
Available online at www.sciencedirect.com
www.elsevier.com/locate/specom

Speech Communication xxx (2011) xxx–xxx
Investigation of spectral centroid features for cognitive
load classification

Phu Ngoc Le a,b,⇑, Eliathamby Ambikairajah a,b, Julien Epps a,b,
Vidhyasaharan Sethu a, Eric H.C. Choi b

a School of Electrical Engineering and Telecommunications, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
b ATP Research Laboratory, National ICT Australia (NICTA), Eveleigh 2015, Australia

Received 6 September 2010; received in revised form 7 January 2011; accepted 9 January 2011
Abstract

Speech is a promising modality for the convenient measurement of cognitive load, and recent years have seen the development of
several cognitive load classification systems. Many of these systems have utilised mel frequency cepstral coefficients (MFCC) and pro-
sodic features like pitch and intensity to discriminate between different cognitive load levels. However, the accuracies obtained by these
systems are still not high enough to allow for their use outside of laboratory environments. One reason for this might be the imperfect
acoustic description of speech provided by MFCCs. Since these features do not characterise the distribution of the spectral energy within
subbands, in this paper, we investigate the use of spectral centroid frequency (SCF) and spectral centroid amplitude (SCA) features,
applying them to the problem of automatic cognitive load classification. The effect of varying the number of filters and the frequency
scale used is also evaluated, in terms of the effectiveness of the resultant spectral centroid features in discriminating between cognitive
loads. The results of classification experiments show that the spectral centroid features consistently and significantly outperform a base-
line system employing MFCC, pitch, and intensity features. Experimental results reported in this paper indicate that the fusion of an SCF
based system with an SCA based system results in a relative reduction in error rate of 39% and 29% for two different cognitive load
databases.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The cognitive load of a person refers to the amount of
mental demand imposed on the person when performing
a particular task, and has been closely associated with the
limitations of human working memory (Shriberg et al.,
1992; Paas et al., 2003). Research on cognitive load has
shown that when a user is performing a task, performance
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will degrade if the load level is too low or too high (Paas
et al., 2003). In some cases however, it may be possible
to adjust the workload of the user and if the cognitive load
level of the user can be estimated or classified along an
ordinal scale, it may be possible to tailor these adjustments
to the workload such that productivity can be improved. In
the past 15 years or so, a number of techniques have been
proposed to measure the cognitive load level, including
techniques based on: physiological measures such as heart
rate, brain activity, eye movement (Pass and Merrienboer,
1994; Gerven et al., 2004); behavioural measures such as
mouse speed and pressure, linguistic and dialog patterns
(Berthold and Jameson, 1999; Muller et al., 2001); perfor-
mance measures such as reaction time, accuracy, error rate;
and self-reported subjective ranking of experienced load
entroid features for cognitive load classification, Speech Comm. (2011),
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level on single or multiple rating scales (Paas et al., 2003;
Yin et al., 2008).

Among these, behavioural measures based on speech
have been recognised as a particularly good choice since
speech data exists in many real-life tasks (e.g. telephone
conversation, voice control) and can be easily collected in
non-intrusive and inexpensive ways. Previous studies have
revealed systematic influences of cognitive load on specific
aspects of speech such as, disfluencies, articulation rate,
content quality, number of syllables, silent pauses, filled
pauses (Muller et al., 2001); sentence fragments and articu-
lation rate (Berthold and Jameson, 1999); average pause
length, average pause frequency, and average response
latency (Khawaja et al., 2007). However, while these high
level features can potentially be used for cognitive load level
recognition (Berthold and Jameson, 1999; Muller et al.,
2001), the extraction of these features relies on either man-
ual labelling of the speech data or automatic speech recog-
nition (ASR), neither of which are very attractive given that
manual labelling is too slow and expensive and ASR sys-
tems may not yet be robust enough for this application.

These high level features are, however, not the only
influences that cognitive load has on speech. It has been
shown by Steeneken and Hansen (1999) that among the
physiological consequences of the mental workload are
respiratory changes, e.g. increased respiration rate, irregu-
lar breathing, and increased muscle tension of the vocal
cords. The increased muscle contraction of the vocal cord
and vocal tract may adversely affect the quality of speech.
Consequently, low level speech features that characterise
the vocal cords, such as the fundamental frequency (F0),
and those that characterise the shape of the vocal tract,
such as formant frequencies, have been found to reflect
the cognitive load experienced by the speaker. In particu-
lar, increases in cognitive load have been associated with
increases in F0 (Scherer et al., 2002; Mendoza and Carballo,
1998; Griffin and Williams, 1987; Boril et al., 2010), reduc-
tion in jitter and shimmer (Mendoza and Carballo, 1998),
increases in the first and fourth formants (Boril et al.,
2010) and decreases in the second formant (Yap et al.,
2010b). Other vowel-specific variations in formant frequen-
cies with cognitive load have also been reported by Yap
et al. (2010b). Apart from F0 and formant frequencies,
low level features characterising the spectral energy distri-
bution have also been found to be indicative of cognitive
load. An increase in cognitive load is reflected by an
increase in spectral energy spread and spectral centre of
gravity (Boril et al., 2010), reduction in the ratio of energy
below 500 Hz to energy above it (Scherer et al., 2002) and
decrease in the gradient of energy decay (Scherer et al.,
2002). It has also been suggested that variability in speech
amplitude increases while the speech spectra becomes flat-
ter under high cognitive load conditions (Lively et al.,
1993). The existence of these systematic variations of low
level speech parameters with cognitive load has formed
the basis for a number of automatic cognitive load classifi-
cation systems.
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Particularly, the usefulness of F0, intensity and MFCCs,
has been shown by Yin et al. (2008, 2007) and Boril et al.
(2010). It was shown by Yap et al. (2009) that the group
delay feature, based on the phase characteristic of the
speech spectrum, can be used to provide additional cogni-
tive load information to the MFCCs based system and
improve its performance. Furthermore, it was indicated
by Yap et al. (2010a) and Le et al. (2010) that the features
based on the voice source are useful for cognitive load clas-
sification. The usefulness of formant frequencies was also
found by Boril et al. (2010) and Yap et al. (2010b, 2010).
The non-linear Teager energy operator was found to be
effective for classifying cognitive loads by Fernandez and
Picard (2003). Other features including perceptual linear
prediction coefficients, spectral centre of gravity, spectral
energy spread, and the vowel durations were also found
to be useful for cognitive load classification systems as out-
lined in (Boril et al., 2010). Further analyses of speech-
based features can be found in (Le et al., 2009) where the
spectral distribution of information pertaining to cognitive
load was studied. The results of this study suggest that the
amount of cognitive load specific information in the
0–1 kHz frequency band is particularly high.

