1. Introduction

- Multi-channel cochlear implants (CI) leverage frequency based cochlear tonotopic mapping to map acoustic information to the cochlear place of stimulation which is primarily determined by electrode locations.
- Despite the fact that electrode locations within the cochlea are unique to each patient, the acoustic frequencies assigned to the electrodes by the CI processor are determined generically.
- Suboptimal electrode array placement, variations in insertion depth, and exact positioning and proximity of electrodes to nerve fibers can all result in a mismatch between the intended and actual pitch perception.
- We propose a novel, image-guided CI processor programming strategy to select more optimal, patient-specific frequency assignments which helps to minimize sub-optimal frequency-place mapping distortions in CIs.

2. Proposed algorithm

- The proposed strategy utilizes pre and post implantation CT scans of recipients’ cochleae to determine precise spatial location of electrodes and the corresponding neural stimulation sites [1].
- Using spatial location of electrode contacts, we generate a user-customized frequency-place function by modifying the frequency characteristics of the filterbanks of CI sound processor.
- This is achieved by maximizing the frequency match at lower frequencies (frequency range of first three formants), and introducing mild compression as needed to avoid truncation (e.g., due to shallow insertion). Mid and high frequency bands are assigned conventional logarithmic filter spacing [2].
- The frequency space is divided into 4 sub-bands and following rules are applied to determine filter frequency boundaries:
 - $w_0 = [0.1-0.5] \text{kHz}$: Maximize frequency matching in w_1, w_2, and w_3.
 - $w_1 = [0.5-1.0] \text{kHz}$: Mild compression in w_1, if needed, to avoid truncation.
 - $w_2 = [1.0-3.0] \text{kHz}$: At least 2 analysis filters in w_2.
 - $w_3 = [3.0-8.0] \text{kHz}$: Logarithmically spaced filters.

3. Method

- Vocoder-based simulation of CI signal processing was used to evaluate the efficacy of the proposed technique.
- 42 normal hearing users participated in the study.
- 14 unique frequency-place maps of actual CI users tested. Each map was tested with 3 participants and results were averaged.
- Speech recognition was assessed using four sets of test materials: vowels, consonants, IEE sentences in quiet, and in +10 dB SNR.
- 4 mapping conditions were tested:
 - Cond. 1: Ideal CI position, default filters
 - Cond. 2: True CI position, default filters
 - Cond. 3: True CI position, proposed filters
 - Cond. 4: True CI position, exactly matched filters

4. Results

- Figure 1: An example of frequency-place mapping in (a) clinical processors, and (b) using proposed mapping strategy (figure not to scale).

5. Conclusions

- Lack of knowledge on the spatial relationship between electrodes and stimulation sites has resulted in a generic one-size-fits-all frequency mapping paradigm with the hope that CI users will learn to adapt to the incorrect frequency locations of stimulation.
- The proposed solutions optimize sound processing and fitting based on an individual’s cochlear physiology and true location of electrodes.
- The current data suggest that user customized frequency maps can potentially aid in achieving higher asymptotic performance and possibly faster adaptation to electric hearing.

This work was supported by the grants R01DC010494 and R01DC014037 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.