and work-

ing memory found a pattern of increased overlap in prefrontal

brain regions associated with shifting and working memory tasks

for older adults, which the authors interpreted as dedifferentia-

tion of these domains at the brain level ( Spreng et al., 2017 ). Al-

though the current study did not find that functional connectiv-

ity patterns associated with shifting and working memory became

more similar in older age, this could be because we examined

functional representations across large-scale brain networks. Our

recent work examining the effect of age on mean functional ac-

tivity for this same study found that for all sub-domains of cogni-

tive control, the effects of age on functional activity were evident

in regions outside the common fronto-parietal regions engaged by

each task, a result suggesting that aging might exert a stronger ef-
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fect on other functional systems that interact with cognitive con-

trol ( Rieck et al., 2021 ). This is consistent with findings from the

current analysis of functional connectivity in this dataset in which

age affects the global-representations of domain-specific connec-

tivity across the entire brain, not just the fronto-parietal control

network. 

4.1.2. Network-specific dedifferentiation 

Within the multivariate connectivity space, cov-STATIS also

computed partial factor scores for each participant which de-

scribed the degree to which connectivity during each task condi-

tion deviated from that participant’s mean pattern of connectiv-

ity for a particular network. This provided a network-specific met-

ric of how similar connectivity within a given network was across

all task conditions, with more similar connectivity profiles indicat-

ing functional dedifferentiation (i.e., less distinct representations)

of the different domains. Specifically, we found that control, de-

fault, salience/ventral attention A, temporo-parietal, and somato-

motor networks exhibited age-related dedifferentiation across all

task conditions, such that older age was characterized by connec-

tivity patterns in these networks that do not differ much as a func-

tion of task condition or cognitive control domain. This lack of task

specificity of functional connectivity patterns may reflect reduced

fidelity of neural activity (perhaps due to reduced neuronal signal-

to-noise) which is thought to be one mechanism underlying func-

tional dedifferentiation (see Koen and Rugg, 2019 for a review) 

Our finding of increased similarity of connectivity patterns

across tasks in older age is also consistent with work exam-

ining how the amplitude of functional activity during executive

function is modulated in response to differing task demands or

conditions. Prior work has reported that younger adults typi-

cally show large increases in fronto-parietal functional activity and

large decreases in default mode activity in response to increas-

ing cognitive demands or task difficulty within executive function

paradigms ( Persson et al., 2007 ; Schneider-Garces et al., 2010 ). In

contrast, older adults show a reduced range of functional response

when cognitive demands increase, such that fronto-parietal con-

trol ( Cappell et al., 2010 ; Grady et al., 2020 ; Kennedy et al., 2015 ;

Rieck et al., 2017 ; Schneider-Garces et al., 2010 ), salience/ventral

attention (e.g., insula and medial frontal/dorsal anterior cingulate;

Rieck et al., 2017 ; Kennedy et al., 2015 ), and motor regions (i.e.,

precentral gyrus; Qin and Basak, 2020 ; Saverino et al., 2016 ) are

under-recruited, whereas activity in default ( Kennedy et al., 2017 ;

Persson et al., 2007 ; Rieck et al., 2017 ; Sambataro et al., 2010 ) and

temporal cortex ( Kennedy et al., 2017 ) is less dampened. Likewise,

older adults show less modulation of BOLD signal variability during

cognitive tasks compared to a baseline fixation state ( Garrett et al.,

2013 ). Across all these studies, reduced modulation in older adults

was characterized by more similar functional response across dif-

ferent task conditions (resulting in a reduced range of activity), a

pattern providing further support that the functional representa-

tions underlying different cognitive control conditions may be less

differentiated in older age, particularly for regions of the fronto-

parietal control, ventral attention, and default networks. Our re-

sults suggest that reduced specificity of functional connectivity

across these functional networks could be related to prior findings

of a reduced range and variability of functional response. A recent

study reported that in addition to showing reduced modulation of

fronto-parietal and dorsal attention regions as face-judgments be-

came more difficult, older adults also show reduced modulation of

whole-brain functional connectivity patterns ( Grady et al., 2020 ),

but more work is needed to directly test the link between patterns

of functional connectivity and neural modulation during tasks of

cognitive control. 
4.2. Age-related network reconfiguration during cognitive control 

The next major finding from the current work was that large-

scale functional networks showed age differences in how they in-

teracted with each other during tasks of cognitive control. Fronto-

parietal control, default, dorsal attention, somato-motor B (audi-

tory cortex), and salience/ventral attention A (insula, pars oper-

cularis and medial frontal) networks became less segregated with

age, whereas somato-motor A (motor cortex) and salience/ventral

attention B (dorsal anterior cingulate and inferior parietal lobule)

became more segregated with age, providing evidence for multiple

forms of network reconfiguration in normal aging. 