Although several automatic speech-based cognitive load
classification systems have been developed, these systems
are still limited in terms of performance. The system
reported by Yap et al. (2010a) results in a classification
accuracy of 84.4%, which is the highest accuracy among
those reported in the literature, involving three levels of
cognitive load based on the Stroop test corpus, one of
the two corpora used in this study (described in detail in
Section 3). Among the speech features that have been used
in automatic cognitive load classification systems, MFCCs
have been recognised as one of the most effective features
when the shift delta coefficients (SDC) of the features are
used (Yin et al., 2008, 2007; Yap et al., 2010a; Le et al.,
2010). MFCCs are a compact representation of the spectral
envelope which reflects vocal source and the vocal tract fil-
ter information. The MFCC features capture the shape of
the speech spectral envelope based on subband magnitude
spectrum estimates obtained using a series of mel scale fil-
ters and although effective, they do not completely charac-
terise the spectral envelope. Some details of the speech
spectrum, such as the spectral energy distributions within
mel filter subbands are not captured by MFCCs due to
the limitation that information in each subband is repre-
sented by only one value, representing the total spectral
energy contained in that subband. Spectral centroid fea-
tures can be used to capture more information about these
subband spectral distributions and have been shown to be
effective for speech recognition system (Gajic and Paliwal,
2006; Paliwal, 1998) and speaker recognition system (Hos-
seinzadeh and Krishnan, 2008). These features have certain
similarities to formant frequencies but can be estimated
easily and reliably, unlike the formant features (Paliwal,
1998). Also, since features based on formant frequencies
have been recognised to be effective for cognitive load
entroid features for cognitive load classification, Speech Comm. (2011),
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classification (Boril et al., 2010; Yap et al., 2010b, 2010), we
may expect that the spectral centroid features will also
prove to be useful for cognitive load classification system.

In the study reported in this paper, we investigate the
use of spectral centroid frequency, termed spectral subband
centroid by Paliwal (1998), and spectral centroid amplitude
(Kua et al., 2010), in a cognitive load classification system.
The number of filters used during their extraction and their
spectral characteristics influence the effectiveness of these
two features. In this paper, initially the amount of cognitive
load-specific information in each subband is estimated.
Following this, the filterbank configuration is empirically
investigated based on cognitive load classification experi-
ments in order to determine the best configuration.
Fig. 1. Example of the spectra in a subband [fL, fH], the solid line is the
first spectrum and the dashed line is the second spectrum, after (Kua et al.,
2010). These spectra have the same energies (E1 = E2) but different
spectral centroid amplitudes (SCA1 – SCA2).
2. Subband spectral centroid based features

The spectral centroid frequency (SCF) is an estimate of
the ‘centre of gravity’ of the spectrum within each subband.
Originally proposed as a feature for speech recognition sys-
tems (Paliwal, 1998), it has been reported that SCF is a for-
mant-like feature, as it provides the approximate location
of the formant frequencies in the subbands (Paliwal,
1998). In addition to spectral centroid frequency, in this
paper, we propose the use of another feature, termed spec-
tral centroid amplitude (SCA), the weighted average mag-
nitude spectrum in the subband.

The proposed spectral features are extracted from
framed speech segments as follows. Let s[n], where
n 2 [0, N � 1], represent a speech frame (of length N) in
the time domain and let S[f] represent the discrete spectrum
of this frame. Then, S[f] can be divided into M subbands
using a series of Gabor filters (Kleinschmidt, 2002) whose
frequency responses are Wm[f], where m 2 [1, M].

Assume that the mth subband has a lowest frequency lm
and highest frequency um. Each of the two proposed spec-
tral features can be calculated from S[f] for the mth sub-
band as follows.

The spectral centroid frequency (SCF) is computed as
the weighted average frequency for a given subband, where
the weights are the normalised energy of each frequency
component in that subband, as shown in Eq. (1)

SCFm ¼
Pum

f¼lm
f jW m½f �S½f �jPum

f¼lm
jW m½f �S½f �j

: ð1Þ

The final SCF feature vector for each frame is obtained
by concatenating all the SCFm.

