Discovery of IoT data streams and IoT services

- Semantic based discovery requires
 - "Semantic description" of objects (IoT data streams and IoT services)
 - Various semantic models have been developed to describe objects in general
 - Single keyword
 - Multiple keywords
 - Bank, Citi, Plano, Texas, ATM-only
 - Attribute-based model
 - Object = Bank, Name = Citi, Location = “Plano, Texas”, …
 - Hierarchical naming (URI, ICN)
 - Semantic models for IoT objects
 - All the general models, SSN, SensorML, Data-Stream-Centric

- Discovery algorithms
 - Centralized: Registry
 - Hierarchical: Bloom filter based
 - Peer to peer
 - SFC+DHT, Query-Covering+DHT
 - CBCB, Cache Summary, Two Level

- A major issue in routing – Routing table size
 - In order to know how to route for a given query, a routing table needs to contain all possible “keys” that may appear in a query
 - For example, in IP routing, the key is the IP address
 - The routing table needs to contain all possible IP addresses that may appear in a routing query, e.g., 2^{32} addresses for IPv4 or 2^{128} addresses for IPv6
 - Infeasible, needs to reduce the routing table size
 - “Covering” is a very important concept in all routing protocols
 - Example for covering in IP: “128.10.3.*” covers 256 IP addresses
 - Can be used to greatly reduce the routing table size
 - Covering in Query-Covering+DHT, CBCB
 - Attribute based description with covering
 - 1. (object = bank, name = Citi, location = Plano-Texas, property = banking-center)
 - 2. (object = bank, name = Citi, location = Plano-Texas, property = ATM-only)
 - 3. (object = bank, name = Citi, location = Plano-Texas, property = *)
 - 4. (object = bank, name = Citi, location = Texas, property = *)
 - 5. (object = bank, name = C*, location = Texas, property = *)
 - 5 covers 4, 4 covers 3, 3 completely covers 1 and 2
 - Covering in Cache Summary, Two Level
 - Ontology based

- IoT service composition
 - OWL-S specification for IoT services
 - How to compose services based on IOPE

- Potential exam question types
 - Specification models
 - Understand the naming schemes, being able to come up with the naming based on different specification models for some given examples
 - Covering schemes, understand the covering relations
 - Understand ontology coding in ontology based covering
 - How to construct ontology code, how to use ontology code in routing table construction and in query routing
- Discovery algorithms
 - Bloom filter
 - How to use Bloom filter to determine how to route discovery queries
 - SFC+DHT, Query-Covering+DHT
 - How the objects are distributed over the network (where they are, how to determine it)
 - During discovery, how to find the object
 - Given a scenario, being able to follow the algorithm to do object distribution and to do object discovery
 - Analyze the algorithms and understand their pros and cons
 - CBCB, Cache Summary, Two Level
 - Build routing table during advertisement
 - Routing for a discovery query based on the given routing tables
 - Given a scenario, being able to follow the algorithm to build routing table and to route the discovery query
 - Analyze the algorithms and understand their pros and cons
 - Understand the impact of usage, distance, coverage, mobility to routing and routing table
- IoT service composition
 - Able to compose services based on the given IOPE of services

Edge for IoT Computing
- Cloudlet
 - Major concept of Cloudlet
 - Major steps in Cloudlet to minimize the size of the VM-overlay
 - Cloudlet migration issues
- Docker
 - Docker lifecycle
 - Docker image layering based on Docker file
 - Docker file structure
 - Container migration
- Cloud4Home
 - Routing for query involving data and computation
- ECC
 - Specification model
 - Competence, intent, context
 - Matchmaking
- FocusStack
 - GA specification and other specifications
 - FCOP
 - How to follow the protocol to locate the queried objects (IoT devices)
- Geo-distributed data analytics
 - How to place Reduce tasks, how to re-locate input data
- Learning on the edge
 - Pruning, code-book based quantization
- Potential exam question types
 - Cloudlet and Docker
 - Able to compare them and understand their pros and cons
 - Given scenarios, able to follow the Cloudlet steps to compute the VM-overlay for carrying and for migration
 - Understand fully the AUFS structure for Docker
 - Given scenarios, know how Docker AUFS would look like
♦ Understand the Container migration method, being able to follow the migration steps for a given scenario

➢ Cloud4Home, ECC, FocusStack
 ♦ Understand the matchmaking procedures of these algorithms
 ♦ Given a scenario, being able to perform matchmaking following the algorithms or a mixture of these algorithms

➢ Geo-distributed data analytics
 ♦ Given a scenario, being able to place the Reduce tasks by migrating data

➢ Learning on the edge
 ♦ For a given scenario, being able to perform pruning and quantization