4.2.1. Age-related decreases in network segregation 

Decreased network segregation in older age is generally char-

acterized by weaker within-network connectivity and greater

between-network connectivity, and this decrease has been consis-

tently reported when examining large-scale functional networks

during resting state ( Betzel et al., 2014 ; Chan et al., 2014 ; Sala-

Llonch et al., 2015 ). Fewer studies have assessed segregation of

multiple large-scale brain networks during task-based f MRI, but

prior work has examined the connectivity of specific regions

within broader functional networks. Specifically, researchers re-

port that older age is associated with weaker connectivity of

fronto-parietal regions during inhibitory processing ( Geerligs et al.,

2014 ; Tsvetanov et al., 2018 ), shifting ( Madden et al., 2010 ), and

working memory ( Burianová et al., 2015 ; Nagel et al., 2010 ;

Sambataro et al., 2010 ) and weaker connectivity of default mode

regions during working memory ( Grady et al., 2010 ). This prior

work supports our finding that age-related decreases in net-

work segregation of fronto-parietal control and default regions

are largely driven by weakened connectivity within each network,

suggesting that functional representations within these networks

might be compromised in older adults. We also report that normal

aging was characterized by decreased segregation of the somato-

motor B network (i.e., auditory regions) which may reflect in-

creased distraction from task-irrelevant input from the noisy f MRI

environment ( Stevens et al., 2008 ). 

In addition to age-related decreases in within-network connec-

tivity, we found that decreased dorsal attention network segrega-

tion in older age is driven by age-related increases in between-

network connectivity, suggesting that regions involved in top-down

attentional processing become more integrated with other net-

works during cognitive control tasks. Prior work has also found

that older adults show increased dorsal attention −fronto-parietal

connectivity during a delayed match-to-sample working memory

task ( Grady et al., 2016 ) and increased dorsal attention −default

connectivity during autobiographical planning ( Spreng et al., 2016 ).

This general pattern of age-related decrease provides further evi-

dence that when cognitive control is reduced (as it is in normal ag-

ing), attentional systems may interact more heavily with other net-

works underlying cognitive control domains. Subsequently, more

diffuse dorsal attention connectivity in normal aging could be a

compensatory mechanism to account for reduced within-network

connectivity of other networks (e.g., fronto-parietal control). The

idea of compensation is supported by our additional finding that

greater integration of dorsal attention regions predicts better in-

hibitory processing (this brain-behavior finding is discussed in fur-

ther detail below). 

4.2.2. Age-related increases in network segregation 

We also report a new finding of age-related increases in net-

work segregation for two networks: somato-motor A (precen-

tral/motor cortex) and salience/ventral attention B (dorsal ante-

rior cingulate and inferior parietal lobule) that was largely driven
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by stronger connectivity within each network in older ages. The

finding of increased somato-motor segregation during task f MRI

in older age is at odds with resting state work that has gener-

ally found that older adults show increased connectivity of mo-

tor regions to other networks ( Chan et al., 2014 ; Geerligs et al.,

2015 ) and decreased connectivity within motor regions ( Wu et al.,

2007 ). However, a task-based f MRI study in which younger and

older adults completed finger movement sequences found that

older adults showed reduced connectivity of cortical motor re-

gions (e.g., precentral) to subcortical regions (e.g., basal ganglia,

thalamus), but increased connectivity between cortical motor re-

gions ( Taniwaki et al., 2007 ), a result which was interpreted as a

sign of reduced interhemispheric inhibition. The somato-motor A

network used in the current study only included cortical regions,

therefore our finding of increased functional connectivity charac-

terizes connectivity between left and right precentral gyrus, in line

with Taniwaki and colleagues. Together, these findings suggest that

when participants are required to make motor responses (as in

during task f MRI), greater segregation of the motor network in

aging might reflect failed suppression of cross-hemispheric com-

munication between relevant (in this case, left precentral gyrus

because participants responded with their right hand) and non-

relevant motor regions (e.g., right precentral gyrus). 