The Spectral Centroid Amplitude (SCA) is the weighted
average magnitude spectrum in the subband, with the fre-
quency serving as weights, as shown in Eq. (2). Average
energy could be computed using Eq. (2) by simply setting
those weights to be 1 (Kua et al., 2010)

SCAm ¼
Pum

f¼lm
f jW m½f �S½f �jPum

f¼lm
f

: ð2Þ
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The final SCA feature vector for a speech frame is
obtained by taking the Discrete Cosine Transform (DCT)
of the log of the vector obtained by concatenating all SCAm

in that frame, in order to reduce the dynamic range and
decorrelate the features, and can be expressed as

SCAðkÞ ¼ 1ffiffiffiffiffi
M
p lk

XM�1

m¼0

½logðSCAmÞ� cos
p

2M
ð2mþ 1Þk

� �h i

ð3Þ

where k = 0, . . . , M � 1; l0 = 1; lk ¼
ffiffiffi
2
p

for
1 6 k 6M � 1.

In the case of the SCF, the DCT is not applied, similarly
to (Paliwal, 1998) as it is a frequency based feature. More-
over, in (Thiruvaran et al., 2006) the DCT was not applied
to the frame-averaged FM feature, which is another fre-
quency based feature similar to the SCF. Henceforth,
SCFm, SCAm will refer to the feature values in each sub-
band, and SCF, SCA will refer to the final spectral centroid
feature vectors.

As previously mentioned, the MFCCs are computed
from the total energy in each subband and hence will only
reflect variations in the total energy in a subband. How-
ever, there are instances where the distribution of energy
within each subband varies but the total energy does not,
and MFCCs will not reflect this. The use of frequency as
weights for computing the SCAm allows the variation of
the spectrum distribution in these instances to be reflected
in the SCAm values, as shown in Fig. 1. It can be observed
from this figure that the energies of the two spectra are the
same but the SCAm are different.

As explained, the SCFm and SCAm capture different
aspects of the spectral distribution in each subband and
therefore are expected to complement each other. The com-
plementary nature of these features is illustrated in Fig. 2,
which shows the spectral centroid features corresponding
to different examples of synthetic spectra comprising of
straight lines with varying slopes, in two different sub-
bands. It can be observed that the resultant variations in
SCFm and SCAm are very different. Moreover, there are
regions of the energy-slope plane where one of the two
entroid features for cognitive load classification, Speech Comm. (2011),
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Fig. 2. The variation of the SCFm and SCAm in two subbands (a) and (c) for the low frequency subband, and (b) and (d) for the high frequency subband.

Fig. 3. Subbband spectral centroid frequencies (SCFm), spectral centroid
amplitudes (SCAm), and linear predictive spectral envelope of the vowel
/ey/ of a female speaker for (a) high cognitive load, (b) medium cognitive load,
and (c) low cognitive load from the Stroop test database. The SCFm are
shown by the location of the stems, the SCAm are shown by the amplitude of
the stems, the subband boundaries are shown by the dashed vertical lines,
and the spectral envelope is shown by the solid continuous curves.
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features varies more than the other. In Fig. 2, lines of con-
stant energy correspond to constant MFCC feature values
(and hence MFCCs cannot distinguish between them), by
way of contrast with the SCAm and SCFm. The use of
the frequency as the weight also results in the SCAm in dif-
ferent subbands being very different as shown in Fig. 2c
and d, although these subbands have the same spectral
distributions.

Fig. 3 shows the spectral centroid features as well as the
spectral envelopes for three different cognitive load levels
(low, medium, and high) extracted from an utterance of
the vowel /ey/ by a female speaker in the Stroop test data-
base (Section 3). In this example, the spectral centroid fea-
tures were extracted by splitting the speech spectrum into
six non-overlapping subbands equally spaced in the mel
scale (the number of subbands was chosen as six based
on preliminary experiments). It can be observed that the
roll off in the spectral envelope is steeper for the high cog-
nitive load level. Since the SCAm are computed as the
weighted average amplitude spectrum in each subband, this
large negative slope results in the amplitude of the high fre-
quency SCAm for the high cognitive load being substan-
tially lower than those for the low cognitive load. On the
other hand, the low frequency SCAm for high cognitive
load is larger than that for low cognitive load. In addition
to the differences in spectral slopes, it can also be observed
that the spectral energy distributions in the individual sub-
bands are different, which results in the SCFm in each sub-
band varying between different cognitive load levels.

Fig. 4a and b shows the statistical spread of the coeffi-
cients of the six dimensional SCF and SCA, computed
from speech of the vowel /uw/ corresponding to a female
speaker in the Stroop test corpus. In these figures, the thick
bar extends from the 15th to the 85th percentile, the thin
Please cite this article in press as: Le, P.N. et al., Investigation of spectral c
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bar extends from the 5th to the 95th percentile, and the
middle strip indicates the mean of the distribution. The
potential for discrimination between different CL levels
can be observed from these figures. Although individual
coefficients of these features do not show significant differ-
ences between the three CL levels, their combination is
more promising, as will be seen.

