Elaboration for Online Processing

- **Data Generator:** Merge and read from multiple data files and write them to TSDB at a fixed rate
 - Including the input files for normal and faulty situations
 - Assume that they are F0, F1, F2 and their sizes are size(F0), size(F1), size(F2)
 - Let Tsize = size(N) + size(F1) + size(F2)
 - Divide the data by input window size and we will refer to each as an input block
 - Let IW be the input window size (each block is of size W)
 - You need to choose a reasonable IW such that the data is sufficient for fault recognition
 - Repeat in a loop the following, until offT % of the data are retrieved
 - offT: offline training; onlT: online training
 - Read a block of data from one of the input files
 - The input file is selected randomly with probability = size(Fi) / Tsize
 - Write the retrieved data to TSDB-offT
 - Add labels to the data before writing (label the fault type)
 - Data should be written at a fixed rate SR (sensor rate)
 - Repeat in a loop the following, until all data in all data files are retrieved
 - Do the same as above, but write the retrieved data to TSDB-onlT
 - If some data files are exhausted, but others are not, then just skip the exhausted ones when they are selected

- **Offline Training**
 - Read the data from TSDB-offT and feed to the learning system
 - You can start training after all the offline training data are in TSDB or in sync with the Data Generator
 - Obtain a Training Model and pass it to the Online Testing and Training unit

- **Online Testing and Training**
 - Define a processing window size PW, we refer to each as a data segment
 - Generally speaking, we should have PW < IW
 - Read a data segment from TSDB-onlT and process the segment
 - Need to setup a sync mechanism to make sure that the complete window of data is available
 - Explore what the TSDB has offered for easy sync
 - Some TSDBs may support the continuous queries, which can be used for this purpose
 - In the worst case, sync the sleep time in Data Generator and Online Testing and Training
- Feed it to the Trained Model to determine whether there is a fault and if so, the fault type
 - Without the label
- Feed it to the Trained Model to perform additional training
 - With the label added by Data Generator

- Send the output for graphing

- **Online data Graphing**
 - **Measurement data graphing**
 - Use the graphing utilities provided by the TSDB to graph each measurement
 - **Fault data graphing (accurate labels)**
 - Use the graphing utilities provided by the TSDB to graph the system fault label
 - The label generated by the Data Generator
 - Set normal = 0, different fault types with different positive integers
 - Graph the system condition and observe faults
 - **Fault data graphing (diagnosis results)**
 - Obtain the data from your Online Testing unit
 - Use the TSDB graphing libraries to plot the fault diagnosis results
 - With the same fault value settings
 - Layout the two fault data series next to each other to allow visual comparisons
 - **Fault diagnosis result reporting**
 - Output the fault diagnosis analysis accuracy in various metrics in a text window