We also report that salience/ventral attention B (i.e., me-

dial prefrontal, dorsal anterior cingulate, and inferior parietal

lobule) segregation increased in older age, largely due to age-

related increases in connectivity within this network (although

salience/ventral attention B also showed age-related increases in

between-network connectivity). However, this particular age ef-

fect did not replicate when using two additional atlas parcella-

tions (see Rieck et al., submitted ), therefore our interpretation of

this finding is preliminary. The dorsal anterior cingulate region of

the salience/ventral attention network is thought to be involved in

processing response conflict ( Swainson et al., 2003 ) and response

preparation ( Schulz et al., 2011 ). Therefore, increased connectivity

both within this network (and to a lesser extent with other net-

works), might indicate a greater reliance on attention resources

during cognitive control tasks in older age. Furthermore, increased

segregation of salience/ventral attention B network was found to

be associated with better performance on the in-scanner shifting

task selectively in older adults, suggesting that this reflects com-

pensatory recruitment when cognitive control resources are com-

promised (brain-behavior findings are discussed in further detail

below). 

Our findings also highlight the importance of including finer-

scaled regions when assessing functional connectivity, as the

somato-motor and salience/ventral attention A and B sub-networks

showed opposite segregation effects across the lifespan, suggest-

ing that the broader network structure is less intact in older ages.

Future work examining age effects on functional connectivity in a-

priori defined networks should keep this in consideration when ex-

amining large-scale brain networks that might also have distinct

sub-networks. 

4.2.3. Network segregation-cognitive performance associations 

Finally, we examined how network segregation and age pre-

dicted individual differences in performance on tasks of cogni-

tive control. Given that these brain-behavior analyses were post-

hoc and did not take into account correcting for multiple com-

parisons, these findings should be regarded as preliminary and

worth further exploration in future research. Furthermore, some

brain-behavior associations we found are for performance on out-

of-scanner tasks (i.e., list sorting, arrow flanker); therefore, these

effects may represent trait-based relationships between cognitive

control abilities, rather than a direct comparison of network mea-
sures generated during a task and subsequent performance on that

task. 

Prior work has linked resting state network connectivity to

performance on different domains of cognitive control and found

that connectivity within frontal-parietal regions during rest is as-

sociated with individual differences in general executive func-

tioning ( Reineberg et al., 2015 ), whereas connectivity within

salience/ventral attention regions supported shifting-specific per-

formance ( Reineberg et al., 2015 ) and inhibition performance

( Duchek et al., 2013 ). Work in younger adults also found that supe-

rior inhibition ability corresponded to greater segregation of ven-

tral attention networks as cognitive control demands increased

during task-based f MRI ( Petrican and Grady, 2017 ). Similarly, in

the current work, we found that greater segregation of fronto-

parietal control regions was associated with better working mem-

ory on an out-of-scanner list sorting task (after controlling for the

effect of age), an effect suggesting that individual differences in

fronto-parietal connectivity may account for the higher levels of

cognitive control. We further report that greater segregation of

the salience/ventral attention B network was associated with de-

creased response time switch cost (i.e., better performance) on

our local switching in-scanner task, but only in older adults (ages

58 + ). Given that older adults also showed greater segregation of

salience/ventral attention B network compared to younger adults,

this finding could indicate that more robust connectivity within

bottom-up attention regions, specifically dorsal anterior cingulate

and inferior parietal lobule, during cognitive control might serve

as a compensatory mechanism in older adults that enables more

efficient shifting between different cognitive judgements. Connec-

tivity of the dorsal anterior cingulate in particular plays a role in

error processing during task performance (Han et al., 2013), and

this role further suggests that the older adults who perform best

may also exhibit enhanced error detection and management when

having to shift between judgment criteria. 