The stages involved in the computation of the spectral
centroid features are illustrated in Fig. 5.
entroid features for cognitive load classification, Speech Comm. (2011),
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Fig. 4. (a) Statistical variation of the six coefficients of SCF over the three
levels of cognitive load speech of the vowel /uw/ of a female speaker in the
Stroop test corpus. The thick bar extends from the 15th to the 85th
percentile, and the thin bar extends from the 5th to the 95th percentile.
The middle strip indicates the mean. (b) Statistical variation of the six
coefficients of SCA over the three levels of cognitive load speech of the
vowel /uw/ of a female speaker in the Stroop test corpus. The thick bar
extends from the 15th to the 85th percentile, and the thin bar extends from
the 5th to the 95th percentile. The middle strip indicates the mean.
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3. Cognitive load database

All experiments reported in this paper were performed
on two databases, referred to herein as the Stroop test
and Reading and Comprehension databases (Yin et al.,
2008, 2007). Both contain speech corresponding to three
cognitive load levels (low, medium, and high), correspond-
ing to different experimentally induced levels of task diffi-
culty, from 15 native English speakers (eight females and
Fig. 5. Block diagram of SCF and SCA

Please cite this article in press as: Le, P.N. et al., Investigation of spectral c
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seven males). The speech in both databases is sampled at
a rate of 16 kHz.

For the Stroop test corpus, low cognitive load speech
was recorded by asking the subjects to read out words
(names of colours) written in black or congruent font col-
our (i.e., colour of the font is the same as the word to be
read); speech corresponding to medium cognitive load
was recorded by asking the subjects to name the font col-
our of the words written in incongruent colour (i.e., the
font colour of the words is different to the meaning of
the colour words); and speech corresponding to high cogni-
tive load was recorded in the same manner as for medium
cognitive load speech except that a time constraint was
imposed on the subjects when performing the task. Record-
ings of these tasks contain approximately 60 s of speech (4
utterances, 15 s for each utterance) from each subject,
including each of the three cognitive load levels. An addi-
tional task was recorded by asking the same participants
to read a story with duration approximately 90 s, as neutral
reference data.

For the Reading and Comprehension corpus, speech
corresponding to each cognitive load level was recorded
by asking the subject to read out a story of a corresponding
level of difficulty and then answer three open ended ques-
tions related to the content of the story. The difficulty levels
of the stories were estimated based on the Lexile scale
(Metametrics, 2007) – a semantic difficulty and syntactic
complexity measure scale ranging from 200 to 1700 Lexiles
(L), corresponding to the reading level expected from a first
grade student to a graduate student. The Lexile ratings of
the stories used were 925 L, 1200 L, and 1350 L, respec-
tively. The speech in this corpus contains four utterances
corresponding to each cognitive load level for each subject,
one from reading the story and three from answering the
questions related to that story. The approximate lengths
of the utterances corresponding to reading the story for
the low, medium and high cognitive loads are 90 s, 140 s,
and 230 s, respectively. The approximate length of each
answer to the three questions for all three levels of cogni-
tive load is 30 s.

Comparing the two corpora, the Stroop test corpus con-
tains a limited number of colour words such as ‘red’, ‘blue’,
‘green’, etc. This corpus is akin to an isolated speech corpus
as the subjects read the words one by one slowly. In addi-
tion, there is a speech rate artifact caused by the time con-
straint for the high cognitive load speech. On the contrary,
the Reading and Comprehension corpus contains a signif-
icantly larger vocabulary due to the varied content of the
feature extraction (Kua et al., 2010).

entroid features for cognitive load classification, Speech Comm. (2011),
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long stories, and the open ended nature of the questions.
The story reading section of this corpus contains continu-
ous speech and the question answering section consists of
spontaneous speech. The high level of phonetic variability
and short-term cognitive load variability in the Reading
and Comprehension corpus results in greater variability
in speech features for each load level in this corpus com-
pared to the Stroop test corpus. Consequently, classifica-
tion of the cognitive load level based on speech from the
Reading and Comprehension corpus is more challenging
than classification based on speech from the Stroop test
corpus.

4. Spectral centroid features – spectral distribution of

cognitive load specific information

The spectral centroid based features capture informa-
tion about the speech spectrum via a bank of filters. In
order to efficiently capture information about cognitive
load, it is beneficial to determine how this information is
distributed across the speech spectrum. The experiments
reported in this section aim to determine this distribution
of cognitive load specific information contained in SCFm

and SCAm across different frequency bands empirically
by estimating their relative per-band contributions towards
cognitive load discrimination. In this experiment, speech
was decomposed into 32 subbands using 32 Gabor band-
pass filters spaced uniformly across its bandwidth and the
SCFm and SCAm features were computed in each of these
subbands. A uniform filterbank was used in this analysis
to avoid the variability caused by the variations in band-
width that are present in other commonly used filterbanks
based on the mel and ERB frequency scales. For each cog-
nitive load level, Gaussian mixture models (GMMs),
described in Section 5.2, were then trained using the SCFm

and SCAm features from each subband individually, thus
giving one GMM per cognitive load level per subband.
The Kullback–Leibler distance (KL distance), which has
been widely used to estimate the separation between two
probabilistic models (Le et al., 2009; Goldberger and Aron-
owitz, 2005), was adopted to estimate the separation
between subband specific GMMs corresponding to differ-
ent cognitive load levels.

Since the aim of the experiment reported in this subsec-
tion was to estimate the distribution of cognitive load spe-
cific information across the speech spectrum, it is
important to use the best possible feature representation
prior to modelling using GMMs. Consequently, the origi-
nal feature vector was concatenated with the shifted delta
coefficients (SDCs) of the SCAm and SCFm and used to
train the GMMs since SDCs have been shown to be effec-
tive in capturing temporal variations of spectral features
for cognitive load classification (Yin et al., 2008; Le
et al., 2009). The pairwise KL distance, was determined
in each subband between 256-mixture GMMs correspond-
ing to the different cognitive load levels. An average KL
distance in each subband was then obtained by taking
Please cite this article in press as: Le, P.N. et al., Investigation of spectral c
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the mean of all the pairwise KL distances between GMMs
trained from features extracted from that subband. These
average KL distances, computed for all 32 subbands for
both spectral centroid features (SCAm and SCFm) as well
as average subband energy (the precursor to the MFCC
feature), are shown in Fig. 6. The KL distances reported
here were normalised such that the maximum distance
was 1. This normalisation was carried out to remove the
influence of the magnitudes of the feature values (which
are not relevant) on the KL distance.

It is interesting to observe that the distributions of the
cognitive load information across different frequency bands
are highly consistent between both corpora. For the SCFm,
the frequency band from 250 Hz to 750 Hz is the most sig-
nificant band for cognitive load classification. Apart from
this band, the frequency band from 1250 Hz to 1500Hz is
also quite important compared with the other frequency
bands. Beyond these two bands, the contribution of SCF
decreases steadily until the last frequency band. As SCFm

capture the spectral distribution within subbands, the effec-
tiveness of the SCFm in the two above-mentioned fre-
quency bands suggests that the variations of spectral
distribution in those frequency bands are important to
characterise the difference between cognitive loads. These
two frequency bands roughly correspond to the first and
the second formants (Peterson and Barney, 1952). These
results are also consistent with those reported by Yap
et al. (2010b) which found that the first two formants could
be used to classify cognitive load effectively, and they were
more significant than the third formant. It can also be
noted that the spectral distributions of cognitive load spe-
cific information for both SCAm and average subband
energy are very similar to each other and this is most likely
because they capture similar information. The most signif-
icant band from the point of view of cognitive load classi-
fication, with regards to these two features is around 750–
1000 Hz. This is consistent with the results reported by Le
et al. (2009) where cepstral coefficients computed in the fre-
quency band from 0 Hz to 1000 Hz were shown to be more
important than those computed from other frequency
bands.

The large amount of cognitive load specific information
distributed in the low frequency bands suggest that it may
be advantageous to adopt a frequency scale that provides a
higher resolution at lower frequencies for feature
extraction.
5. Automatic cognitive load classification system

5.1. Front-end

In an automatic cognitive load classification system
based on low level spectral, acoustic and prosodic features,
each cognitive load level is typically modelled by a statisti-
cal model of these low level speech features, while the cog-
nitive load level is taken as that whose model maximises the
entroid features for cognitive load classification, Speech Comm. (2011),
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Fig. 6. The normalised Kullback–Leibler distance of SCFm, SCAm, and energy in different frequency bands computed across (a) Stroop test corpus and (b)
Reading and Comprehension corpus.
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likelihood of observing the test speech features (Yin et al.,
2008; Le et al., 2010).

All speech features used in this study are extracted from
the voiced part of the speech signal using 25 ms frames with
a 15 ms overlap between consecutive frames. Voiced frames
are determined as those whose pitch can be estimated using
the RAPT algorithm (Talkin, 1995). Feature warping
(Pelecanos and Sridharan, 2001) is then utilised to map
the distribution of the feature vectors extracted from an
utterance to a Gaussian distribution of zero mean and unit
variance in order to reduce variability caused by differences
between different speakers. The shifted delta coefficients
(SDC) are extracted to capture information pertaining to
the temporal evolution of the static spectral centroid fea-
tures. It has previously been shown that the concatenation
of the static features with dynamic features (SDCs) gives a
system that outperforms the one that uses static features
only, with regards to systems based on MFCCs and pro-
sodic features (Yin et al., 2008; Le et al., 2010).

5.2. Back-end

A Universal Background Model–Gaussian Mixture
Model (UBM–GMM) based classifier (Reynolds et al.,
2000) was used as the back-end for the systems reported
in this paper. In the UBM–GMM scheme, initially a
GMM that models the distribution of the features corre-
sponding to all the data (from all classes) is trained,
referred to as the universal background model (UBM).
This UBM is then adapted using class-specific data to
obtain Gaussian mixture models for each class using the
Maximum A Posteriori (MAP) adaptation (Reynolds
et al., 2000). Preliminary tests indicated that systems using
the UBM–GMM scheme performed better than similar
systems (i.e., using the same features) using independently
trained GMMs.
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All classification experiments reported in this paper were
performed in a speaker independent manner, where data
from speakers appearing in the test data were not present
in the training data. For experiments performed on the
Reading and Comprehension corpus, data from a set of
five speakers were used as the test dataset and that from
two other sets of five speakers each were used as the train-
ing set. All experiments were performed three times with a
different set of five speakers forming the test set on each
occasion and all results reported were obtained by averag-
ing over the three instances.

On the other hand, for experiments performed on the
Stroop test corpus, data from one speaker was used in
the testing phase and that from the other fourteen speakers
were used in the training phase. Each experiment was per-
formed 15 times with a different speaker used as the test
speaker each time, and the results were averaged. This
mode of experiment was used for the Stroop test corpus
previously (Yin et al., 2008; Yap et al., 2010a; Le et al.,
2009) and was adopted again for ease of comparison with
this work.