We also report that, after controlling for age, greater dorsal at-

tention network integration with other brain networks (i.e., less

segregation) predicted better performance on an out-of-scanner

arrow-flanker task of inhibitory processing. Reineberg and col-

leagues (2015) also report that the expansion of the dorsal at-

tention network into other brain regions during resting state was

associated with higher executive functioning, suggesting that in-

creased connectivity of top-down attentional networks to other

brain regions may support cognitive control abilities, such as in-

hibition. Greater connectivity between default and dorsal atten-

tion networks has also been linked to increased cognitive reserve

in older adults with mild cognitive impairment ( Franzmeier et al.,

2017 ), providing additional evidence that increased connectivity of

dorsal attention regions to broader functional networks may serve

as a scaffold to maintaining cognition during aging. 

4.3. Limitations 

Although this work provides a thorough examination of func-

tional connectivity profiles across multiple domains of cognitive

control in normal aging, there are several limitations. Due to the

scale and complexity of the data being analyzed, we focused on

providing summary metrics of network differentiation and segre-

gation to quantify how functional patterns were expressed across

the adult lifespan. Therefore, this limited us in detailing specific

age × domain × network interactions that were observed in the

multivariate connectivity space (but see Fig. 4 for an illustration in

two networks and Supplemental Figure 5). We were also limited

in examining specific network-network interactions (i.e., fronto-

parietal to dorsal attention network connectivity) as previous work

examining a much smaller set of networks has done. Furthermore,
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the current brain-behavior results should be regarded as prelimi-

nary, due to the large number of statistical tests and exploratory

nature of these findings. Finally, the current study was unable to

examine dedifferentiation of cognitive control domains at the be-

havioral level, due to lack of multiple cognitive tests per domain

and lack of longitudinal data, which provide more reliable esti-

mates of behavioral dedifferentiation ( Tucker-Drob et al., 2019 ). Ex-

amining the inter-subject correlations of performance on the f MRI

tasks did reveal somewhat low similarity in performance across

domains for the full sample (with the exception of the inhibition

and initiation), suggesting relative process purity at a behavioral

level. However, even though we provide evidence at the brain level

that functional representations of these domains are less distinct

with aging, this does not necessarily indicate behavioral dediffer-

entiation, which may even be a different manifestation of cogni-

tive aging that is distinct from brain dedifferentiation. Our findings

could indicate that brain dedifferentiation may even precede be-

havioral dedifferentiation, but this suggestion requires further in-

vestigation within the proper longitudinal framework. Nonetheless,

we believe the current study offers a broad overview of the large-

scale network connectivity profiles in normal aging and lays the

groundwork for future researchers to test more network-specific or

domain-specific hypotheses. 

4.4. Conclusions 

This work offers a comprehensive evaluation of the functional

connectivity profiles of large scale-brain networks during differ-

ent domains of cognitive control across the adult lifespan. We

used a new application of cov-STATIS—a multi-table multivariate

method—to quantitatively assess the similarity of functional con-

nectivity patterns across age and cognitive control task condi-

tions. We found that patterns of functional connectivity associ-

ated with the domains of inhibition, shifting, and working mem-

ory were no longer dissociable in older age due to increased sim-

ilarity in functional connectivity patterns of fronto-parietal con-

trol, default mode, salience/ventral attention, temporo-parietal and

motor networks. These findings support evidence for functional

dedifferentiation of neural representations underlying different do-

mains of cognitive control. We also report that large-scale func-

tional networks show age-related reconfiguration such that some

networks become more integrated and diffuse in aging (i.e., fronto-

parietal control, default, dorsal attention) whereas others show

greater segregation (i.e., motor). Additional preliminary evidence

suggests that cognitive control performance, both in and out of

the scanner, may be predicted by individual differences in net-

work connectivity: Specifically, greater segregation of control and

salience/ventral attention B networks was associated with better

performance, whereas greater integration of dorsal attention net-

work with other brain networks predicted better inhibitory con-

trol. Taken together our results provide new evidence for dediffer-

entiation and reconfiguration of large-scale brain networks during

different domains of cognitive control in normal aging and provide

a template for using cov-STATIS to examine complex brain network

interactions across different participant groups and task conditions.
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