For experiments conducted on the Stroop test database,
features extracted from the story reading speech, from all
subjects allocated to the training set, were used to train
the UBM. Features extracted from speech corresponding
to each of the three cognitive load levels, from all subjects
allocated to the training set, were used to adapt this UBM
to obtain the GMMs corresponding to the three cognitive
load levels in the training phase. In the testing phase, the
features extracted from speech corresponding to each of
the three cognitive load levels, from all subjects allocated
to the test set, were used to determine likelihood scores
from the GMMs. For experiments conducted on the Read-
ing and Comprehension database, features extracted from
the story reading speech of all three cognitive load levels,
from all subjects allocated to the training set, were used
entroid features for cognitive load classification, Speech Comm. (2011),
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Table 1
Performance of system employing baseline features (concatenation of
MFCCs, pitch, and intensity).

Classification accuracy (%) Without dynamic With dynamic

Database

Stroop test 58.7 78.9
Reading and Comprehension 42.2 60.7
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to train the UBM. The features extracted from the question
answering speech, from all subjects allocated to the train-
ing set, were used to adapt this UBM to obtain the three
GMMs in the training phase. In the testing phase, the fea-
tures extracted from the question answering speech, from
all subjects allocated to the test set were used to determine
likelihood scores from the GMMs. If only a single feature
set was used, the classification result was then obtained as
the load level corresponding to the model that best
matched the test data (whose likelihood score is maxi-
mum). In the case of more than one feature set being used,
the log-likelihood scores generated by the classifiers for
each of the different feature set were fused using a linear
search fusion technique to obtain the final decision.

In particular, the fused log-likelihood score was
obtained from the linear combination of log-likelihood
scores of individual systems as follows:

LLfused ¼
XN

i¼1

aiLLi; ð4Þ

where LLfused is the fused log-likelihood score, LLi and ai

are the log-likelihood score and the weighting coefficient
of the ith system respectively. The weighting coefficient sat-
isfies 0 6 ai 6 1 and

PN
i¼1ai ¼ 1 and was empirically chosen

to optimise the performance of the system. Specifically, in
this study the value of ai was varied from 0 to 1 with the
step of 0.01. The chosen value of ai was the one that pro-
duced the highest accuracy for the classification system.
The effect of varying these weighting coefficients on the per-
formance of the classification system based on fusing the
results of the SCF based system and the SCA based system
is further described in Section 6.3.

The number of mixtures used in this study for the UBM
and all three GMMs is 256. This number was chosen based
on preliminary experiments that suggested this choice offers
the highest performance.

5.3. Baseline system

MFCC and prosodic features (pitch and intensity) have
been established as some of the most effective features for a
speech-based automatic cognitive load classification sys-
tem. In this paper, a system based on these features is
selected as the baseline system and the performance of all
other systems are compared to it. Seven MFCCs were
extracted from 23 triangular mel scale filters, similar to
the feature used by Yin et al. (2008) and Yap et al.
(2010a), the pitch contour was extracted using the RAPT
algorithm (Talkin, 1995), and the intensity was extracted
using Praat software. The input feature of the baseline sys-
tem was the concatenation of the MFCCs, pitch and
intensity.

The classification accuracy of the baseline system per-
formed on the Stroop test corpus reported in Table 1 is
comparable with the accuracy of the baseline system
reported by Yap et al. (2010a).
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6. Development of cognitive load classification system using

spectral centroid features

6.1. Analysis of number of subbands

In order to investigate the performance of SCF and SCA
features extracted with a varying number of subbands, a
Gabor filterbank with filters equally spaced on the mel
scale was used to extract spectral centroid features, with
the number of filters in the array varying from 2 to 22.
In each case, the SDCs of these features were concatenated
with their original features and used as the discriminative
features for the cognitive load classification experiment.
The mel scale was chosen for this analysis since it is com-
monly used in speech-based cognitive load classification,
and produced the highest performance for SDCs based
on the spectral centroid features on both databases
(Table 2). The resulting accuracies obtained are plotted in
Fig. 7, together with those for MFCCs (including all
DCT coefficients in each case).

The cognitive load classification accuracies shown in
Fig. 7 indicate that the optimal number of filters is 6.

6.2. Effectiveness of different frequency scales

Mel scale filters have been commonly used to extract
cepstral coefficients for speech recognition and speaker
verification systems. This scale is a perceptually motivated
scale devised through human perception experiments.
However despite its popularity, it has been shown that
the mel scale may not be the optimal scale for speech rec-
ognition (Shannon and Paliwal, 2003), and speaker identi-
fication systems (Lu and Dang, 2007). In this section the
effects of using the mel, Bark, equivalent rectangular band-
width (ERB), and hertz scales for extracting the SCF and
SCA features are empirically analyzed through classifica-
tion experiments. Like the mel scale, the ERB and Bark
scales are also perceptually motivated scales where the fre-
quency resolution is high in the low frequency region and
low in high frequency as shown in Fig. 8. The mel scale is a
perceptual scale of pitches judged by listeners to be equal
in distance from one another while Bark and ERB are
the psychoacoustical scales whose bands are related to
the critical bands of human auditory system. In terms of
frequency resolution, the ERB provides the highest resolu-
tion in the frequency below 1 kHz while the mel provides
the highest resolution in the frequency region above
4 kHz as shown in Fig. 8. These frequency scales have
been used in speech recognition (Shannon and Paliwal,
entroid features for cognitive load classification, Speech Comm. (2011),
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Table 2
Classification accuracies (%) of SCF and SCA with different frequency scales.

System mel scale Bark scale ERB scale Hertz scale

Without
dynamic

With
dynamic

Without
dynamic

With
dynamic

Without
dynamic

With
dynamic

Without
dynamic

With
dynamic

Stroop test SCF 49.3 82.0 61.5 84.3 59.1 82.8 40.0 71.3
SCA 59.6 83.7 56.9 83.9 61.1 84.3 48.5 75.9
Fusion SCF
and SCA

60.9 87.2 62.8 84.6 60.3 86.5 48.1 77.6

Reading and
comprehension

SCF 45.2 63.0 41.5 68.9 40.0 65.2 38.5 44.4
SCA 46.7 61.5 47.4 64.4 43.7 63.7 42.2 47.4
Fusion SCF
and SCA

49.6 71.9 48.1 70.4 45.2 69.6 43.0 48.9

Fig. 7. Performance of SCF, SCA and MFCC with different numbers of subbands on (a) Stroop test corpus, and (b) Reading and Comprehension corpus.
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2003) and stress detection (He et al., 2009). For the hertz
scale, the filters are uniformly allocated along the band-
width of speech. The choice of six filters is justified in
Section 6.1.

The accuracies in Table 2 indicate that the spectral cen-
troid features computed based on the three perceptual fre-
quency scales, mel, Bark, and ERB, perform significantly
better than those computed on the hertz frequency scale.
This is most probably because compared with the hertz
scale, the three perceptual scales provide a significantly
higher resolution in the frequency region below 2 kHz
(Fig. 8), which contains the most cognitive load specific
information as suggested by Fig. 6. The use of all three per-
ceptual frequency scales results in comparable classification
accuracies. When SDCs are used to capture dynamic infor-
mation, the mel frequency scale provides a marginal per-
formance improvement compared with the Bark and the
ERB scales for the CL classification system based on the
fusion of the classification results of the systems using indi-
vidual spectral centroid features.

Empirical frequency scales for each corpus based on
the distribution of cognitive load information across dif-
ferent frequency bands were also investigated in our
study. Specifically, the empirical scales for the two cor-
pora were set up based on the spectral distribution of
KL distance between CL models for SCAm and SCFm
Please cite this article in press as: Le, P.N. et al., Investigation of spectral c
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(Fig. 6). These curves were normalised to have the unit
area below the curves prior to averaging them to obtain
a single curve for each corpus. The empirical filter bank
was then set up such that the six subbands divided the
area under the overall KL distance curve into six regions
whose areas are equal. The centre frequencies and the
bandwidths of the six filters were then obtained as the
centres and the widths of these subbands. This approach
of filter allocation provides higher resolution in frequency
ranges that contribute more towards discrimination
between CL levels. The band allocations for the empirical
scales are shown in Fig. 8. A similar approach has been
used previously to design a 20-filter empirical frequency
scale to capture the cepstrum coefficients for a CL classi-
fication system (Le et al., 2009). Performed on the Stroop
test corpus, the SCF and SCA extracted using the empir-
ical frequency scale combined with their SDC dynamic
features provide accuracies of 85.9% and 83.3% and fusing
the classification results of the two systems based on the
individual features yields 87.8%. Performed on the Read-
ing and Comprehension corpus, the corresponding results
were 62.2%, 57.8% and 69.6% (fused). The performances
of the empirical frequency scales are comparable to the
perceptual frequency scales, probably because all these
scales have similarly high resolution in the frequency
region below 2 kHz.
entroid features for cognitive load classification, Speech Comm. (2011),
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Fig. 8. Frequency allocation of filterbank centre frequencies and band-
widths. Empirical 1 and Empirical 2 are the empirical frequency scales
used for Stroop test and Reading and Comprehension corpora
respectively.
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6.3. Combination of the two spectral centroid features

As expected, the fusion of the classification results at the
score level of the SCF based system and SCA based system
consistently improves the performance of the cognitive
load classification systems. The results in Table 2 show that
with six filters and various frequency scale configurations,
when the SDCs were used, the fused system provided up
to 24% and 27% reduction of the relative error rate com-
pared with the systems based on individual features, for
the Stroop test and Reading and Comprehension corpora
respectively. The average reductions of relative error rate
across the four frequency scales used are 18% and 14.1%
for the Stroop test corpus and the Reading and Compre-
hension corpus. The effect of varying the weighting coeffi-
cients on the performance of the fused systems with six
filters and various frequency scale configurations is high-
lighted in Fig. 9. As can be observed from this figure, in
most cases, the value of weighting coefficient that maximis-
es the performance of the system is around 0.5, suggesting
Fig. 9. Performance of the fused systems with various weighting coefficient
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that the contributions of SCF and SCA to the fused system
are more or less equal.

Moreover, when the mel scale was utilised with a differ-
ent number of filters, as shown in Fig. 7, the fused system
provided performance improvements for almost all the
cases. In particular, the fused system provided up to
29.5% and 26.9% of reduction in relative error rate for the
Stroop test and the Reading and comprehension corpus.

Furthermore, although the performances of the systems
based on individual spectral centroid feature are compara-
ble with those of the systems based on the MFCCs, the
combination of these two spectral centroid features at the
score level consistently provides significantly better perfor-
mance than those of the MFCCs systems as shown in
Fig. 7. This is most likely because the combination of the
two spectral centroid features capture the distribution of
the spectrum in a subband more comprehensively than
the MFCCs.

6.4. Performance comparison with the baseline system and

state of the art system

It can be observed from Tables 1 and 2 that when static
features are used, systems based on individual spectral cen-
troid features extracted with six filters arranged in any per-
ceptual frequency scale result in performances comparable
to the baseline system. However, when the concatenation
of the SDCs and the original feature is used as discriminative
feature, systems that use spectral centroid features consis-
tently provide better performances than the baseline system.
Furthermore, the system based on fusing the classification
results of the CL classification systems based on individual
spectral centroid feature provides significantly higher per-
formance when compared to the baseline system. In partic-
ular, the classification accuracies of the system using filters
arrayed equally in the mel scale obtained when tested on
the Stroop test corpus is 87.2%. Compared with the perfor-
mance of the baseline system whose accuracy is 78.9%, this
fused system provides a 39.3% relative reduction in error
s (a) Stroop test corpus, and (b) Reading and Comprehension corpus.
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Table 3
Cognitive load classification system performances (The entries in bold correspond to the highest classification accuracies).

System Stroop test Reading and Comprehension

Accuracy
(%)

Relative improvement of accuracy
(relative reduction of error rate)
compared with baseline (%)

Accuracy
(%)

Relative improvement of accuracy
(relative reduction of error rate)
compared with baseline (%)

MFCC + prosodic
(baseline)

78.9 0 (0) 60.7 0 (0)

SCF 82.0 3.9 (14.7) 63.0 3.8 (5.9)
SCA 83.7 6.1 (22.7) 61.5 1.3 (2.0)
Fusion baseline and

SCF
84.6 7.2 (27.0) 65.9 8.6 (13.2)

Fusion baseline and
SCA

85.9 8.9 (33.2) 68.1 12.2 (18.8)

Fusion SCF and
SCA

87.2 10.5 (39.3) 71.9 18.5 (28.5)

Fusion SCF and
SCA and baseline

88.5 10.8 (45.5) 72.6 19.6 (30.3)
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rate. Similarly, when tested on the Reading and Comprehen-
sion corpus, the classification accuracies of the fusion based
system and the baseline system are 71.9% and 60.7%, provid-
ing a relative reduction in error rate of 28.5%.

Cognitive load classification systems based on the spec-
tral centroid features, extracted using a bank of six mel
scale filters (based on the results included in Sections 6.1
and 6.2), were also fused with the baseline system presented
in Section 5.3, and the results are presented in Table 3. As
expected, the system obtained by fusing SCF, SCA based
systems to the baseline system outperforms all the other
systems, for both corpora. Particularly, classification accu-
racy of the fused system performing on the Stroop test cor-
pus is 88.5%. Compared with the performance of the
baseline system whose accuracy is 78.9%, this fused system
provides a 45.5% relative reduction in error rate. Similarly,
when test on the Reading and Comprehension corpus, the
classification accuracies of the fused system and the base-
line system are 72.6% and 60.7%, a 30.3% relative reduc-
tion in error rate is obtained.

The previous state of the art system, tested on the Stroop
test corpus involved fusing the scores of the baseline system
(combination of MFCC, pitch, and intensity) with the
scores of a glottal parameter feature based system (Yap
et al., 2010a) produces an accuracy of 84.4%. The fused sys-
tem presented in this paper has an accuracy of 88.5%, a
26.3% reduction in relative error rate. Similarly, the best
system previously tested on the Reading and Comprehen-
sion corpus concatenated MFCC, pitch, and intensity and
their SDCs and was evaluated in a speaker-dependent mode
giving an accuracy of 71.1% (Yin et al., 2008). Our speaker-
dependent system based on the fusion of the SCF based sys-
tem and the SCA based system has an accuracy of 84.3%, a
45.7% reduction in relative error rate.

7. Discussion and conclusion

In this paper, we have investigated the use of spectral
centroid features in cognitive load classification systems
Please cite this article in press as: Le, P.N. et al., Investigation of spectral c
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and include experimental results that consistently indicate
that these spectral centroid features contain information
that can be exploited by cognitive load classification sys-
tems. More specifically, we have shown that fusing the
results of the cognitive load classification systems based
on each of the two spectral centroid features consistently
provides higher classification accuracy than that of the
baseline system based on the combination of the MFCC,
pitch and intensity.

We have identified the frequency regions that are rela-
tively more important than other regions for the purpose
of cognitive load classification when employing energy
and spectral centroid based features. It is also significant
that the distribution of cognitive load specific information
is consistent for both corpora tested, even though they have
very different characteristics.

The accuracies of cognitive load classification systems
when tested on the Reading and Comprehension corpus
are consistently lower than those obtained from the Stroop
test corpus. This is to be expected as the Reading and Com-
prehension corpus was recorded in a much less controlled
manner than the Stroop test corpus. Although the Reading
and Comprehension is still a corpus collected in a labora-
tory, it is closer to a realistic as it contains continuous
and spontaneous speech. The relatively high accuracy
obtained by cognitive load classification systems based on
spectral centroid features when tested on this corpus is
therefore promising, although there is clearly still room
for further improvement.

Future work will include validating these results on
other cognitive load speech corpora.
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